一种嵌入式金刚石基碳化硅复合衬底的制备方法

文档序号:25987698发布日期:2021-07-23 20:57阅读:237来源:国知局
一种嵌入式金刚石基碳化硅复合衬底的制备方法

本发明属于半导体材料制备领域。其特点是能够充分利用sic和金刚石的优异性能,制备嵌入式金刚石基sic复合衬底,从而为后续电路设计及器具封装提供衬底基础。首先对镀制有si涂层的sic基片粘附临时载体,随后对sic进行表面图形化及反应离子刻蚀,形成具有图案结构的sic层。接着在其表面沉积一层金刚石以覆盖sic,并对金刚石层表面进行研磨抛光。随之在去除sic基片的临时载体后,在金刚石侧再粘附临时载体。通过反应离子刻蚀去掉原有si涂层后,将金刚石侧临时载体去除,最终得到嵌入式金刚石基sic复合衬底。该衬底能够实现在高功率等极端条件下热量的快速排散,同时能够充分发挥sic和金刚石作为宽禁带半导体的优异性能,提供了一种宽禁带半导体异质材料结构设计的制备基础。



背景技术:

碳化硅(sic)是一种宽带隙材料,以sic为代表的第三代半导体,具有耐高温、耐高压、高频率、大功率抗辐射等优异特性。传统的si器件及其集成电路并不适合于250℃以上的工作温度,而且很难承受高辐射、高功率以及高频率的环境,在众多的宽禁带材料中,sic材料的性能表现突出。与目前常用的si器件相比,其工作温度可提高3倍,工作频率可提高10倍,电流可加大100倍,损耗大大降低,在高温电子应用中,sic是替代si的可靠材料。sic与gan、aln之间的晶格失配较小,使得sic也能在异质结构中发挥很大的作用,以sic为基底的sic基gan也得到了广泛的应用。随着输出功率的提高,以sic为材料的器件产生的热量逐渐增多,必须加入一些散热装置,以带走多余的热量,但是这些装置会增加器件的体积,与电子器具小型化背道而驰。

金刚石具有诸多极其优异的性能,其中一个重要的性质就是它具有极高的热导率,其极限值可达2400w/mk。同时金刚石本身又是很好的绝缘材料,能成为极好的高功率光电子元件的散热材料。使用金刚石膜作为集成电路芯片的散热材料,能克服微纳尺度范围内热集中等技术难题,大大提高器件的性能和可靠性。

金刚石-碳化硅复合材料是一种具有硬度和热稳定性的新型复合材料,被认为是最有前途的新一代材料。这是因为碳化硅具有优异的热稳定性(>1500℃)、高热导率、小热膨胀系数和高硬度的特点。在sic器件中,随着反向电压电平的增加,表面较高的电场可能导致过早击穿或过大的泄漏电流,从而需要用足够的材料钝化器件表面。而金刚石薄膜具有较大的反向击穿电场,同时金刚石还拥有极高的热导率。在用来钝化sic器件的同时利用金刚石的高热导率,sic器件与金刚石结合起来,这种复合结构将会拥有更高的散热能力,能显著提高sic器件的输出功率和工作频率,延长使用寿命。但是他们的结合在实际的操作中并不是简单易行,sic与金刚石之间依然存在晶格失配的问题。直接的sic表面沉积金刚石,尤其是对于两英寸或更大面积的基片来说,往往会由于薄膜自身内应力及材料失配所引起的应力而很容易发生碎裂。因此,在大面积(如;复杂逻辑电路)的前提下如何实现金刚石/sic复合衬底变得尤为重要。



技术实现要素:

为了实现上述期望,本发明针对第三代半导体器件具备更高运行功率、更高热流密度、更大尺寸等条件下所需的材料特殊要求,同时根据金刚石及sic的性能和加工及生长特点,提出一种嵌入式金刚石基sic复合衬底的制备方法。对镀制有si涂层的sic基片粘附临时载体,随后对sic进行表面图形化及反应离子刻蚀,形成具有图案结构的sic层。接着在其表面沉积一层金刚石以覆盖sic,并对金刚石层表面进行研磨抛光。随之在去除sic基片的临时载体后,在金刚石侧再粘附临时载体。通过反应离子刻蚀去掉原有si涂层后,将金刚石侧临时载体去除,最终得到嵌入式金刚石基sic复合衬底。能够实现在高功率等极端条件下热量的快速排散,同时能够充分发挥sic和金刚石作为宽禁带半导体的优异性能,提供了一种宽禁带半导体异质材料结构设计的制备基础。

本发明的技术方案为:

一种嵌入式金刚石基碳化硅复合衬底的制备方法,首先对镀制有si涂层的sic基片粘附临时载体,随后对sic进行表面图形化及反应离子刻蚀,形成具有图案结构的sic层。接着在其表面沉积一层金刚石以覆盖sic,并对金刚石层表面进行研磨抛光。随之在去除sic基片的临时载体后,在金刚石侧再粘附临时载体。通过反应离子刻蚀去掉原有si涂层后,将金刚石侧临时载体去除,最终得到嵌入式金刚石基sic复合衬底。

如上所述嵌入式金刚石基碳化硅复合衬底的制备方法,具体包括以下步骤:

步骤1:sic基片表面镀制si薄层;

采用磁控溅射技术在功率100-400w,室温,腔室压力0.5-1.2pa,自偏压300-400v的条件下溅射为时间0.5-5h,镀制厚度200nm-2μm的si薄层。

步骤2:si薄层面黏加临时载体;

在si薄层面涂覆高温粘结剂,并在转速在1000-4000rpm条件下持续3-8s。将面积与sic完全相同的临时载体贴附在si薄层上面。后通过烘箱加热固化处理,40℃-160℃处理2-10h。

步骤3:sic的图形化及反应离子刻蚀;

采用掩膜及紫外光刻技术实现sic表面图形化,接着通过sf6,cf4和o2进行反应离子刻蚀,去除无掩膜sic部分,保留设计所需的sic结构。

步骤4:sic侧的金刚石生长及抛光;

将刻蚀完成后的临时载体上及sic图形置于微波等离子体气相沉积系统中进行金刚石形核生长,直至表面全覆盖并具有一定厚度。接着对生长的金刚石表面进行研磨抛光。使用不同粒度的金刚石粉研磨金刚石薄膜,最后将金刚石膜在抛光盘上使表面粗糙度低于100nm。

步骤5:去除临时载体并在金刚石层添加临时载体;

将抛光后的金刚石/sic复合衬底及衬底置于丙酮中,加热至60-80℃。去除临时载体。随后采用步骤2在金刚石面粘合临时载体。

步骤6:去除sic面的si薄层;

将粘合有临时载体的金刚石/sic复合衬底置于hf溶液中去除原sic表面沉积的si薄层。

步骤7去除金刚石面的临时载体;

重复步骤5去除金刚石面的临时载体,最终得到嵌入式金刚石基sic复合衬底。

进一步地,步骤4的生长步骤为基于基片大小调节腔压及功率,确保沉积温度约650-840℃。采用ch4:h2=5-10%的ch4形核4-10h,随后降低ch4比例至2-5%进行金刚石生长。

进一步地,步骤4所述的抛光步骤采用的金刚石粉粒径依次为80μm,40μm,10μm,5μm和1μm,研磨盘旋转速度为20-80rpm,外加载荷为100-500g。

本发明实施过程的关键在于:

1)sic基片表面镀制si薄层以及粘结临时载体是必不可少的关键步骤。其中临时载体用于保护sic层在刻蚀后不会由于不同部分相互失去连接而分离,同时为刻蚀加工后的sic提供支撑,保证图形设计的完整性。而si薄层的存在是实现sic与临时载体之间的过渡,避免sic与高温胶体直接接触,防止在sic被刻蚀后等离子体接触高温胶而发生不均匀膨胀而影响sic图形的完整性。

2)在si薄层面滴加高温粘结剂,并在转速在1000-4000rpm条件下持续3-8s。将面积与sic完全相同的临时载体贴附在si薄层上面。后通过烘箱加热固化处理,40℃-160℃处理2-10h。一方面确保高温胶的均匀分布,同时保证在sic刻蚀过程中温度的变化不影响高温胶的膨胀。

3)所用临时载体需保持与sic基片具有相同的形状和尺寸,同时具备有一定的强度来为sic及金刚石薄膜提供支撑。而且临时载体的物理化学性能要稳定,在等离子体及hf酸中不会被刻蚀或侵蚀,比如钼片。

4)将刻蚀完成后的具有sic图形的临时载体置于微波等离子体气相沉积系统中。不同的基片大小需要调节匹配的腔压及功率,但是均需确保沉积温度约650-840℃。在形核初期需采用采用5-10%ch4形核4-10h,随后降低ch4比例至2-5%进行金刚石生长,直至表面全覆盖并具有一定厚度,形成自支撑衬底。

5)接着对生长的金刚石表面进行研磨抛光也是不可或缺的步骤。因为生长态金刚石膜表面会由于高低不等的各个晶粒而具有很高的粗糙度,这对接下来的加工步骤和未来器件封装应用均有不利影响。使用不同粒度的金刚石粉研磨金刚石薄膜,金刚石粉粒径依次为80μm,40μm,10μm,5μm和1μm,研磨盘旋转速度为20-80rpm,外加载荷为100-500g,最后将金刚石膜在抛光盘上使表面粗糙度低于100nm。这样不仅有利于下一步临时载体的粘附也有利于后期器件的制备封装。

本发明和现有技术相比所具有的有益效果在于:

目前大面积的高质量单晶金刚石制备仍然无法实现,而高质量单晶sic薄膜已经能够实现英寸级的制备。为了实现大功率输出,需要并联使用更多的sic芯片数目。如何对模块内部的芯片进行合理的设计以保证各芯片间的热平衡,以及对芯片的热点温度进行监控,是一个很大的挑战。金刚石具有着更高的热导率,同时金刚石还具有诸多极佳的物理化学特性,成为了高性能高功率器件衬底材料的不二选择。因此本发明的嵌入式金刚石基sic复合衬底能够充分利用单晶sic高性能器件设计的同时金刚石衬底的存在能够有效解决热集中等问题。另外sic和金刚石的半导体化以及器件设计仍未达到si基器件的设计的成熟度。基于sic和金刚石这两种宽禁带半导体材料,充分利用sic和金刚石各自的半导体化工艺能够制备封装新型高功率器件用于满足更高、更广的应用需求。而且本发明的制备方法所得的嵌入式金刚石基sic复合衬底能够避免在sic表面大面积生长金刚石带来的巨大应力而带来的薄膜碎裂的风险,实现sic与金刚石的直接键合,有效降低界面热阻,充分利用sic和金刚石各自的特性。

附图说明

图1为本发明的一种嵌入式金刚石基碳化硅复合衬底的制备方法。

具体实施方式

实施例一

采用磁控溅射技术在功率100w,室温,腔室压力1pa及自偏压300v条件下溅射持续0.5h,镀制厚度200nm的si薄层。在si薄层面涂覆高温粘结剂,并在转速在2000rpm条件下持续6s。将面积与sic完全相同的临时载体贴附在si薄层上面。后通过烘箱加热固化处理,40℃处理2h后以160℃处理2h。采用掩膜及紫外光刻技术实现sic表面图形化,接着通过cf4和o2进行反应离子刻蚀,去除无掩膜sic部分,保留设计所需的sic结构。将刻蚀完成后的临时载体及sic图形置于微波等离子体气相沉积系统中。基于两英寸基片,以腔压为7.1kpa,功率4200w,确保沉积温度约740℃条件下向纯氢气等离子体环境下通入ch4:h2=5%的ch4形核5h,随后降低ch4比例至2%进行金刚石生长,直至表面全覆盖并具有一定厚度,形成自支撑衬底。接着对生长的金刚石表面进行研磨抛光。使用不同粒度的金刚石粉研磨金刚石薄膜,金刚石粉粒径依次由80μm,40μm,10μm,5μm和1μm,研磨盘旋转速度为40rpm,外加载荷为400g,最后将金刚石膜在抛光盘上使表面粗糙度低于100nm。将抛光后的金刚石/sic复合衬底及衬底置于丙酮中,加热至60℃,去除临时载体。随后在金刚石面粘合临时载体。将粘合有临时载体的金刚石/sic复合衬底置于hf溶液中去除原sic表面沉积的si薄层。再置于上述丙酮环境中去除金刚石面的临时载体,最终得到嵌入式金刚石基sic复合衬底。

实施例二

采用磁控溅射技术在功率400w,室温,腔室压力1pa及自偏压200v条件下溅射持续5h,镀制厚度为2μm的si薄层。在si薄层面涂覆高温粘结剂,并在转速在3000rpm条件下持续4s。将面积与sic完全相同的临时载体贴附在si薄层上面。后通过烘箱加热固化处理,40℃处理2h后以160℃处理2h。采用掩膜及紫外光刻技术实现sic表面图形化,接着通过cf4和o2进行反应离子刻蚀,去除无掩膜sic部分,保留设计所需的sic结构。将刻蚀完成后的临时载体及sic图形置于微波等离子体气相沉积系统中。基于两英寸基片,以腔压为7.3kpa,功率4300w,确保沉积温度约780℃条件下向纯氢气等离子体环境下通入ch4:h2=5%的ch4形核5h,随后降低ch4比例至3%进行金刚石生长,直至表面全覆盖并具有一定厚度,形成自支撑衬底。接着对生长的金刚石表面进行研磨抛光。使用不同粒度的金刚石粉研磨金刚石薄膜,金刚石粉粒径依次由80μm,40μm,10μm,5μm和1μm,研磨盘旋转速度为40rpm,外加载荷为400g,最后将金刚石膜在抛光盘上使表面粗糙度低于100nm。将抛光后的金刚石/sic复合衬底及衬底置于丙酮中,加热至70℃,去除临时载体。随后在金刚石面粘合临时载体。将粘合有临时载体的金刚石/sic复合衬底置于hf溶液中去除原sic表面沉积的si薄层。再置于上述丙酮环境中去除金刚石面的临时载体,最终得到嵌入式金刚石基sic复合衬底。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1