聚合方法及相关设备的制作方法

文档序号:3690698阅读:195来源:国知局
专利名称:聚合方法及相关设备的制作方法
技术领域
本发明涉及聚合方法及相关设备。更具体而言,本发明涉及聚合方法,其包括在具有进料分配器的流化床反应器中制备聚合物材料,并且提供了碎料(spitwad)收集器,用于收集流化床反应器和进料分配器的进料中的碎料或从所述进料中移除碎料。本发明还涉及对应于此方法的设备。
背景技术
流化床反应器(这里也称为“反应器”)被广泛应用于工业中以制备各种产品如聚乙烯和其它聚烯烃。在使用这些反应器中经常遇到的一个问题是通过反应器床的进料不均匀的沟流,并导致部分或甚至全部损失床的流态化作用;流态化作用的明显损失可能导致在床体中生成薄片或结块和/或不可避免地使反应器停机。
通过使用进料分配器,沟流问题已经得到了改善。美国专利No.4,933,149;No.5,082,634和No.5,213,768已经说明了本领域已知的进料分配器。
这样的进料分配器的一个缺点就是它们有被固体堵塞的趋势,所述固体形成于或另外被导入反应器和/或循环回路中。进而不均匀沟流会出现在相连的流化床中,并产生了前面所述的结果。
解决这些缺点的尝试在下面的发明中公开。在美国专利No.4,933,149中,Rhee等在说明书中公开了位于聚合反应器内部和进料分配器下部的导流板和筛网。在美国专利No.5,082,634中,Raufast公开了一种从进料分配器上方移除固体的方法。在美国专利No.5,126,414中,Cooke等公开了一种通过从流化床反应器的循环进料中移除低聚物进而基本上消除分配器平板堵塞的方法。
尽管有这些尝试,仍然存在着对前述的沟流和进料分配器堵塞问题更好的解决方法的需求。本发明尤其致力于满足这一需求。
发明概要本发明的方法涉及如下聚合方法,包括(a)在反应器回路中制备聚合物材料,所述反应器回路包括具有进料分配器的流化床反应器、与流化床反应器相连的循环回路,并且包括进料管线;以及(b)通过碎料收集器收集流化床反应器以及相连的进料分配器的进料中的碎料或通过碎料收集器将碎料从所述进料中移除,其中碎料收集器位于流化床反应器外部,并处于流化床反应器和进料分配器的进料管线中。
本发明进一步涉及一种用于制备聚合物材料的设备,包括(a)反应器回路,其包括具有进料分配器的流化床反应器、与流化床反应器相连的循环回路,并含有进料管线,和(b)用于收集进料中的碎料或从进料中移除碎料的碎料收集器,其中该碎料收集器位于流化床反应器外部,并处于流化床反应器和进料分配器的进料管线中。
附图简述本文中附图并入本说明书并构成了说明书的一部分,其举例说明了本发明的几种实施方案,并和描述一起用于解释本发明的原理。


图1显示了本发明的方法和设备的实施方案。
图1中数字编号的含义1流化床反应器1A,1B,1C 循环回路边界2热交换器(任选)3压缩机4热交换器(任选)5扩大的分离区6细屑旋风分离器(任选)7细屑返回注射器(任选)8进料分配器9新鲜进料流(结合的)10 新鲜催化剂注入11 产物回收12 碎料收集器12A 任选的旁路管线碎料收集器发明详述本发明的方法是聚合方法,其包括(a)在反应器回路中制备聚合物材料,所述反应器回路包括具有进料分配器的流化床反应器、与流化床反应器相连的循环回路,并且包括进料管线;以及(b)通过碎料收集器收集流化床反应器以及相连的进料分配器的进料中的碎料或通过碎料收集器将碎料从中移除,其中碎料收集器位于流化床反应器外部,并处于流化床反应器和进料分配器的进料管线中。
在本说明书及后面的权利要求中,聚合物的及聚合物应理解为宽至包括低聚物的及低聚物,所述低聚物的及低聚物指的是至少为三聚物的物质或三聚物。循环回路应理解为它的常规含义,但是还包括循环物已经与新鲜的进料或其它材料混合的部分,如图1中的9至1C。
在本说明书及后面的权利要求中,碎料是能够堵塞进料分配器至少一个孔隙的固体。本文中所述的碎料包括线状、片状、块状或其它类似形状的固体聚合物材料。碎料通常形成和/或出现于聚合流化床反应器及相连的进料循环回路中。
在本说明书及后面的权利要求中,碎料收集器是能够收集连接有进料分配器的流化床反应器的进料中的碎料或将碎料从中移除的任何装置,其中碎料如果没有被收集或移除的话,将会堵塞部分进料分配器。例如,碎料收集器可以是筛网、过滤器、滤网或它们的组合。碎料收集器可以是任何形状或尺寸的,如平的、圆锥形的或篮状的。由多孔材料构成的碎料收集器中孔眼的直径可以为能够充分减少堵塞进料分配器的碎料量的任何尺寸。由多孔材料构成的碎料收集器中孔眼或孔隙的优选直径范围为进料分配器孔隙直径的约75至约110%。由多孔材料构成的碎料收集器中孔眼直径更优选的范围为进料分配器孔隙直径的约75至约95%。
碎料收集器也可以是旋风分离器或含有旋风分离器。其它类型的碎料收集器包括其它气-固分离器如分离鼓或罐等。
本发明的方法中所包含的碎料收集器位于反应器外部,并处于流化床反应器和相连的进料分配器的进料管线中。在本说明书及后面的权利要求中,进料管线指的是在进入流化床反应器和相连的进料分配器之前的流动管线中不含插入的工艺设备如热交换器或压缩机的部分循环回路。进料管线也包括旁路管线,如旁路管线16所示。特别是图1,流化床反应器和相连的进料分配器的进料管线是在图1中位于压缩机3之后且流化床反应器1和进料分配器8之前的循环回路的部分。如果图1中任选的热交换器4存在,那么流化床反应器1和进料分配器8的进料管线是位于任选的热交换器4之后且流化床反应器1和进料分配器8之前的循环回路的部分。例如,图1中,碎料收集器12位于热交换器4和流化床反应器1之间。
循环回路是该聚合方法的一部分,其中未反应的气体(和/或其它离开流化床反应器的材料)离开流化床反应器并且作为进料返回到流化床反应器中。在本发明中,反应器回路由循环回路和流化床反应器组成。如图1所示本发明的方法中循环回路的实例在点1A与点1B和1C之间,其中点1A即未反应气体离开流化床反应器处,点1B和1C即循环气体返回流化床反应器处。
本发明的方法包括本文中所描述的内容,其中流化床反应器是连续气相聚合反应器,一些更具体的实例包括这样的反应器,在其中制备包括聚烯烃的聚合物材料,尤其是(至少部分)α烯烃的均聚物或共聚物如聚乙烯、聚丙烯,以及乙烯或丙烯与至少一种其它烯烃(如一种或多种含3-16个碳原子的烯烃)的共聚物。本文中包括乙烯或丙烯的均聚物以及乙烯或丙烯与其它烯烃的共聚物。共聚物包括乙烯或丙烯与至少一种其它烯烃的共聚物,其中乙烯或丙烯的含量至少为所含单体总重量的约50%;可以采用的典型的其它烯烃为乙烯、丙烯、1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯、4-甲基-1-戊烯、1-癸烯、1-十二烯、1-十六碳烯等。本文中还可以采用在聚合介质中原位形成的非共轭二烯及烯烃。
本发明的方法包括相当于本发明设备的那些设备,反之亦然。
本发明还涉及用于制备聚合物材料的设备,其含有(a)反应器回路,包括具有进料分配器的流化床反应器、与流化床反应器相连的循环回路,并含有进料管线,和(b)用于收集进料中的碎料或从进料中移除碎料的碎料收集器,其中该碎料收集器位于流化床反应器外部,并处于具有进料分配器的流化床反应器的进料管线中。
本发明的设备包括本文中所描述的内容,其中流化床反应器是连续气相反应器,一些更具体的实例包括这样的反应器,其用于制备包括聚烯烃的聚合物材料,尤其是(至少部分)α烯烃的均聚物或共聚物如聚乙烯、聚丙烯,以及乙烯或丙烯与至少一种其它烯烃(如一种或多种含3-16个碳原子的烯烃)的共聚物。本文中包括乙烯或丙烯的均聚物以及乙烯或丙烯与其它烯烃的共聚物。共聚物包括乙烯或丙烯与至少一种其它烯烃的共聚物,其中乙烯或丙烯的含量至少为所含单体总重量的约50%;可以采用的典型的其它烯烃为乙烯、丙烯、1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯、4-甲基-1-戊烯、1-癸烯、1-十二烯、1-十六碳烯等。本文中还可以采用在聚合介质中原位形成的非共轭二烯及烯烃。
本发明的设备包括本文中所描述的含有一个以上位于循环回路中的碎料收集器的那些。
本发明进一步的实施方案含有当聚合过程连续进行时能够停止使用的可拆式碎料收集器。在优选的实施方案中,本发明的设备包括本文中所描述的进一步含有围绕碎料收集器的旁路管线(也被看作进料管线)以及在这种旁路管线中的任选的另外的碎料收集器的那些。
安装以下碎料收集器也是有好处的当该碎料收集器仍在使用中并且聚合反应连续进行时从碎料收集器中移去碎料。因此,本发明的设备包括那些其中碎料收集器被安装以用于当碎料收集器正在使用时从该碎料收集器移去已收集的碎料。
用于优选的聚乙烯工艺的反应器回路中的组件如图1所示,其包括反应器容器1和循环回路(其具有从1A到1B或1C的边界)。循环回路由任选的热交换器2和4、压缩机3、任选的细屑旋风分离器6、任选的细屑返回注射器7、碎料收集器12和任选的碎料收集器12A组成。优选在循环回路中含有至少一个热交换器。进料分配器8装备在反应器底部附近。扩大的分离区5装备在反应容器顶部附近,用于减少离开的气体中夹带的固体。各种各样的方案用于补充主要气体循环体系中的乙烯、共聚单体、氢和惰性气体。为简单起见,这些在图1中描述为单一的结合的料流9。以预聚物形式的催化剂注入由料流10所示,聚合物粉末的出料由料流11所示。
实施例通过下列实施例对本发明作进一步说明。应被理解的是这些实施例用于说明的目的,并且除了另外特别指出外,这些实施例并不是为了限制本发明的范围。所给予实施例的名称仅是为方便起见,除了另外特别指出外,其并不意味着范围的限定。
实施例的通用方案按照欧洲专利申请EP0 703 246 A1的实施例1-a制备本文中实施例1-7中使用的Ziegler-Natta催化剂的过渡金属组分。Ziegler-Natta催化剂以预聚物形式使用,并且按照欧洲专利申请EP0 703 246 A1的实施例1-b制备。这样得到每毫摩尔钛含有约35.7g聚乙烯的预聚物,并且三正辛基铝(TnOA)与钛的摩尔比约为1.0。
本文中实施例1-7所采用的连续气相聚合工艺在用于气相聚合的流化床反应器中进行,其包括一个直径5米、高16米的立式圆柱体,并且顶上有一个减速室。在反应器底部装备有进料分配器。在进料分配器下部的一个地方,反应器还装备有用于循环气体的外部管线,其连接着减速室的顶部和反应器的底部。这样,循环气体是聚合反应器和进料分配器的进料。循环回路装备有用于循环气体的(带有保护筛网的)压缩机和热交换器。特别地,供给新鲜乙烯、1-己烯、氢和氮气(以及常见的痕量杂质)的管线注入循环管线,它们代表通过流化床的气态反应混合物的主要成分。在压缩机和热交换器之后,气体循环管线分成两个独立管线,用于在进料分配器下面直接相对的两个点引入循环气体。美国专利No.5,213,768中描述了用于循环气体的反应器入口的排列和进料分配器下方的气体混合室的设计。
进料分配器被设计用于在流化床直径上近似均匀地分配流化气体。美国专利No.5,082,634中描述了进料分配器的设计。进料分配器装备有孔隙,并且在进料分配器下方引入的气流通过这些孔隙或多或少地被均匀分配。
在进料分配器上方,反应器包含由大约80,000至100,000千克(在划线标明的反应器之后)的线性低密度聚乙烯粉末(乙烯与1-己烯的共聚物)组成的流化床,所述聚乙烯粉末由重均直径约0.7mm的颗粒构成。包括乙烯、1-己烯、氢和氮气的气态反应混合物在压力范围从约290psig(2.0MPa)至约305psig(2.2MPa)下通过流化床,其上升的流态化速度在约1.7英尺/秒(52厘米/秒)至约1.95英尺/秒(59厘米/秒)之间。间歇地从反应器中移出聚合物产品。
间歇地将催化剂加入反应器中,所述催化剂包括镁、氯和钛,并如上所述预先被转化成预聚物,其中每毫摩尔钛含有约35.7g聚乙烯,并且含有使TnOA/Ti的摩尔比等于大约1.0的三正辛基铝(TnOA)。调整预聚物形态的催化剂向反应器的引入速率以得到预期的产率。在聚合过程中,将浓度约为45wt%的三甲基铝(TMA)的正己烷溶液连续加入到循环回路中。TMA的进料速率表示为TMA与钛的摩尔比(TMA/Ti),并且定义为TMA进料速率(以每小时TMA的摩尔数计)与预聚物形态的催化剂进料速率(以每小时钛的摩尔数计)的比值。同时,将浓度在10-50重量%之间的四氢呋喃(THF)的正己烷溶液连续加入到循环回路的管线中。THF的进料速率表示为THF与钛的摩尔比(THF/Ti),并且定义为THF的进料速率(以每小时THF的摩尔数计)与预聚物形态的催化剂进料速率(以每小时钛的摩尔数计)的比值。将一氧化二氮(N2O)以气体形式加入到循环回路中。调整N2O流以保持N2O在气相聚合介质中的体积浓度为大约350百万分率(ppm)。
将浓度在2-30重量%之间的氯仿(CHCl3)的正己烷溶液连续加入到循环气态反应混合物的管线中。CHCl3的进料速率表示为CHCl3与钛的摩尔比(CHCl3/Ti),并且定义为CHCl3的进料速率(以每小时CHCl3的摩尔数计)与预聚物形态的催化剂进料速率(以每小时钛的摩尔数计)的比值。将CHCl3以正己烷溶液的形式加入到循环回路中。
实施例1 不含碎料收集器的55-天运行(对比)根据上述通用方案进行连续气相聚合过程。约55天之后,进料分配器的压降升高至一个值,其显示出进料分配器的明显结垢。同时循环回路的其它部件也结垢,并且共同限制气流导致约1.6英尺/秒的最大流化速率便是反应器中所能得到的最大速率。在此情况下,床体开始显示出不稳定状态并且不得不停机。进料分配器的目视检查揭示了进料分配器中约35%的孔隙由比进料分配器中的孔隙大的碎料堵塞。进料分配器由这些碎料的堵塞从进料分配器的进料一侧产生。随反应器停机,从进料分配器中移除碎料,导致了很长的停机时期。
实施例2 不含碎料收集器的39-天运行(对比)根据上述通用方案进行连续气相聚合过程。约39天之后,进料分配器的压降升高至一个值,其显示出进料分配器的明显结垢。同时循环回路的其它部件也结垢,并且共同限制气流导致约1.55英尺/秒的最大流化速率便是反应器中所能得到的最大速率。在此情况下,床体开始显示出不稳定状态并且不得不停机。进料分配器的目视检查揭示了进料分配器中约25%的孔隙由比进料分配器中的孔隙大的碎料堵塞。进料分配器由这些碎料的堵塞从进料分配器的进料一侧产生。随反应器停机,从进料分配器中移除碎料,导致了很长的停机时期。
实施例3 不含碎料收集器的4-天运行(对比)根据上述通用方案进行连续气相聚合过程。约4天之后,进料分配器的压降升高至一个值,其显示出进料分配器的明显结垢。在此情况下,床体开始显示出不稳定状态并且不得不停机。进料分配器的目视检查揭示了进料分配器中约45%的孔隙由比进料分配器中的孔隙大的碎料堵塞。进料分配器由这些碎料的堵塞从进料分配器的进料一侧产生。随反应器停机,从进料分配器中移除碎料,需要137小时的停机时间进行此工作。
实施例4 不含碎料收集器的5-天运行(对比)根据上述通用方案进行连续气相聚合过程。约5天之后,进料分配器的压降升高至一个值,其显示出进料分配器的明显结垢。在此情况下,床体开始显示出不稳定状态并且不得不停机。进料分配器的目视检查揭示了进料分配器中约30%的孔隙由比进料分配器中的孔隙大的碎料堵塞。进料分配器由这些碎料的堵塞从进料分配器的进料一侧产生。随反应器停机,从进料分配器中移除碎料,需要60小时的停机时间进行此工作。
实施例5 不含碎料收集器的10-天运行(对比)根据上述通用方案进行连续气相聚合过程。10天之后,进料分配器的压降升高至一个值,其显示出进料分配器的明显结垢。在此情况下,床体开始显示出不稳定状态并且不得不停机。进料分配器的目视检查揭示了进料分配器中约25%的孔隙由比进料分配器中的孔隙大的碎料堵塞。进料分配器由这些碎料的堵塞从进料分配器的进料一侧产生。随反应器停机,从进料分配器中移除碎料,需要70小时的停机时间进行此工作。
实施例6 含碎料收集器的90-天运行给内径23英寸、用于向聚合反应器进料的两条气体循环回路管线中的每一个安装上框篮(basket),其由0.078英寸厚的碳钢多孔板构成,所述多孔板具有直径为0.1875英寸的交错的孔,中心距为0.25英寸。框篮装于两段管子中(每条管线一个框篮),所述管子约99.5英寸长并且用于将反应器进口管法兰连接至两条气体循环管线中每一条上的管法兰。由1/8英寸厚钢板构成的法兰被焊接至框篮的进口端。当框篮被插入两个管筒中时,框篮上的钢制法兰被安装在管法兰之间,并配有合适的密封垫,所述管法兰在管筒使用时是连接的。框篮的结构为截锥形,其在框篮进口处外径为22.375英寸,框篮的气体出口端直径为13.75英寸。框篮的长度为85英寸。通过将1/8英寸厚钢制加强环和侧向支座焊接到框篮的外部,以及将另外的由3/8英寸钢制角铁构成的侧向支座焊接到框篮的内部,使框篮的机械整体性得到了提高。每个框篮的出料端连接至四个等距的支架,所述支架已经在排出循环气体的框篮端焊接到约99.5英寸长的管筒的内部。从而,提供了一种从进料分配器的循环气体上升气流中分离聚合物碎料的方法。
根据上述通用方案,并在反应器和进料分配器的管线中安装本文中所描述的框篮(碎料收集器)的情况下进行90天的连续气相聚合过程。90天之后,进料分配器的压降没有明显升高,其表明进料分配器没有明显结垢。
实施例7 碎料收集器存在下运行后对内部的检查根据上述通用方案,并如实施例6中一样安装框篮(碎料收集器)的情况下进行2天的连续气相聚合过程。2天之后,进料分配器的压降没有明显升高,而每个碎料收集器的压降升高了大约4磅/平方英寸。虽然没有显示出床体的不稳定性并且流化速率能够保持在高于1.8英尺/秒,但使操作停工以检查进料分配器和框篮。对进料分配器的检查显示了其根本没有结垢。对框篮的检查显示了它们每一个都已经收集了大约100lbs的聚合物碎料,收集到的碎料已经覆盖了大约65%的框篮表面积。这估计足够是堵塞进料分配器中50%孔隙的材料的8倍以上。清洗框篮的过程需要反应器停机约33小时。进料分配器不需要清洗。
为了在这里引用参考文献,在本文中以引用的方式并入所引用的参考文献,但仅以它们不会与本公开内容矛盾的范围。
本文中所给的范围应理解为公开了所有包括的值(包括范围端点),而不仅仅是单独的范围端值。
本发明前面所给出的具体实施方式
仅用于说明,而不应被解释为限制权利要求,除非另外特别指出。
权利要求
1.一种聚合方法,其包括(a)在反应器回路中制备聚合物材料,所述反应器回路包括具有进料分配器的流化床反应器、与流化床反应器相连的循环回路,并且包括进料管线;以及(b)通过碎料收集器收集流化床反应器以及相连的进料分配器的进料中的碎料或通过碎料收集器将碎料从所述进料中移除,其中碎料收集器位于流化床反应器外部,并处于流化床反应器和进料分配器的进料管线中。
2.根据权利要求1的聚合方法,其中流化床反应器是连续气相反应器。
3.根据权利要求1的聚合方法,其中聚合物材料包括聚烯烃。
4.根据权利要求1的聚合方法,其中聚合物材料包括乙烯均聚物或乙烯和至少一种其它烯烃的共聚物。
5.根据权利要求1的聚合方法,其中碎料收集器包括筛网、过滤器或滤网。
6.一种用于制备聚合物材料的设备,包括(a)反应器回路,其包括具有进料分配器的流化床反应器、与流化床反应器相连的循环回路,并含有进料管线和(b)碎料收集器,用于收集流化床反应器以及相连的进料分配器的进料中的碎料或从所述进料中移除碎料,其中该碎料收集器位于反应器外部,并处于流化床反应器和进料分配器的进料管线中。
7.根据权利要求6的设备,其中流化床反应器是连续气相反应器。
8.根据权利要求6的设备,其中聚合物材料包括聚烯烃。
9.根据权利要求6的设备,其中碎料收集器包括滤网、过滤器、筛网或它们的组合。
10.根据权利要求6的设备,其中碎料收集器包括旋风分离器,前提是该碎料收集器不是反应器气体排放旋风分离器。
11.根据权利要求6的设备,其中碎料收集器包括分离鼓或罐。
12.根据权利要求6的设备,进一步包括围绕碎料收集器的旁路管线以及在该旁路管线中的任选的另外的碎料收集器。
13.根据权利要求6的设备,其中该碎料收集器被装备以当碎料收集器在使用时从该碎料收集器移除已收集的碎料。
14.根据权利要求6的设备,其中聚合物材料包括聚烯烃。
15.根据权利要求6的设备,其中聚合物材料包括乙烯均聚物或乙烯和至少一种其它烯烃的共聚物。
全文摘要
本发明公开了一种聚合方法及相关设备。聚合方法包括在具有进料分配器的流化床反应器中制备聚合物材料以及通过碎料收集器收集碎料,并且所述设备是那些对应于此方法的设备。
文档编号C08F210/16GK1832968SQ200480022627
公开日2006年9月13日 申请日期2004年8月6日 优先权日2003年8月7日
发明者K·A·多利, D·K·法勒尔, S·D·霍利费尔德, T·R·马多克斯二世, G·E·穆尔, L·A·诺布尔 申请人:伊斯曼化学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1