具有改进的抗局部放电性的绝缘体系及其制备方法

文档序号:3675999阅读:174来源:国知局
具有改进的抗局部放电性的绝缘体系及其制备方法
【专利摘要】本发明首次表明以双峰存在的纳米颗粒填料的令人意外的阻蚀效应。要论述的是,如图3-5中表明的有益结果是否应归因于由于相互附聚所产生的纳米颗粒的一种颗粒交联。无论如何,可令人印象深刻地表明,混入第二种,优选较小级分的纳米颗粒填料可带来显著优点。
【专利说明】具有改进的抗局部放电性的绝缘体系及其制备方法
[0001]本发明一般涉及电导体抗局部放电的绝缘领域,具体涉及用于制备具有改进的抗局部放电性的绝缘体系的方法和一种具有改进的抗局部放电性的绝缘体系。
[0002]在旋转式电动机械如电动机或发电机中,绝缘体系的可靠性对其运行安全性具有决定性作用。该绝缘体系的目的是使电导体(金属线、线圈、杆件)长期相互地和对定子铁心或周围呈电绝缘。在高电压绝缘范围内,区分为各绕组线段之间的绝缘(绕组线段绝缘)、导线或线匝之间的绝缘(导线绝缘或线匝绝缘)和在槽铣头区域和绕组端部区域中导体和外壳电位之间的绝缘(主绝缘)。该主绝缘的厚度不仅要与该机械的标称电压还要与运行条件和加工条件相适配。用于产生能量的未来装置的竞争能力、其分配和利用决定性地取决于为绝缘所使用的材料和所采用的工艺。
[0003]在这类电负荷绝缘中的基本问题在于所谓的局部放电诱发的侵蚀同时形成所谓的“树枝状”-通道,其最终导致绝缘体的电击穿。
[0004]在高电压机械和中等电压机械中,现今使用所谓的层状浸溃式云母绝缘。由绝缘的绕组线段制备的成型线圈和导体用云母带缠绕,并优选以真空-压力-浸溃工艺用合成树脂浸溃。浸溃树脂和母云载带的组合提供了电绝缘的现今的机械强度以及所需的抗局部放电性。
[0005]相应于电技术工业的需求,将云母纸转换成更稳定的云母带。这通过用粘合剂将云母纸与具有高机械强度的载体材料相粘结来实现。所述粘合剂的特征优选是,其在室温下具有高强度,以确保云母与载体的粘结,并在升高的温度(60-150°C)下转变成液态。其可在升高的温度下以液态或以与易挥发溶剂的混合物作为粘合剂实现其施加。在冷却或除去溶剂后,该粘合剂以固体但仍柔性的形式存在,并且可以在室温下例如围绕由绕组线段和成型线圈组成的勒贝尔杆施加云母带,该粘合剂的粘结特性可防止云母纸从载体材料上剥离。如此形成的云母带以多层绕电导体缠绕。
[0006]在高电压电动机和中等电压电动机和高电压发电机和中等电压发电机中使用层状云母绝缘。由绝缘的绕组线段制备的成型线圈用云母带缠绕,并首先以真空-压力浸溃工艺(VPI = vacuum pressure impregnation)用合成树脂浸溃。在此云母以云母纸的形式使用,在浸溃范围内,在云母纸中存在于各颗粒之间的空腔被树脂充填。浸溃树脂和云母的载体材料的组合提供了该绝缘的机械强度。电气强度由所用云母的大量的固-固-界面产生。如此形成的由有机材料和无机材料构成的层形成微观界面,其对局部放电和热应力的稳定性由云母小片的特性决定。在该绝缘中的最小空腔也必需通过复杂的VP1-工艺被树脂充填,以使内部的气-固-界面的数目达最少。
[0007]为进一步改进该稳定性,曾描述使用纳米颗粒填料。
[0008]浸溃树脂和云母载带的组合提供了电绝缘的现今机械强度以及所需的抗局部放电性。
[0009]除VPI工艺外,还有Resin Rich工艺以用于制备和浸溃云母带即绝缘带和再接着是该绝缘体系。
[0010]两种工艺间的主要区别在于线圈本来的绝缘体系的结构和制备。VPI工艺在绕组浸溃后和硬化后才在空气循环炉中制成,而Risin-Rich线圈的分别在温度和压力下硬化的管架在嵌入定子之前已形成功能性的和可检验的绝缘体系。
[0011]VP1-工艺使用多孔的带,该带在真空和接着浸入过压的浸溃容器下在空气循环炉中硬化后形成牢固的和连续的绝缘体系。
[0012]与此相反,Risin-Rich线圈的制备更复杂,因为每根线圈管架或绕组杆需单个地以特殊的烘焙压制制备,这导致单个线圈的成本可比地提高。在此,使用被一种聚合物绝缘材料浸溃的云母带,该聚合物绝缘材料以所谓的B-状态存在。这意指该聚合物,大多为芳族环氧树脂(BADGE,BFDGE,环氧化的线型酚醛树脂,环氧化的甲酚线型酚醛树脂和作为硬化剂的酐或胺)是局部交联的,并因此呈无粘性状态,但在再次加热时又可重新熔化和最后硬化,以由此形成最终的形状。因为该树脂以过量引入,在最后压制时其会流入所有的空腔和空穴中,以获得相应的绝缘品质。过量的树脂通过挤压过程被压出该容器。
[0013]由文献己知,在聚合物绝缘物质中使用纳米颗粒填料导致关系到电工作寿命的绝缘的明显改进。
[0014]已知体系,特别是基于环氧树脂的体系的缺点在于,聚合物基质在局部放电应力下发生快速分解,这里称为侵蚀。通过用耐侵蚀的纳米颗粒(氧化铝、二氧化硅)填充该聚合物基质,导致由于该聚合物的溶解即所谓的聚合物降解而引起的该纳米颗粒的显露。
[0015]本发明的目的在于能够实现具有改进的抗局部放电性的绝缘体系。
[0016]根据本发明的一个方面,提供用于制备具有改进的抗局部放电性的绝缘体系的方法,该方法包括下列方法步骤:
-提供包含云母纸和载体材料的绝缘带,借助于粘合剂将它们相互粘合,
-用该绝缘带卷绕电导体,
-用人造树脂浸溃该卷绕电导体的绝缘带,其中所述人造树脂包含纳米颗粒填料,其特征在于,该纳米颗粒填料至少呈双峰存在。
[0017]本发明的术语“双峰”意指,该纳米颗粒填料以两种不同的级分存在,其中所述级分可由两种不同的材料组成和/或由纳米颗粒填料的两种不同大小组成。
[0018]根据本发明的一个优选方面,该两级分有相同的材料和不同的大小。在此优选的是,该两级分在其平均大小上有明显不同,即在较大级分的最小值与较小级分的最大值之间有至少5 nm或更大的差别。例如该双峰纳米颗粒填料由具有平均颗粒直径为10-50 nm,优选12-40 nm,和特别优选15-30 nm的一个纳米颗粒级分和具有平均颗粒直径小于7 nm,优选小于5 nm的第二级分纳米颗粒组成。
[0019]根据本发明的另一方面,提供具有改进的抗局部放电性的绝缘体系,其具有卷绕电导体的绝缘带,该绝缘带包括与载体材料粘合的云母带,其中该绝缘带用树脂浸溃,其特征在于,该经浸溃的绝缘带中掺入至少以双峰存在的纳米颗粒填料。
[0020]已知的是,与聚合物绝缘物质相反,在局部放电作用下,无机颗粒不受损害或破坏或仅在非常有限的程度上受到损害或破坏。在此方面,无机颗粒产生的阻蚀作用尤其取决于该颗粒直径和由此产生的颗粒表面。在此证实,颗粒的比表面越大,该颗粒上的阻蚀作用也越大。无机纳米颗粒具有非常大的比表面即50 g/m2或更大。
[0021]这种关联性在Tanaka教授的多芯模型中,在Tanaka等人,Dependence of PDErosion Depth on the Size of Silica Fillers; Takahiro Imai*, Fumio Sawaj TamonOzaki, Tashio Shimizu, Ryouichi Kido, Masahiro Kozako 和 Toshikatsu Tanaka;Evaluation of Insulation Properties of Epoxy Resin with Nano-scale SilicaParticles Toshiba Research Cooperation 中首次石角定。
[0022]通常,无充填的或基于云母的环氧树脂基绝缘物质在局部放电应力下表现出聚合物基质的快速分解。通过用耐侵蚀的纳米颗粒填料(氧化铝、二氧化硅)填充该聚合物基质,由于聚合物的溶解,显露出该纳米颗粒。
[0023]但随不断增长的侵蚀时间,在测试体表面上形成由显露的纳米颗粒填料构成的牢固粘附的平面层。由此,通过受侵蚀的聚合物引起的纳米颗粒填料的颗粒交联形成表面的钝化,并且有效保护在该钝化层下面的聚合物免受在局部放电应力下的进一步侵蚀。
[0024]令人意外地发现,通过在人造树脂中使用双峰的纳米颗粒填料,特别是其平均粒度呈明显差别的两级分的纳米颗粒填料可获得改进的阻蚀作用。
[0025]可表明,使用至少两种其粒径有明显不同的纳米颗粒级分导致具有特别优异的耐蚀性的纳米复合材料。这是由于易形成钝化层,特别是在增粘剂存在下。在局部放电的作用下通过化学或物理过程产生纳米颗粒的附聚,以形成钝化保护层为结果。通过组合两种不同尺寸的纳米颗粒有利于该过程的进行,因为在TE (局部放电)-作用下,具有较小直径的和因此具有更大活性表面的纳米颗粒促进了较大的纳米颗粒的附聚,并由此形成特别耐蚀的层。
[0026]下面阐述通过在树脂组合物中使用双峰的纳米颗粒填料来有利地改进抗侵蚀性的可能的基本原理:一方面可保持具有小直径的纳米颗粒的浓度低,这在经济上以及从化学和加工技术角度看均是有利的,因为可更好地控制如粘度、反应性和贮存稳定性等特性,而另一方面可利用有利的特性如较小纳米颗粒的大的比表面。
[0027]根据本发明,特别有利的实施方案具有由下列组分构成的反应性树脂组合物: 树脂基质例如由环氧树脂和/或聚氨酯树脂组成。
[0028]硬化剂包含例如酐、芳族胺和/或脂族胺作为官能基团。
[0029]纳米颗粒填料优选基于二氧化硅和/或氧化铝(Al2O3)的材料,并至少是双峰的,即以二种级分存在。
[0030]优选涉及两种不同粒度的级分。优选地,与较小的级分相比,较大颗粒的级分以较高浓度存在。由具有粒度为10-50 nm,且在人造树脂中的浓度为10-50重量%的纳米颗粒填料与具有粒度为1-5 nm,且浓度为1-10重量%的纳米颗粒填料级分一起的组合已证明是特别有利的。
[0031]可使用的纳米颗粒填料的材料范围是非常宽的。原则上这里可使用所有可团聚的材料。
[0032]可含其它填料、添加剂、颜料。
[0033]作为增粘剂优选使用有机硅化合物,如有机硅烷和/或POSS。其在人造树脂中-又优选-以0.1-45重量%,特别是1-25重量%的浓度存在。
[0034]增粘剂如有机硅化合物的使用以填料的涂层形式加入或也可作为树脂组合物的部分与所述成分组合。后者提供了下列优点,即与在加入到反应树脂前使用硅烷作为颗粒的增粘剂的情况相比,可以以更高浓度使用增粘剂即例如硅烷作为反应性树脂的部分。
[0035]图1以双峰的纳米颗粒填料为例示意性示出原位团聚的一般机理。[0036]通过不同粒度的组合产生如图1所示的团聚层,由此可看出,可由此产生具有较高密度的层,其最后表现出改进的耐蚀性。
[0037]图2中示出经由增粘剂的官能基团的在颗粒表面上的双峰纳米颗粒的团聚。在此实例中,所述增粘剂为娃烧,其中可以是R1=轻基、烧氧基、齒素、环氧丙氧基;和R2=烧基、环氧丙氧基、乙烯基、丙基琥珀酸酐、甲基丙烯酰氧丙基。
[0038]图2示出硅烷上的基团R1被不同级分的纳米颗粒替代。R2也可以是酰胺化的、硫化的、氧化的或H。“酰胺化的、氧化的和硫化的”在此意指其它的有机基团R’ 2经氮、氧或硫键合在硅上。
[0039]大颗粒I和2如基团R1/2 —样键合在硅核3上,并因此相互和与小颗粒4直接邻近存在。因此其经由硅核3交联。
[0040]这种原位团聚在颗粒表面上进行。参与该过程的官能基团例如可源自羟基、烷氧基、烧基、乙稀基和环氧丙氧基化合物。但在这种闻能条件下,未出现表面官能化的限制,因此通常可认为,定位在该表面上的所有官能基团均参与团聚。
[0041]在试验中研究了在使用至少双峰分布的纳米颗粒填料与实际上使用的基于云母的绝缘材料组合时的优点。为此,在直到电击穿的电场应力下测量了以缩小的形状相应于现有技术的在水力发电机或涡轮发电机的定子中的绝缘Cu-导体的试验试件的寿命。因为绝缘体系的电气强度在运行应力下为几十年,所以在高数倍的电场强度下进行电寿命试验。
[0042]在附图中的示图是对各标准绝缘体系(云母)和充填纳米颗粒/硅烷的绝缘体系在三种不同的场应力下给出各7个试件的电工作寿命的平均值。在此,未充填的体系(标记为云母塑料)具有约50重量%的云母和50重量%的树脂的含量。给出的纳米颗粒含量相应减少树脂的含量。云母的含量在每种情况中保持恒定。
[0043]在图3-5中各对比示出本发明的实施方案的实验试件(以中间带有圆圈的中断线表示)的参比试件。这些试件以缩小的形状相应于现有技术的在水力发电机或涡轮发电机定子中的绝缘Cu-导体。在直到电击穿的电场应力下对试件进行测量。因为绝缘体系的电气强度在运行应力下为几十年,所以在高数倍的电场强度下进行电寿命试验。
[0044]在附图3中的示图是对各标准绝缘体系(云母)和充填纳米颗粒/硅烷的绝缘体系在三种不同的场应力下给出各7个试件的电工作寿命的平均值。在此,未充填的体系(标记为云母塑料)具有约50重量%的云母和50重量%的树脂的含量。给出的纳米颗粒含量相应减少树脂的含量。云母的含量在每种情况中保持恒定。
[0045]图3中示出未充填的和充填纳米颗粒的高电压绝缘体系(云母塑料(黑色))和含20重量%的纳米颗粒(直径约20 nm, SiO2)和5重量%的纳米颗粒(直径约5 nm, SiO2)的云母塑料的寿命曲线明显示出,最后提及的体系在相同应力下显示出明显延长的工作寿命O
[0046]图4示出未充填的和充填纳米颗粒的高电压绝缘体系(云母塑料(黑色))和含20重量%的纳米颗粒(直径约2O nm, SiO2)和5重量%的纳米颗粒(直径约5 nm, Al2O3)的云母塑料的相应的寿命曲线。这里再次明显看出工作寿命几乎平行移动到较长的时间。
[0047]最后,图5还示出未充填的和充填纳米颗粒的高电压绝缘体系(云母塑料(黑色))和含25重量%纳米颗粒(直径约20 nm, SiO2)和2.5重量%的纳米颗粒(直径约5nm, SiO2)的云母塑料的寿命曲线。
[0048]比较各组的工作寿命表明,工作寿命的改善达到因数10。两种工作寿命曲线均具有相同的斜率,因此似乎允许将工作寿命延长直接转换成运行特性。
[0049]在此,含最多35重量%的纳米颗粒含量的绝缘体是可行的。
[0050]本发明首次表明以双峰存在的纳米颗粒填料的令人意外的阻蚀效应。要论述的是,如图3-5中表明的有益结果是否应归因于由于相互附聚所产生的纳米颗粒的一种颗粒交联。无论如何,可令人印象深刻地表明,混入第二种,优选较小级分的纳米颗粒填料可带来显著优点。
【权利要求】
1.用于制备具有改进的抗局部放电性的绝缘体系的方法,所述方法包括下列步骤: -提供包括借助于粘合剂相互粘合的云母纸和载体材料的绝缘带, -用所述绝缘带卷绕电导体, -用含纳米颗粒填料的人造树脂浸溃所述卷绕电导体的绝缘带, 其特征在于,所述纳米颗粒填料作为双级分组合呈双峰形式存在。
2.具有改进的抗局部放电性的绝缘体系,其具有卷绕电导体的绝缘带,所述绝缘带包括与载体材料粘接的云母带,其中所述绝缘带用人造树脂浸溃,其特征在于,所述经浸溃的绝缘带掺有纳米颗粒填料,所述纳米颗粒填料以双级分的纳米颗粒填料形式呈双峰存在。
3.根据权利要求2的绝缘体系,其特征在于,所述纳米颗粒填料的两种级分区别在于其平均粒度。
4.根据权利要求2或3的绝缘体系,其特征在于,所述第一级分具有10-50nm范围的平均粒度。
5.根据权利要求4的绝缘体系,其特征在于,所述第二级分小于所述第一级分。
6.根据权利要求4或5的绝缘体系,其特征在于,所述较小的级分具有1-7nm的平均粒径。
7.根据前述权利要求2-6之一的绝缘体系,其特征在于,所述纳米颗粒填料的较小级分的以比具有较大颗粒的级分小的量存在。
8.根据前述权利要求2-7之一的绝缘体系,其特征在于,所述人造树脂体系的树脂基选自基于环氧化物的树脂和/或聚氨酯。
9.根据前述权利要求2-8之一的绝缘体系,其特征在于,使用有机硅化合物作为增粘剂。
10.根据前述权利要求2-9之一的绝缘体系,其特征在于,所述纳米颗粒填料的至少一个级分的材料选自金属氧化物、金属氮化物、金属硫化物和/或金属碳化物。
11.根据权利要求2-10之一的绝缘体系,其特征在于,所述纳米颗粒填料包括0.5 nm-80 nm的平均粒径。
12.根据权利要求2-11之一的绝缘体系,其中所述纳米颗粒填料在人造树脂中以3-80重量%的浓度存在。
13.根据权利要求5-7之一的绝缘体系,其中所述增粘剂在人造树脂中以0.1-45重量%的浓度存在。
【文档编号】C08K3/22GK103814415SQ201280046990
【公开日】2014年5月21日 申请日期:2012年9月3日 优先权日:2011年9月26日
【发明者】P.格雷佩尔, D.海因尔, C.迈希斯纳, I.里特贝格 申请人:西门子公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1