一种微晶耐磨陶瓷研磨体及其制备方法与应用与流程

文档序号:15930860发布日期:2018-11-14 01:37阅读:200来源:国知局

本发明属于陶瓷材料技术领域,具体涉及一种微晶耐磨陶瓷研磨体及其制备方法与应用。

背景技术

随着对粉碎加工原材料品质要求的提高,陶瓷研磨体的使用越来越广泛,目前已经广泛应用于陶瓷、水泥、涂料、耐火材料、无机矿物粉料等行业。原来使用较多的金属研磨体正在减少并逐步退出,这主要是因为陶瓷研磨体较金属研磨体具有质量轻、硬度高、磨耗低、抗震稳定性好、耐腐蚀等特点,在使用过程中节电、噪音小、带入的杂质少。原来粉碎用的金属研磨体,为了提高其耐磨性,往往都加入有金属铬,这对于加工的原材料及环境都有一定的污染,而陶瓷研磨体就解决了铬污染问题,因此,陶瓷研磨体又是一种环保产品。

陶瓷研磨体较其它研磨体虽然有较多优点,但现有的陶瓷研磨体还存在着一些缺点和薄弱环节,急需克服和改进提高。目前市场上普遍采用的氧化铝陶瓷研磨体,其主要缺点是脆性大,致密度还有待进一步提高。



技术实现要素:

为了克服现有技术的不足和缺点,本发明的首要目的在于提供一种微晶耐磨陶瓷研磨体。

本发明的另一目的在于提供一种微晶耐磨陶瓷研磨体的制备方法。

本发明的再一目的在于提供上述微晶耐磨陶瓷研磨体的应用。

本发明的目的通过下述技术方案实现:

一种微晶耐磨陶瓷研磨体,其原料包含如下按质量百分比计的组分:

所述的微晶耐磨陶瓷研磨体的各原料组分的粒径优选如下:

所述的微晶耐磨陶瓷研磨体的制备方法,包含如下步骤:

(1)配料与球磨:将上述微晶耐磨陶瓷研磨体的原料组分混合,加入分散剂和水,球磨至d50<1.50μm,然后再加入粘结剂,继续球磨后出磨,获得浆料;

(2)干燥与造粒:将步骤(1)制得的浆料干燥造粒,筛分,制得造粒粉;

(3)成型:步骤(2)制得的造粒粉进行压制成型,得到陶瓷生坯;

(4)烧结:将步骤(3)制得的陶瓷生坯烧结,得到微晶耐磨陶瓷研磨体;

步骤(1)中所述的分散剂的用量优选为微晶耐磨陶瓷研磨体的原料组分(α-氧化铝、高铝矾土、氧化铁、滑石、碳酸钡、钾长石、二氧化钛、二氧化锰、重质碳酸钙、氧化锆、氧化镧,氧化铈)总质量的0.2~0.6%;

步骤(1)中所述的分散剂优选为三聚磷酸钠;

步骤(1)中所述的研磨的条件优选为料:球:水=1:(2~2.5):(0.7~0.9);

步骤(1)中所述的球磨的时间优选为30~40min;

步骤(1)中所述的继续球磨的时间优选为4~6min;

步骤(1)中所述的粘结剂的用量优选为微晶耐磨陶瓷研磨体的原料组分(α-氧化铝、高铝矾土、氧化铁、滑石、碳酸钡、钾长石、二氧化钛、二氧化锰、重质碳酸钙、氧化锆、氧化镧和氧化铈)总质量的0.05~0.08%;

所述的粘结剂优选为聚乙烯醇;

步骤(2)中所述的干燥的条件优选为380~420℃喷雾干燥;

步骤(2)中所述的干燥后浆料的含水率优选为0.4~0.6wt%;

步骤(2)中所述的筛分优选为用30~45目分样筛筛分;

步骤(3)中所述的压制成型的条件优选为135~150mpa,保压2~3min;

步骤(4)中所述的烧结优选在高温电炉中进行;

步骤(4)中所述的烧结的条件优选为1400℃烧结2h;

步骤(4)中所述的烧结的条件进一步优选为室温~150℃,升温时间1.5h;150~500℃,升温时间1.5h,保温0.5h;500~900℃,升温时间1.5h,保温0.5~1h;900~1200℃,升温时间1.0h,保温0.5~1h;1200~1400℃,升温时间1.5h,保温2.0~2.5h;

步骤(4)中所述的微晶耐磨陶瓷研磨体为球形或柱状等;

所述的微晶耐磨陶瓷研磨体在陶瓷、水泥、涂料、耐火材料、无机矿物粉料等领域中的应用;

本发明中α-氧化铝及高铝矾土主要提供微晶耐磨陶瓷研磨体生成刚玉相的主要成分氧化铝;氧化铁提供生成铁铝尖晶石的成分氧化铁;滑石粉提供生成镁铝尖晶石的成分氧化镁;氧化锆提供相变物质氧化锆增加制品的韧性;其它原料作为矿化剂及熔剂,促进制成品矿物生成,以及生成低熔物,降低烧结温度,促进微晶耐磨陶瓷研磨体烧结。

本发明相对于现有技术具有如下的优点及效果:

(1)本发明通过微裂纹增韧、氧化锆相变增韧及颗粒微细化增韧等,使微晶耐磨陶瓷研磨体韧性得到较大提高;同时,通过加入合适种类及数量的矿化剂(碳酸钙,二氧化锰等),优化工艺参数,严格控制工艺,形成比较理想的矿物相,使微晶耐磨陶瓷研磨体的微观结构更加致密均匀,在其使用过程中,其抗剥落、抗冲击能力大大提高。

(2)本发明的提供的微晶耐磨陶瓷研磨体综合性能优于同种类的氧化铝瓷球。

(3)本发明操作简单,成本低,适于工业化生产。

附图说明

图1是实施例1制得的微晶耐磨陶瓷研磨体扫描电镜(100×)图。

图2是实施例1制得的微晶耐磨陶瓷研磨体扫描电镜(500×)图。

图3是实施例1制得的微晶耐磨陶瓷研磨体扫描电镜(800×)图。

图4是实施例1制得的微晶耐磨陶瓷研磨体扫描电镜(1000×)图。

图5是实施例1制得的微晶耐磨陶瓷研磨体扫描电镜(3000×)图。

图6是实施例1的流程图。

图7是材料抗弯强度测试示意图。

图8是材料断裂韧性测试示意图。

具体实施方式

下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。

实施例1

(1)配料和球磨

按照表2中各组分质量百分比计算微晶耐磨陶瓷研磨体原料的质量,其中,用电子称称量主要原料氧化铝粉、高铝矾土和氧化铁,采用电子天平称量其它小料;将制作微晶耐磨陶瓷研磨体的原料组分混合,置于研磨罐中;然后加入分散剂三聚磷酸钠和水,其中,分散剂的用量为上述原料组分总质量的0.5%,按料:球:水=1:2.5:0.8的比例,研磨30min至d50<1.50μm,然后再加入粘结剂聚乙烯醇,其中,粘结剂的用量为上述原料组分总质量的0.06%,继续球磨5min,然后出磨,得到浆料;

(2)干燥与造粒

将步骤(1)制得的浆料经400℃喷雾干燥造粒,然后过30目分样筛,得到含水率为0.6wt%的造粒粉;

(3)成型

将步骤(2)制得的造粒粉装入磨具内,利用压机进行压制成型,其中,成型压力135mpa,保压时间2min,得到陶瓷生坯;

(4)烧结

将步骤(3)制得的陶瓷生坯放入高温电炉内,进行烧结,具体为:室温~150℃,升温时间1.5h;150~500℃,升温时间1.5h,保温0.5h;500~900℃,升温时间1.5h,保温1h;900~1200℃,升温时间1.0h,保温1.0h;1200~1400℃,升温时间1.5h,保温2.0h;得到微晶耐磨陶瓷研磨体,其制备流程见图6,制得的微晶耐磨陶瓷研磨体的扫描电镜图见图1~5。

实施例2

(1)配料和球磨

按照表2中各组分质量百分比计算微晶耐磨陶瓷研磨体原料的质量,其中,用电子称称量主要原料氧化铝粉、高铝矾土和氧化铁,采用电子天平称量其它小料;将制作微晶耐磨陶瓷研磨体的原料组分混合,置于研磨罐中;然后加入分散剂三聚磷酸钠和水,其中,分散剂的用量为上述原料组分总质量的0.3%;按料:球:水=1:2:0.7的比例,研磨40min至d50<1.50μm,然后再加入粘结剂聚乙烯醇,其中,粘结剂的用量为上述原料组分总质量的0.05%,继续球磨4min,然后出磨,得到浆料;

(2)干燥与造粒

将步骤(1)制得的浆料经420℃喷雾干燥造粒,然后过45目分样筛,得到含水率为0.5wt%的造粒粉;

(3)成型

将步骤(2)制得的造粒粉装入磨具内,利用压机进行压制成型,其中,成型压力150mpa,保压时间3min,得到陶瓷生坯;

(4)烧结

将步骤(3)制得的陶瓷生坯放入高温电炉内,进行烧结,具体为:室温~150℃,升温时间1.5h;150~500℃,升温时间1.5h,保温0.5h;500~900℃,升温时间1.5h,保温0.5h;900~1200℃,升温时间1.0h,保温0.8h;1200~1400℃,升温时间1.5h,保温2.2h;得到微晶耐磨陶瓷研磨体。

实施例3

(1)配料和球磨

按照表2中各组分质量百分比计算微晶耐磨陶瓷研磨体原料的质量,其中,用电子称称量主要原料氧化铝粉、高铝矾土和氧化铁,采用电子天平称量其它小料;将制作微晶耐磨陶瓷研磨体的原料组分混合,置于研磨罐中;然后加入分散剂三聚磷酸钠和水,其中,分散剂的用量为上述原料组分总质量的0.6%;按料:球:水=1:2.2:0.9的比例,研磨30min至d50<1.50μm,然后再加入粘结剂聚乙烯醇,其中,粘结剂的用量为上述原料组分总质量的0.08%,继续球磨6min,然后出磨,得到浆料;

(2)干燥与造粒

将步骤(1)制得的浆料经380℃喷雾干燥造粒,然后过40目分样筛,得到含水率为0.4wt%的造粒粉;

(3)成型

将步骤(2)制得的造粒粉装入磨具内,利用压机进行压制成型,其中,成型压力140mpa,保压时间2.5min,得到陶瓷生坯;

(4)烧结

将步骤(3)制得的陶瓷生坯放入高温电炉内,进行烧结,具体为:室温~150℃,升温时间1.5h;150~500℃,升温时间1.5h,保温0.5h;500~900℃,升温时间1.5h,保温0.8h;900~1200℃,升温时间1.0h,保温0.5h;1200~1400℃,升温时间1.5h,保温2.5h;得到微晶耐磨陶瓷研磨体。

实施例4

(1)配料和球磨

按照表2中各组分质量百分比计算微晶耐磨陶瓷研磨体原料的质量,其中,用电子称称量主要原料氧化铝粉、高铝矾土和氧化铁,采用电子天平称量其它小料;将制作微晶耐磨陶瓷研磨体的原料组分混合,置于研磨罐中;然后加入分散剂三聚磷酸钠和水,其中,分散剂的用量为上述原料组分总质量的0.2%;按料:球:水=1:2.5:0.8的比例,研磨35min至d50<1.50μm,然后再加入粘结剂聚乙烯醇,其中,粘结剂的用量为上述原料组分总质量的0.06%,继续球磨5min,然后出磨,得到浆料;

(2)干燥与造粒

将步骤(1)制得的浆料经400℃喷雾干燥造粒,然后过30目分样筛,得到含水率为0.6wt%的造粒粉;

(3)成型

将步骤(2)制得的造粒粉装入磨具内,利用压机进行压制成型,其中,成型压力135mpa,保压时间3min,得到陶瓷生坯;

(4)烧结

将步骤(3)制得的陶瓷生坯放入高温电炉内,进行烧结,具体为:室温~150℃,升温时间1.5h;150~500℃,升温时间1.5h,保温0.5h;500~900℃,升温时间1.5h,保温0.6h;900~1200℃,升温时间1.0h,保温0.6h;1200~1400℃,升温时间1.5h,保温2.5h;得到微晶耐磨陶瓷研磨体。

实施例5

(1)配料和球磨

按照表2中各组分质量百分比计算微晶耐磨陶瓷研磨体原料的质量,其中,用电子称称量主要原料氧化铝粉、高铝矾土和氧化铁,采用电子天平称量其它小料;将制作微晶耐磨陶瓷研磨体的原料组分混合,置于研磨罐中;然后加入分散剂三聚磷酸钠和水,其中,分散剂的用量为上述原料组分总质量的0.5%;按料:球:水=1:2.0:0.8的比例,研磨30min至d50<1.50μm,然后再加入粘结剂聚乙烯醇,其中,粘结剂的用量为上述原料组分总质量的0.05%,继续球磨5min,然后出磨,得到浆料;

(2)干燥与造粒

将步骤(1)制得的浆料经380℃喷雾干燥造粒,然后过30目分样筛,得到含水率为0.4wt%的造粒粉;

(3)成型

将步骤(2)制得的造粒粉装入磨具内,利用压机进行压制成型,其中,成型压力140mpa,保压时间2min,得到陶瓷生坯;

(4)烧结

将步骤(3)制得的陶瓷生坯放入高温电炉内,进行烧结,具体为:室温~150℃,升温时间1.5h;150~500℃,升温时间1.5h,保温0.5h;500~900℃,升温时间1.5h,保温1h;900~1200℃,升温时间1.0h,保温1.0h;1200~1400℃,升温时间1.5h,保温2.0h;得到微晶耐磨陶瓷研磨体。

实施例6

(1)配料和球磨

按照表2中各组分质量百分比计算微晶耐磨陶瓷研磨体原料的质量,其中,用电子称称量主要原料氧化铝粉、高铝矾土和氧化铁,采用电子天平称量其它小料;将制作微晶耐磨陶瓷研磨体的原料组分混合,置于研磨罐中;然后加入分散剂三聚磷酸钠和水,其中,分散剂的用量为上述原料组分总质量的0.6%;按料:球:水=1:2.4:0.8的比例,研磨35min至d50<1.50μm,然后再加入粘结剂聚乙烯醇,其中,粘结剂的用量为上述原料组分总质量的0.08%,继续球磨6min,然后出磨,得到浆料;

(2)干燥与造粒

将步骤(1)制得的浆料经400℃喷雾干燥造粒,然后过40目分样筛,得到含水率为0.5wt%的造粒粉;

(3)成型

将步骤(2)制得的造粒粉装入磨具内,利用压机进行压制成型,其中,成型压力140mpa,保压时间2.5min,得到陶瓷生坯;

(4)烧结

将步骤(3)制得的陶瓷生坯放入高温电炉内,进行烧结,具体为:室温~150℃,升温时间1.5h;150~500℃,升温时间1.5h,保温0.5h;500~900℃,升温时间1.5h,保温0.8h;900~1200℃,升温时间1.0h,保温0.8h;1200~1400℃,升温时间1.5h,保温2h;得到微晶耐磨陶瓷研磨体。

效果实施例

实施例1~6中所用原料组分α-氧化铝粉、高铝矾土粉、氧化铁粉、滑石粉、碳酸钡粉、钾长石粉、二氧化钛粉、碳酸钙粉的主要化学成分如表1所示,二氧化锰粉、氧化锆粉、氧化镧粉及氧化铈粉的纯度大于99%,上述原料均为市购。

表1原料的主要化学成分(%)

表2实施例1~6中各原料组分的质量百分比

检测实施例1~6制得的微晶耐磨陶瓷研磨体的体积密度、抗折强度、断裂韧性、硬度和耐磨性,具体方法如下所示:

(1)体积密度

材料的体积密度与组成材料的成分、材料的制备工艺及材料的结构密切相关。烧结试样的体积密度根据archimeda原理测定,所采用的计算公式如下:

式中m1:试样的干重(g);m2:悬浮重(g);m3:湿重(g);d1:浸渍液体的体积密度(g·cm-3);db:样品的体积密度(g·cm-3);

(2)抗折强度

强度是指材料在一定载荷下发生破坏时的最大应力值。由于陶瓷材料属脆性材料,因此其强度测定最常用的是弯曲强度(bendingstrength),也称为抗弯强度或抗折强度。本发明将烧结好的微晶耐磨陶瓷研磨体用金刚石刀片切割机切割成3mm×4mm×40mm(高×宽×长)条状试样,并打磨、抛光去掉表面缺陷,然后在万能试验机上测定试样的抗弯强度,如图7所示,跨距为20mm,加载速度约为0.5mm/min。根据下面的公式计算材料的抗折强度:

σf=3pl/2bh2

式中,p:断裂载荷(kg·f);l:支点跨距(mm);b:试样宽度(mm);h:试样高度(mm)。

(3)断裂韧性

断裂韧性是指材料抵抗裂纹扩展的能力。它与裂纹大小、几何形状以及加载方式无关,断裂韧性与材料的制备工艺和成分有关,是材料脆断的重要判据。对断裂韧性的检测,本发明用单边切口梁法(senb)法测定。样品尺寸为:4mm×6mm×35mm。跨距20mm,预制裂纹尺寸为宽0.2mm,深2.5m。断裂韧性值kic的计算公式如下所示:

式中:f(c/w)=2.9(c/w)1/2-4.6(c/w)3/2+21.8(c/w)5/2-37.6(c/w)7/2+38.7(c/w)9/2

其中,p:试样断裂载荷;c:裂纹深度;w:试样高度;l:跨距;b:试样宽度(图8)。

(4)硬度

陶瓷材料的硬度主要与其晶体结构有关,常用维氏硬度和显微硬度来表示。对硬度的检测,本发明采用hx-1000tm型数显显微硬度计测量。该硬度计采用了四方角锥,引用的标准是gb/t4340.2-1999。vickers压头为金刚石压头,压头端部呈一棱锥形,该压头两对棱边的夹角都是148°,而压头顶部两相对面的夹角都为136°。试验的所有试样都先经过60w的sic沙粒精磨,然后再依次用40w、10w、5w、2.5w的金刚石研磨膏抛光。测量时每个样品至少要测量5次,然后取平均值,具体的计算公式如下所示:

上式中:hv-维氏硬度,gpa;

f:压痕载荷,n:实验中采用的压力为9.8n,保压时间为15s;d1、d2:压痕两对角线的长度,mm。

(5)耐磨性

为了评价微晶陶瓷研磨体的耐磨性,将研制的产品试样与常规的95%氧化铝瓷试样的耐磨性进行了对比。具体检测方法为:将微晶陶瓷研磨体和95%氧化铝陶瓷球,选取三个规格,直径分别为10mm、13mm和20mm。将试样清洗,烘干后,每个品种每个规格分成三份,每样每份称500g左右。把称好的每份试样(500g左右)放入快速球磨中,并加水600ml。然后连续球磨2h。快速磨转速为1400次/min。球磨结束后,取出试样,用清水冲洗,烘干后称重。磨耗比/%=(磨前质量-磨后质量)/磨前质量。

检测结果及分析:

实施例1制得的微晶耐磨陶瓷研磨体的体积密度、抗折强度、断裂韧性、硬度如表3所示。

表3微晶耐磨陶瓷研磨体的性能

实施例1制得的微晶耐磨陶瓷研磨体的体积密度、抗折强度、断裂韧性、硬度如表4所示。由表4检测结果可以知道,在同种规格,同样工况条件下,直径为10mm、15mm、20mm的微晶陶瓷球(实施例1制得的微晶耐磨陶瓷研磨体),其耐磨性分别是同种规格95氧化铝陶瓷球的3.7倍、4倍和4.2倍,实施例2~6制得的微晶耐磨陶瓷研磨体的体积密度、抗折强度、断裂韧性、硬度、耐磨性能同实施例1,均显著高于同种规格95氧化铝陶瓷球。

表4微晶耐磨陶瓷研磨体的耐磨性能

注:a、a1、a2为一组数据,分别代表该品种对应的磨前质量、磨后质量及磨耗比;b、b1、b2为一组数据,依次类推。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1