一种粉煤灰为原料制备钛酸铝莫来石复合多孔陶瓷的方法与流程

文档序号:14732747发布日期:2018-06-19 19:50阅读:218来源:国知局
一种粉煤灰为原料制备钛酸铝莫来石复合多孔陶瓷的方法与流程

本发明涉及多孔陶瓷材料领域,尤其涉及工业废渣粉煤灰合成钛酸铝莫来石复合多孔陶瓷材料及其制备方法。



背景技术:

随着国民经济的发展、工业化进程加快,环境污染问题凸显。粉煤灰是目前世界上排放量较大的工业废渣之一,主要表现在占用土地、污染水源、污染大气、放射性污染。目前,我国的电力生产是以煤炭为主要燃料,伴随着电力工业的快速发展,粉煤灰的排放量也急速增长,2000年粉煤灰排放量达1.5亿吨,2010年约为3亿吨,到2020年估计排放量将达到4亿吨。中国目前对粉煤灰的利用率只有30%,而粉煤灰是含有多种元素的重要资源,其中,SiO2占49-55%左右,Al2O3占15-27%左右,其它成分:Fe203约占5-10%,CaO约占4-13%,TiO2约占1.23%,K2O约占0.88%等,因此,加强对粉煤灰的综合利用已势在必行。

钛酸铝(Al2TiO5)是目前已知低膨胀材料中耐高温性能最好的陶瓷材料之一,它的熔点高(1860±10℃)、热膨胀系数小(<1.5×l0-6/℃),具有较强的抗热震能力、良好的耐蚀性、抗渣性、耐碱性和对多种金属及玻璃不浸润的性质。基于Al2TiO5的优良低膨胀性和高温性能,其多孔陶瓷材料制品将是工业高温烟气以及机动车尾气、固体颗粒过滤净化用载体材料的理想选择。但是由于钛酸铝存在烧结强度低,且在750~1300℃温度内易分解,导致膨胀系数增大失去优良抗热震性两大致命缺陷,严重影响其实际应用。在钛酸铝多孔陶瓷材料的应用方法中,近年来人们也做了一些工作,周传雄等通过引入氧化铁和莫来石复合的方法对钛酸铝-莫来石复合材料的热稳定性进行了研究。以氧化铁为添加剂,改变了钛酸铝的晶格常数,降低了钛酸铝晶体的畸变程度,从而促进烧结,提高了热稳定性,对钛酸铝的热分解起到了较好的抑制作用,采用莫来石复合的方法提高了其热稳定性及强度(周传雄,尹洪峰,任耘等.钛酸铝-莫来石复合材料热稳定性的研究.耐火材料.2004(38):97~99)。

国内在粉煤灰为原料制备多孔陶瓷方面开展了一定的研究工作,中国专利公开号CN105198394公开了以粉煤灰为主原料,制备了高红外发射率的堇青石-尖晶石陶瓷材料,本发明的陶瓷材料主晶相为堇青石相和尖晶石相,具有辐射率高、热膨胀系数小、抗热震性能好等优点。中国专利公开号CN102765944公开了一种以粉煤灰为原料制备莫来石粉的方法,该方法以粉煤灰为主要原料,再添加适量的Al2O3,煅烧后得到莫来石粉体。中国专利公开号CN105924211公开了用粉煤灰和磷酸二氢铝制备轻质多孔陶瓷的方法。钛酸铝复合莫来石材料具有较低的热膨胀系数,同时具有较高的机械强度(陈达谦,陈虹,李文善,王长文.莫来石一钦酸铝复相陶瓷研究.现代技术陶瓷.1995(3):3~10)。Xu G,Chen Z,Zhang X,et al.Preparation of porous Al2TiO5-Mullite ceramic by starch consolidation casting and its corrosion resistance characterization[J].Ceramics International,2016,42(12):14107-14112.文献中提到一种不是以粉煤灰为原料的钛酸铝莫来石复合多孔陶瓷材料的制备方法。但迄今为止,尚未有利用工业废渣粉煤灰制备稳定钛酸铝莫来石复合多孔陶瓷材料的报道。



技术实现要素:

针对上述现有技术中存在的问题,本发明的目的是提供一种稳定钛酸铝莫来石复合多孔陶瓷材料,以满足多方面合理利用的要求。

本发明的多孔陶瓷材料是在粉煤灰现有成分的基础之上,加入一定的拟薄水铝石和氧化钛,充分利用粉煤灰中的氧化铝、氧化铁和氧化硅等原料制备稳定钛酸铝-莫来石复合多孔陶瓷材料。

为了解决以上技术问题,本发明的技术方案为:

一种稳定钛酸铝莫来石复合多孔陶瓷材料,各组分分别为:粉煤灰44~47份,拟薄水铝石44~46份,二氧化钛7~12份。

优选的,所述煤粉灰的组成为SiO2 49~55%,Al2O3 15~27%,Fe2O3 5~10%,TiO2 1.23%,CaO 4~13%,MgO 0.95%,K2O 0.88%,Na2O 0.47%,SO3 1.51%,烧失量4.36%

优选的,所述拟薄水铝石重量百分比含量≥99%。

优选的,所述二氧化钛重量百分比含量≥98%。

优选的,制备的钛酸铝莫来石复合多孔陶瓷材料中的莫来石在体系中的质量百分比为76~85%。

优选的,粉煤灰,拟薄水铝石和氧化钛的加入质量比为23:23:4。

粉煤灰中的氧化铁在陶瓷中作为添加剂,具有烧结助剂和改性剂的作用。在钛酸铝陶瓷中能够改变钛酸铝的晶格常数,降低钛酸铝晶体的畸变程度,从而促进烧结,提高其热稳定性,在反应的过程中氧化铁的存在与其它原料合成稳定的(Al,Fe)2TiO5,(Al,Fe)2TiO5对钛酸铝的热分解起到较好的抑制作用。

优选的,氧化铁的最佳掺杂比例为20%,即铁原子占合成钛酸铝中氧化铝的铝原子总量的20%。

在本发明中的多孔陶瓷材料是以由粉煤灰中的氧化铝或拟薄水铝石与二氧化钛和粉煤灰中的氧化铁通过一步合成法直接反应合成钛酸铝,以粉煤灰中的氧化铝或拟薄水铝石与粉煤灰中的氧化硅反应合成的莫来石作为复合相。

粉煤灰中的氧化钙、氧化镁对制备的钛酸铝莫来石复合多孔陶瓷的作用为:提高抗压强度,降低烧结温度,进而提高孔隙率。

钛酸铝莫来石复合多孔陶瓷材料中,由于莫来石粒子抑制钦酸铝晶粒的长大,使钛酸铝的晶粒变小,导致复相陶瓷细晶化,具有提高钛酸铝材料的抗压强度的作用。

组成中氧化铁具有提高钛酸铝热稳定性的效果,莫来石对陶瓷材料具有增强抗压强度的影响,进而使得到的陶瓷稳定性和抗压强度最好。

一种粉煤灰为原料制备钛酸铝莫来石复合多孔陶瓷的制备方法为:

1)将粉煤灰、拟薄水铝石、二氧化钛组成的混合料及去离子水按照配比要求加入到行星球磨机中混合;

2)将步骤1)中球磨好的混合浆料进行干燥得到原料粉体;

3)将淀粉、步骤2)中得到原料粉体、淀粉、PVA与去离子水在一定温度下搅拌,得到均匀的悬浮液,然后将悬浮液浇入模具,放入烘箱在一定的温度下固化后,脱模后样品在一定温度下烘干。

4)步骤3)中烘干后的样品在一定温度下进行烧成,保温一定时间后可获得钛酸铝莫来石复合多孔陶瓷材料。

优选的,步骤1)中的混合料、球、去离子水的重量百分比为1:(1.5~2.5):(0.6~0.9);混合时间为3~6个小时。

优选的,步骤1)中去离子水也可以为无水乙醇。

优选的,步骤3)中搅拌温度为60℃。

优选的,步骤3)中搅拌时间为30~60分钟。

优选的,步骤3)中烘箱的温度为80~90℃。

优选的,步骤3)中在烘箱中的固化时间为2~3个小时。

优选的,步骤3)中脱模后样品的烘干温度为40℃。

优选的,步骤3)得到的悬浮液中的原料含量为50%-65%。

所述悬浮液中的原料含量为粉煤灰、拟薄水铝石、二氧化钛组成的混合料的含量。

优选的,步骤3)得到的悬浮液中的淀粉的含量为5%-25%。

优选的,步骤3)得到的悬浮液中的PVA含量为0.5%~1%。

优选的,步骤4)中烧成温度为1200-1400℃,保温时间为2-3小时。

本发明中任一上述的钛酸铝莫来石复合多孔陶瓷材料可以用于陶瓷滤膜支撑体、工业高温烟气过滤及机动车尾气净化处理用的载体材料方面的应用。

本发明的有益效果:

1)本发明采用固体废渣粉煤灰作为主要原料,充分利用粉煤灰中的氧化铝、氧化硅、氧化钛和氧化铁成分,并利用氧化铁作为钛酸铝的改性剂,来制备稳定钛酸铝莫来石复合多孔陶瓷材料。本发明对粉煤灰的利用无论是对我国的经济发展、社会发展,还是生态环境的保护都具有重要的意义。

2)本发明所制得的钛酸铝莫来石复合多孔陶瓷材料热膨胀系数小,强度高,气孔率为41~61%、气孔孔径分布均匀,热稳定性和化学稳定性好。

附图说明

构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。

图1合成的多孔陶瓷材料的X-射线粉末衍射图谱

图2制备的多孔陶瓷材料的扫描电镜照片

图3制备的多孔陶瓷材料在不同烧结温度下的气孔率与抗折强度

具体实施方式

应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。

需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。

下面结合实施例对本发明进一步说明。

实施例1

以莫来石含量占总质量的质量百分比为76%进行配料。

首先按下述重量称取原料:粉煤灰44%,拟薄水铝石44%,二氧化钛12%,将原料粉体粉煤灰、拟薄水铝石和氧化钛加入到行星球磨机中混合,混合料、球、去离子水的重量百分比为1:2:0.8,混合时间为4个小时。将球磨好的浆料进行干燥,得到原料粉体。将原料粉体进行淀粉固化成型,固含量为55%,淀粉含量为20%,PVA含量为0.5%,将淀粉、混合粉体、PVA与去离子水在60℃下搅拌30分钟,得到均匀的悬浮液。然后将悬浮液浇入模具,放入烘箱在80℃条件下固化2个小时后,脱模后样品在40℃烘干;烘干后的样品在1200℃温度下进行烧成,保温时间为2小时后可获得钛酸铝莫来石复合多孔陶瓷材料,材料的孔隙率为61.8%,抗压强度为18Mpa。

实施例2

以莫来石含量占总质量的质量百分比为85%进行配料。

首先按下述比例称取原料:粉煤灰47%,拟薄水铝石46%,二氧化钛7%,将原料粉体粉煤灰、拟薄水铝石和氧化钛加入到行星球磨机中混合,混合料、球、无水乙醇的重量百分比为1:1.5:0.9,混合时间为5个小时。将球磨好的浆料进行干燥,得到原料粉体。将原料粉体进行淀粉固化成型,固含量为58%,淀粉含量为20%,PVA含量为1%,将淀粉、混合粉体、PVA与去离子水在60℃下搅拌60分钟,得到均匀的悬浮液。然后将悬浮液浇入模具,放入烘箱在90℃条件下固化2个小时后,脱模后样品在40℃烘干;烘干后的样品在1300℃温度下进行烧成,保温时间为2小时后可获得钛酸铝莫来石复合多孔陶瓷材料,材料的孔隙率为54%,抗压强度为21Mpa。

实施例3

以莫来石含量占总质量的质量百分比为80%进行配料,烘干后的样品在1400℃温度下进行烧成

首先按下述重量称取原料:粉煤灰46%,拟薄水铝石46%,二氧化钛8%,将原料粉体粉煤灰、拟薄水铝石和氧化钛加入到行星球磨机中混合,混合料、球、去离子水的重量百分比为1:2.5:0.9,混合时间为5个小时。将球磨好的浆料进行干燥,得到原料粉体。将原料粉体进行淀粉固化成型,固含量为55%,淀粉含量为20%,PVA含量为0.7%,将淀粉、混合粉体、PVA与去离子水在60℃下搅拌50分钟,得到均匀的悬浮液。然后将悬浮液浇入模具,放入烘箱在80℃条件下固化2个小时后,脱模后样品在40℃烘干;烘干后的样品在1400℃温度下进行烧成,保温时间为2小时后可获得钛酸铝莫来石复合多孔陶瓷材料,材料的孔隙率为45%,抗压强度为34Mpa。

实施例4

以莫来石含量占总质量的质量百分比为80%进行配料,烘干后的样品在1300℃温度下进行烧成

首先按下述重量称取原料:粉煤灰46%,拟薄水铝石46%,二氧化钛8%,将原料粉体粉煤灰、拟薄水铝石和氧化钛加入到行星球磨机中混合,混合料、球、去离子水的重量百分比为1:2:0.8,混合时间为4个小时。将球磨好的浆料进行干燥,得到原料粉体。将原料粉体进行淀粉固化成型,固含量为60%,淀粉含量为15%,PVA含量为0.7%,将淀粉、混合粉体、PVA与去离子水在60℃下搅拌30分钟,得到均匀的悬浮液。然后将悬浮液浇入模具,放入烘箱在80℃条件下固化3个小时后,脱模后样品在40℃烘干;烘干后的样品在1300℃温度下进行烧成,保温时间为3小时后可获得钛酸铝莫来石复合多孔陶瓷材料,材料的孔隙率为49%,抗压强度为37Mpa。

实施例5

以莫来石含量占总质量的质量百分比为85%进行配料。

首先按下述比例称取原料:粉煤灰47%,拟薄水铝石46%,二氧化钛7%,将原料粉体粉煤灰、拟薄水铝石和氧化钛加入到行星球磨机中混合,混合料、球、无水乙醇的重量百分比为1:1.5:0.8,混合时间为4个小时。将球磨好的浆料进行干燥,得到原料粉体。将原料粉体进行淀粉固化成型,固含量为50%,淀粉含量为20%,PVA含量为0.8%,将淀粉、混合粉体、PVA与去离子水在60℃下搅拌40分钟,得到均匀的悬浮液。然后将悬浮液浇入模具,放入烘箱在80℃条件下固化3个小时后,脱模后样品在40℃烘干;烘干后的样品在1300℃温度下进行烧成,保温时间为2小时后可获得钛酸铝莫来石复合多孔陶瓷材料,材料的孔隙率为52.8%,抗压强度为29.6Mpa。

对比例1

以莫来石含量占总质量的质量百分比为85%进行配料。

首先按下述比例称取原料:粉煤灰47%,拟薄水铝石46%,二氧化钛7%,将原料粉体粉煤灰、拟薄水铝石和氧化钛加入到行星球磨机中混合,混合料、球、无水乙醇的重量百分比为1:1.5:0.8,混合时间为4个小时。将球磨好的浆料进行干燥,得到原料粉体。将原料粉体进行淀粉固化成型,固含量为50%,淀粉含量为10%,PVA含量为0.8%,将淀粉、混合粉体、PVA与去离子水在60℃下搅拌40分钟,得到均匀的悬浮液。然后将悬浮液浇入模具,放入烘箱在90℃条件下固化3个小时后,脱模后样品在40℃烘干;烘干后的样品在1300℃温度下进行烧成,保温时间为2小时后可获得钛酸铝莫来石复合多孔陶瓷材料,材料的孔隙率为48.1%,抗压强度为35MPa。对比例1与实施例5的区别为淀粉含量为10%,淀粉的含量不同。

对比例2

以莫来石含量占总质量的质量百分比为76%进行配料

首先按下述重量称取原料:粉煤灰44%,拟薄水铝石44%,二氧化钛12%,将原料粉体粉煤灰、拟薄水铝石和氧化钛加入到行星球磨机中混合,混合料、球、无水乙醇的重量百分比为1:1.5:0.8,混合时间为4个小时。将球磨好的浆料进行干燥,得到原料粉体。将原料粉体进行淀粉固化成型,固含量为50%,淀粉含量为20%,PVA含量为0.8%,将淀粉、混合粉体、PVA与去离子水在60℃下搅拌40分钟,得到均匀的悬浮液。然后将悬浮液浇入模具,放入烘箱在90℃条件下固化3个小时后,脱模后样品在40℃烘干;烘干后的样品在1300℃温度下进行烧成,保温时间为2小时后可获得钛酸铝莫来石复合多孔陶瓷材料,材料的孔隙率为53.3%,抗压强度为26MPa。对比例2和实施例5的区别为莫来石的质量百分比不同,其它操作条件相同。

对比例3

以莫来石含量占总质量的质量百分比为85%进行配料。

首先按下述比例称取原料:粉煤灰47%,拟薄水铝石46%,二氧化钛7%,将原料粉体粉煤灰、拟薄水铝石和氧化钛加入到行星球磨机中混合,混合料、球、无水乙醇的重量百分比为1:1.5:0.8,混合时间为4个小时。将球磨好的浆料进行干燥,得到原料粉体。将原料粉体进行淀粉固化成型,固含量为50%,淀粉含量为20%,PVA含量为0.8%,将淀粉、混合粉体、PVA与去离子水在60℃下搅拌40分钟,得到均匀的悬浮液。然后将悬浮液浇入模具,放入烘箱在90℃条件下固化3个小时后,脱模后样品在40℃烘干;烘干后的样品在1400℃温度下进行烧成,保温时间为2小时后可获得钛酸铝莫来石复合多孔陶瓷材料,材料的孔隙率为42.48%,抗压强度为42.23MPa。对比例3与实施例5的区别为烧成温度不同,其它操作条件相同。

对比例4

利用氧化硅、氧化铁、氧化铝、拟薄水铝石、二氧化钛为原料制备钛酸铝莫来石复合多孔陶瓷材料,与实施例5的区别为将粉煤灰换成原来所需的等重量的氧化硅、氧化铁、氧化铝,拟薄水铝石和二氧化钛的含量不变,制备方法与实施例5相同,得到的钛酸铝莫来石复合多孔陶瓷材料,材料的孔隙率为48%,抗压强度为23MPa。本对比例与实施例5的区别为没有粉煤灰中除氧化硅、氧化铁、氧化铝和氧化钛的参与,粉煤灰的其它组分对制备的陶瓷材料的影响。

本发明中抗压强度的检测依据国标GB/T 1964-1996《多孔陶瓷性能试验方法》,孔隙率的检测依据国标GB/T 1966-1996《多孔陶瓷显气孔率、容重试验方法》。

如图1、图2和图3所示,

由图1X-射线粉末衍射分析可知材料的主晶相为钛酸铝、莫来石和刚玉相,从图2中可以看出,钛酸铝莫来石复合多孔陶瓷材料中,样品具有典型的多孔陶瓷结构,具有三维网络骨架及相互连通、呈不规则形状的孔道,主要为宏孔,孔分布均匀,孔径为10μm左右。由于孔壁比较致密,因此制备的多孔陶瓷在具有较高显气孔率的同时仍保持较高的抗折强度。从图3中可以看出,钛酸铝莫来石复合多孔陶瓷具有较高的气孔率与抗折强度,随着烧结温度的升高,气孔率降低,抗折强度升高。

总结:对比例2和实施例5对比,莫来石的质量比不同,当莫来石的含量为85%时得到的莫来石的抗压强度最好;对比例1和实施例5的对比,固化使用的淀粉的含量不同,淀粉含量对孔隙率的影响为:在一定含量的范围内,淀粉含量越高,孔隙率越高;对抗压强度的影响为:在一定含量的范围内,淀粉含量越高,孔隙率越高,抗压强度越低;对比例3和实施例5的对比,烧成温度不同,烧成温度对孔隙率的影响为:烧成温度越高,孔隙率越低;烧成温度对抗压强度的影响为:烧成温度越高,抗压强度越高,对比例4和实施例5的对比,粉煤灰中除氧化硅、氧化铁、氧化铝和氧化钛以外的其它组分,对陶瓷的抗压强度有很大的影响,它们可以提高陶瓷的抗压强度。

以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1