一种抗原子氧性能优异的纳米二氧化钛‑聚酰亚胺杂化薄膜及其制备方法与流程

文档序号:11223712阅读:2366来源:国知局

本发明属于薄膜领域,具体涉及一种抗原子氧性能优异的纳米二氧化钛-聚酰亚胺杂化薄膜及其制备方法。



背景技术:

多面体低聚倍半硅氧烷(polyhedraloligomericsilsesquioxane,poss)是一类特殊的倍半硅氧烷,分子为(rsio1.5)n,其结构通常由六面体笼形的si-o-si无机内核和顶点的8个有机取代基r组成,其中r可以是一个或多个有机官能团,是一种真正意义上的分子纳米杂化化合物。这种新型的杂化材料不仅具备高分子材料的韧性、成本低以及良好加工性,同时又具有无机材料的强度高、不易氧化、耐高温、力学性能好等多个优点。目前,利用poss作为纳米构件制备新型有机-无机杂化材料已经成为研究的热点,引入poss可提高材料的热稳定性,改善机械性能和其它物理性能。

作者唐威等人在《环氧基倍半硅氧烷的合成与表征》一文中,以乙烯基三氯硅烷经水解缩合,先制备八乙烯基多面体倍半硅氧烷,然后以过氧乙酸直接氧化乙烯官能团制得环氧基多面体倍半硅氧烷。采用此种方法制备得到的环氧基多面体倍半硅氧烷,平均每个多面体倍半硅氧烷只能带有3-4个环氧基,且环氧基的相对位置不固定,得到的是带有不同个数和不同位置环氧基的多面体倍半硅氧烷。而且此种方法得到的环氧基直接连载多面体倍半硅氧烷的骨架si上,由于位阻较大,反应活性大大降低,影响其使用性能。



技术实现要素:

本发明的目的在于提供一种高温条件下抗原子氧性能优异的纳米二氧化钛-聚酰亚胺杂化薄膜及其制备方法。

为了实现上述目的,本发明采用了如下技术方案:

一种抗原子氧性能优异的纳米二氧化钛-聚酰亚胺杂化薄膜,其特征在于,首先以乙烯基三氯硅烷水解缩合得到八乙烯基多面体倍半硅氧烷;八乙烯基多面体倍半硅氧烷的乙烯基与烯丙基缩水甘油醚的烯丙基催化聚合反应,得到环氧基多面体倍半硅氧烷;再以钛酸四丁酯水解后高温退火并还原得到纳米二氧化钛,最后以纳米二氧化钛填充,环氧基多面体倍半硅氧烷杂化交联,并流延成膜和程序升温亚胺化,得到抗原子氧性能优异的纳米二氧化钛-聚酰亚胺杂化薄膜。

所述的抗原子氧性能优异的纳米二氧化钛-聚酰亚胺杂化薄膜,其特征在于,其由如下步骤制备而成:

(1)将乙烯基三氯硅烷与丙酮按质量比为1:10-12的比例加入到反应容器中,机械搅拌使其混合均匀,以30-40滴/min的速率缓慢滴加相当于丙酮重量份35-45%的去离子水,40-45℃恒温冷凝回流60-72h,抽滤,丙酮洗涤3-4次,再采用四氢呋喃与甲醇体积比为1:2-3配置的混合溶液重结晶,60-65℃真空干燥20-24h,得到八乙烯基多面体倍半硅氧烷;

(2)将步骤(1)的产物、烯丙基缩水甘油醚和甲苯按质量比1:1.2-1.3:8-10加入反应容器中,通氮气30-40min排除氧气并混合搅拌均匀,加入催化剂2,2′-偶氮二异丁腈和助催化剂乙酰基丙酮酸铬,继续混合搅拌均匀,升温至60-70℃,恒温磁力搅拌冷凝回流12-15h,旋转蒸发浓缩,60-65℃真空干燥,得到环氧基多面体倍半硅氧烷;

(3)将硫酸铝、月桂醇硫酸钠以1:0.02-0.03的质量比加入到相当于硫酸铝重量份15-20倍的去离子水中,超声震荡至完全溶解;加入钛酸四丁酯和无水乙醇以1:12-15的质量比配置的溶液,调节ph至3-4,继续超声震荡20-30min,将反应物转移至90-100℃的水浴中,恒温放置12-15h,直到获得粘稠状的浅蓝色胶体,冷却,用去离子水洗涤2-3次,80-100℃烘箱中空气干燥10-12h;将干燥后的产物倒入坩埚后置于箱式电阻炉中,550-650℃空气退火2-3h,随后通入氢气和氮气,在弱还原气氛中于600-650℃退火2-3h,随后保持弱还原气氛炉冷至室温,备用;其中硫酸铝的钛酸四丁酯的质量比为1:1.8-2.2;

(4)将步骤(3)的产物和二甲基甲酰胺以1:40-50的质量比加入到反应容器中,超声震荡50-60min,形成稳定的悬浮液,通氮气,加入步骤(2)的产物、二甲基二苯甲烷二胺和4,4′-二氨基二苯醚,剧烈搅拌2-3h,升高温度至80-85℃,加入4,4′-联苯醚二酐,加完后继续搅拌6-8h;其中步骤(3)的产物、步骤(2)的产物、二甲基二苯甲烷二胺、4,4′-二氨基二苯醚和4,4′-联苯醚二酐的质量比为1:1.2-1.4:10-12:4-6:16-18;

(5)将步骤(4)的产物趁热在平板玻璃上涂膜,在60-70℃烘干溶剂,然后梯度升温亚胺化:150、200、250、300、350℃/30min,得到抗原子氧性能优异的纳米二氧化钛-聚酰亚胺杂化薄膜。

所述的抗原子氧性能优异的纳米二氧化钛-聚酰亚胺杂化薄膜的制备方法,其特征在于,所述的步骤(3)中通入氢气和氮气,控制氢气和氮气的通气流量是相同的。

所述的抗原子氧性能优异的纳米二氧化钛-聚酰亚胺杂化薄膜的制备方法,其特征在于,所述的4,4′-联苯醚二酐的加入方式为分3-4次加入,每次间隔30-40min。

采用上述的技术方案,本发明的有益效果为:

本发明以乙烯基三氯硅烷水解缩合得到八乙烯基多面体倍半硅氧烷;八乙烯基多面体倍半硅氧烷的乙烯基与烯丙基缩水甘油醚的烯丙基催化聚合反应,得到环氧基多面体倍半硅氧烷;此种方法得到是全部环氧基多面体倍半硅氧烷,而且环氧基与多面体倍半硅氧烷的骨架si之间通过一定长度的柔性链相连,位阻较小,环氧基的反应活性较高。本发明的杂化薄膜,以环氧基多面体倍半硅氧烷杂化交联,在高温条件下或受到原子氧侵蚀时,能够在材料表面产生一层致密的sio2,阻止氧原子对材料的侵蚀,从而具有优异的抗原子氧性能。纳米二氧化钛颗粒以优异的化学稳定性、热稳定性以及耐腐蚀性作为重要的无机材料与聚合物进行改进性复合,由于二氧化钛的键能高于聚合物,具有较高的热稳定性和抗氧化性,在改善聚合物耐电晕性能的同时,还可进一步提高材料的导热性。

具体实施方式

本实施例的抗原子氧性能优异的纳米二氧化钛-聚酰亚胺杂化薄膜,其由如下步骤制备而成:

(1)将乙烯基三氯硅烷与丙酮按质量比为1:12的比例加入到反应容器中,机械搅拌使其混合均匀,以40滴/min的速率缓慢滴加相当于丙酮重量份35%的去离子水,45℃恒温冷凝回流72h,抽滤,丙酮洗涤4次,再采用四氢呋喃与甲醇体积比为1:2配置的混合溶液重结晶,65℃真空干燥24h,得到八乙烯基多面体倍半硅氧烷;

(2)将步骤(1)的产物、烯丙基缩水甘油醚和甲苯按质量比1:1.3:10加入反应容器中,通氮气40min排除氧气并混合搅拌均匀,加入催化剂2,2′-偶氮二异丁腈和助催化剂乙酰基丙酮酸铬,继续混合搅拌均匀,升温至70℃,恒温磁力搅拌冷凝回流15h,旋转蒸发浓缩,65℃真空干燥,得到环氧基多面体倍半硅氧烷;

(3)将硫酸铝、月桂醇硫酸钠以1:0.03的质量比加入到相当于硫酸铝重量份20倍的去离子水中,超声震荡至完全溶解;加入钛酸四丁酯和无水乙醇以1:15的质量比配置的溶液,调节ph至3-4,继续超声震荡20-30min,将反应物转移至100℃的水浴中,恒温放置15h,直到获得粘稠状的浅蓝色胶体,冷却,用去离子水洗涤3次,100℃烘箱中空气干燥12h;将干燥后的产物倒入坩埚后置于箱式电阻炉中,550℃空气退火3h,随后通入氢气和氮气,在弱还原气氛中于650℃退火2h,随后保持弱还原气氛炉冷至室温,备用;其中硫酸铝的钛酸四丁酯的质量比为1:2.2;

(4)将步骤(3)的产物和二甲基甲酰胺以1:50的质量比加入到反应容器中,超声震荡60min,形成稳定的悬浮液,通氮气,加入步骤(2)的产物、二甲基二苯甲烷二胺和4,4′-二氨基二苯醚,剧烈搅拌3h,升高温度至85℃,加入4,4′-联苯醚二酐,加完后继续搅拌8h;其中步骤(3)的产物、步骤(2)的产物、二甲基二苯甲烷二胺、4,4′-二氨基二苯醚和4,4′-联苯醚二酐的质量比为1:1.4:12:6:18;

(5)将步骤(4)的产物趁热在平板玻璃上涂膜,在70℃烘干溶剂,然后梯度升温亚胺化:150、200、250、300、350℃/30min,得到抗原子氧性能优异的纳米二氧化钛-聚酰亚胺杂化薄膜。

本实施例的步骤(3)中通入氢气和氮气,控制氢气和氮气的通气流量是相同的。

本实施例的4,4′-联苯醚二酐的加入方式为分3次加入,每次间隔40min。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1