爆炸碎裂法的制作方法

文档序号:3726667阅读:560来源:国知局
专利名称:爆炸碎裂法的制作方法
背景技术
本发明涉及具有适合用作磨料砂粒形状的陶瓷颗粒,以及生产这类颗粒的方法。
磨料颗粒通常是采用研磨法或滚碎法粉碎大的陶瓷颗粒形成的。这些方法是高度能耗的,并且由于形成颗粒时的冲击力而产生有大量微裂纹的颗粒。据信这类微裂纹是颗粒缺陷的原因,从而降低了颗粒作为磨料的效率。
曾研究出溶胶-凝胶法生产氧化铝磨料,由一种前体形态,通常是勃母石形成凝胶,将这种凝胶挤出或以其它方法成型为易处理的片,然后干燥除去水。经干燥的凝胶极为易碎,通常是将其磨碎至最终磨料颗粒要求的粒度范围,然后烧结制得最终的磨料颗粒。
近来,于1995年4月5日提出的美国专利申请08/417,169中已经提出将仍含有至少5%(重量)水的干燥后凝胶直接送入炉子的热区,使水以爆炸方式膨胀。这样制得的颗粒一般具有较大的长径比,并且具有优良的磨削性能。
现在,人们发现很多陶瓷材料都可以爆炸方式粉碎来制得相似长径比的颗粒,而不必施加冲击力。因此,本发明提供一种吸引人的零冲击力方法,该方法适合生产很多种颗粒形态的陶瓷。
发明概述本发明的方法包括使多孔陶瓷材料处于其孔被一定压力的气体占据的条件,在释放该压力时气体的膨胀会引起陶瓷材料的碎裂。
本申请的文本中,术语“碎裂”用于指发生碎裂后,原颗粒中颗粒尺寸保持不变的颗粒少于15%,其余的碎裂为更小的颗粒。
引起碎裂所需的压力随陶瓷和多孔形态的固结程度而不同。通过简单的迅速释放压力使气体膨胀,该压力为使气体充入多孔陶瓷的压力。所产生的爆炸膨胀引起颗粒的碎裂。另一种有用的方法是在孔中充入液体,然后使液体迅速蒸发,产生内压,而使陶瓷碎裂。这可以通过迅速加热陶瓷来进行。然而本发明的优选方法包括使多孔陶瓷在一种液体中浸透足够的时间,以使陶瓷材料的至少部分孔隙被该液体占据,这种液体在常温和常压下为气体,然后从该液体中取出颗粒,迅速将它们置于该液体为气态的温度和/或压力条件。这基本上立即产生了要求的内压,并引起颗粒的碎裂。应理解本文本中术语“迅速地”是指陶瓷内几乎所有的压力增加都发生在陶瓷材料处于产生碎裂的温度和/或压力以后。
适用于本发明的这种优选方法的液体包括压缩液体制冷剂,如液态氨和液化氯氟烃;液化气,如液态氮、液态氧和超临界二氧化碳。
理论上用一种爆炸性液体渗入孔中也是可能的,这种液体可以本身为炸药,如硝化甘油或空气/汽油混合物,或干燥时会成为爆炸性的,如三碘化氮。然而由于明显的原因,采用这类方法会引起一些安全问题,而使之不能付诸实践。
用于引起爆炸性膨胀的方法可以是上面讨论的施加热量,但更为常用的是,当通过膨胀一种在常温和常压下为气体的液体,在孔内就地产生气体时,优选将颗粒置于足以使其迅速膨胀的常压和常温下的惰性液体中。这种方法具有确保均匀的温度环境、提供最大的迅速传热的接触面以及缓和爆炸性膨胀的效果的作用。对陶瓷和引起碎裂的气体而言,该液体被描述为“惰性的”。这意味着没有相互间的化学反应,或陶瓷溶解或气体的溶解。然而,这并不意味着该液体不能作为媒介物用以将所需的组分浸透到陶瓷中。
能够通过本发明的方法碎裂的陶瓷材料包括氧化铝,碳化硅、氮化硅、氮化钛、碳化钛等。其中氧化铝包括氧化铝的前体,如勃姆石和以至氧化铝三水合物。这些产品含有结合水,但是这并不受本发明方法的影响,可多次重复该方法,直到达到要求的碎裂度。
本发明方法使用的陶瓷材料的孔隙应主要为开孔为佳,可使待膨胀的气体或液体进入。这样的孔隙率应至少为5%(体积)为佳,10-30%(体积)更好,如10-20%(体积)。没有理论上限,但是在实践中,陶瓷的最大孔隙率可高达80%(体积),以70%(体积)更合适。孔隙率范围宜为10-80%(体积),20-50%(体积)更好。
在使用氧化铝中间物或未烧结的α-氧化铝(通过溶胶-凝胶法获得)的情况,孔隙是在成型过程中产生,而且是相变的结果。也可能是将粉碎得很细的陶瓷颗粒形成糊料的,然后将糊料造粒和干燥,使该类颗粒包括疏松集聚的陶瓷颗粒。
碎裂后,如果用作磨料,通常需要焙烧所获的陶瓷颗粒使它们完全烧结。烧结的温度和时间随使用的陶瓷而变化。
优选实施方案的描述具体参考下面的实施例描述本发明,这些实施例用于说明本发明,不构成对本发明范围的任何限制。
实施例1此实施例中,陶瓷使用溶胶-凝胶氧化铝,这种氧化铝已经干燥除去游离水,并粉碎为+12目颗粒。因此,该陶瓷主要包含如勃母石的氧化铝前体。
将颗粒浸入环境压力下的液态氮中,使其热平衡约2分钟,之后,滗析除去过量的液态氮,立刻将颗粒移入室温下液态辛烷的容器中。导致液态氮的爆炸性膨胀,使氧化铝碎裂。滗析除去辛烷,将氧化铝颗粒干燥和分级。颗粒尺寸分布如下颗粒尺寸的范围 该范围中的百分数+12目11-12+16目 20-16+18目 13-18+20目 14-20+25目 16-25+35目 13-35+45目 5-45目7在相同条件下,将没有浸入液态氮中的相同的溶胶-凝胶氧化铝原料直接放入辛烷时,没有发生明显的碎裂。
实施例2实施例1中获得的碎裂后产品经同样方法测定是否达到进一步的粉碎。所获颗粒尺寸如下颗粒尺寸的范围 该范围中的百分数+12目0-12+16目 5-16+18目 4-18+20目 11-20+25目 16-25+35目 28-35+45目 17
-45目16这证实,重复该方法可以确保要求的碎裂度。
实施例3此实施例中,陶瓷使用粒态的氮化硅,其圆截面约为2.5厘米,长约为2.5厘米。可通过滑动浇注胶体氮化硅获得。将这些颗粒浸在液态氮中,使其热平衡约2分钟,之后,滗析除去液态氮,将颗粒放在约50℃水的容器中。在几秒中内颗粒发生碎裂。立刻滗析除去水,将碎裂的氮化硅颗粒干燥并测定其颗粒尺寸分布。发现约73%的颗粒尺寸为0.2-0.6厘米,约17%为0.2-0.08厘米,约10%小于0.08厘米。
不进行液态氮浸入而重复该试验,没有发生明显的碎裂。
实施例4此实施例中,陶瓷使用α-氧化铝粉末(Sumitomo AKP-30)。通过在装有1.2厘米氧化锆介质的塑料罐中辗滚,使50克该粉末在有1.0克Darvan-821-A分散剂500毫升水中的分散体均化约1小时。在约80℃干燥该悬浮液,干燥后,+10目大小的片状物浸在液态氮中约2分钟,之后,滗析除去过量的液态氮,立刻将氧化铝片状物移入室温下液态己烷的容器中。氧化铝爆炸性碎裂。产物尺寸分布如下颗粒尺寸的范围该范围中的百分数+10目 42-10+12目 22-12+16目 24-16目 10不浸入液态氮中,重复上面的试验,没有观察到明显的碎裂。
权利要求
1.一种生产碎裂陶瓷的方法,该方法包括使多孔陶瓷材料处于其孔被一定压力的气体占据的条件,在使气体膨胀时,膨胀会引起陶瓷材料的碎裂。
2.如权利要求1所述的方法,其特征在于所述的多孔陶瓷材料浸在一种液体中,然后使陶瓷材料处于能使该液体迅速挥发足以引起陶瓷材料碎裂的温度和压力下。
3.如权利要求2所述的方法,其特征在于所述的陶瓷材料通过浸在一种液体中而使其孔充满液体,这种液体在常压和20℃下为气体。
4.如权利要求2所述的方法,其特征在于通过将所述的多孔陶瓷置于惰性液体中,使该多孔陶瓷处于挥发温度和压力。
5.如权利要求1所述的方法,其特征在于所述的陶瓷有10-80%体积的孔隙率。
6.如权利要求5所述的方法,其特征在于所述的陶瓷有20-50%体积的孔隙率。
7.如权利要求1所述的方法,其特征在于所述的陶瓷是选自氧化铝、氧化铝前体、碳化硅、氮化硅以及它们的混合物。
全文摘要
通过在孔内产生足够压力的气体,使颗粒碎裂来破碎多孔陶瓷颗粒。产生压力的优选方法是将颗粒浸入一种液体直到该液体被吸收到孔中,这种液体在室温和常压下为气体,之后,迅速改变条件使该液体成为气体,导致陶瓷颗粒的爆炸性碎裂。
文档编号C09K3/14GK1243536SQ98801777
公开日2000年2月2日 申请日期1998年1月14日 优先权日1997年1月17日
发明者A·K·加吉, M·D·卡瓦诺 申请人:圣戈本工业陶瓷股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1