混合动力车辆及其控制方法与流程

文档序号:15828808发布日期:2018-11-03 00:13阅读:172来源:国知局

本发明涉及一种混合动力车辆及其控制方法。

背景技术

作为相关技术中的一种类型的混合动力车辆,提出了一种混合动力车辆(例如,参见日本未审查专利申请特开第2013-203116(jp2013-203116a)号),该混合动力车辆包括:发动机;第一电机;行星齿轮机构,其中,连接至驱动轮的发动机、第一电机和输出构件被连接至行星齿轮机构的行星架、太阳齿轮和齿圈;第二电机,其连接至输出构件;第一逆变器,其驱动第一电机;第二逆变器,其驱动第二电机;以及电力存储装置(电池),其经由电力线连接至第一逆变器和第二逆变器。在该混合动力车辆中,当混合动力车辆在发动机在第一逆变器和第二逆变器被关闭的状态下进行操作的情况下行驶时,基于第一逆变器和第二逆变器的dc侧电压、输出构件的旋转速度以及加速器操作量来控制发动机,使得随着第一电机的旋转生成的反电动势电压变得高于第一逆变器的dc侧电压。通过这种控制,调节了基于第一电机的反电动势电压的制动转矩,并且调节了制动转矩的反作用转矩(在输出构件中生成的驱动转矩)。



技术实现要素:

在混合动力车辆中,当混合动力车辆在发动机在第一逆变器和第二逆变器被关闭的状态下进行操作的情况下行驶并且加速器操作量足够小(例如,当加速器关闭时)时,发动机的旋转速度减小,使得第一电机的旋转速度变得等于或小于预定旋转速度(第一电机的反电动势电压等于或小于第一逆变器的dc侧电压的旋转速度)并且停止向输出构件输出反作用转矩(驱动转矩)。然后,当加速器操作量增加时(例如,当加速器接通时),使发动机的旋转速度增大,使得第一电机的旋转速度变得等于或大于预定旋转速度,并且反作用转矩(驱动转矩)被输出至输出构件。然而,由于发动机的控制响应性低,所以第一电机的旋转速度不能迅速增大到等于或大于预定旋转速度,并且反作用转矩(驱动转矩)不能被迅速地输出至输出构件。

考虑到上面提及的情况,本发明提供了一种混合动力车辆及其控制方法,该混合动力车辆及控制方法执行控制,使得当在预定行驶期间加速器操作量等于或大于预定操作量并且第一电机的旋转速度等于或小于预定旋转速度时,使第一电机的旋转速度迅速地增大到等于或大于预定旋转速度,其中,在该预定行驶中,混合动力车辆在发动机在第一逆变器和第二逆变器被关闭的状态下进行操作的情况下行驶,在该预定旋转速度下,第一电机的反电动势电压等于或小于第一逆变器的dc侧电压。

根据本发明的一方面,提供了一种混合动力车辆,其包括发动机、第一电机、第二电机、行星齿轮机构、第一逆变器、第二逆变器、电力存储装置以及电子装置控制单元。第一电机被配置成随着第一电机的旋转而生成反电动势电压。第二电机被配置成向混合动力车辆的驱动轴输入动力并且从混合动力车辆的驱动轴输出动力。在行星齿轮机构中,三个旋转元件连接至第一电机、发动机和连接至混合动力车辆的车轴的驱动轴的三个轴,使得第一电机、发动机和驱动轴按顺序被布置在诺模图中。第一逆变器被配置成驱动第一电机。第二逆变器被配置成驱动第二电机。电力存储装置经由电力线连接至第一逆变器和第二逆变器。电子控制单元被配置成:(i)控制发动机、第一逆变器和第二逆变器;并且(ii)当在预定行驶期间加速器操作量等于或大于预定操作量时并且当第一电机的旋转速度等于或小于预定旋转速度时以三相接通第二逆变器,在该预定行驶中,混合动力车辆在发动机在第一逆变器和第二逆变器被关闭的状态下进行操作的情况下行驶。

根据本发明的另一方面,提供了一种用于混合动力车辆的控制方法,该混合动力车辆包括发动机、第一电机、第二电机、行星齿轮机构、第一逆变器和第二逆变器。在此处,第一电机被配置成随着第一电机的旋转而生成反电动势电压。第二电机被配置成向连接至混合动力车辆的车轴的驱动轴输入动力并且从驱动轴输出动力。在行星齿轮机构中,三个旋转元件连接至第一电机、发动机和驱动轴的三个轴,使得第一电机、发动机和驱动轴按顺序被布置在诺模图中。第一逆变器被配置成驱动第一电机。第二逆变器被配置成驱动第二电机。控制方法包括:(i)控制发动机、第一逆变器和第二逆变器;以及(ii)当在预定行驶期间加速器操作量等于或大于预定操作量时并且当第一电机的旋转速度等于或小于预定旋转速度时以三相接通第二逆变器,在该预定行驶中,混合动力车辆在发动机在第一逆变器和第二逆变器被关闭的状态下进行操作的情况下行驶。

在根据本发明的混合动力车辆及其控制方法中,当在预定行驶期间加速器操作量等于或大于预定操作量时并且第一电机的旋转速度等于或小于预定旋转速度时,以三相接通第二逆变器,在该预定行驶中,混合动力车辆在发动机在第一逆变器和第二逆变器被关闭的状态下进行操作的情况下行驶。在此处,预定操作量可以是用于确定是否请求混合动力车辆的驱动力的阈值。预定旋转速度可以是用于确定是否在第一电机中生成基于反电动势电压的再生转矩的阈值。电子控制单元可以被配置成通过接通第二逆变器中的上臂晶体管和下臂晶体管中的任一者中的所有臂晶体管来以三相接通第二逆变器。当以三相接通第二逆变器时,生成在使第二电机的旋转速度减小的方向上的转矩(阻力转矩)。由于该转矩作为在使第一电机的旋转速度增大的方向上的转矩经由行星齿轮机构输出至第一电机的旋转轴,所以可以更迅速地将第一电机的旋转速度增大到高于预定旋转速度。

在根据本发明的混合动力车辆中,电子控制单元可以使得在当基于在预定行驶中加速器操作量等于或大于预定操作量并且第一电机的旋转速度等于或小于预定旋转速度而以三相接通第二逆变器时,并且当第一电机的旋转速度变得等于或大于预定旋转速度时,混合动力车辆通过关闭第二逆变器以预定行驶进行行驶。利用该混合动力车辆,当第一电机的旋转速度等于或大于预定旋转速度时,可以使用第一电机生成基于反电动势电压的再生转矩。因此,当第一电机的旋转速度等于或大于预定旋转速度时,混合动力车辆可以基于第一电机的再生转矩利用驱动轴的驱动转矩以其中关闭第二逆变器的预定行驶进行行驶。

附图说明

下面将参照附图描述本发明的示例性实施方式的特征、优点以及技术和工业意义,在附图中,相同的附图标记表示相同的元件,并且其中:

图1是示意性地示出根据本发明的实施方式的混合动力车辆的配置的图;

图2是示意性地示出包括第一电机和第二电机的电机驱动系统的配置的图;

图3是示出由图1所示的混合动力电子控制单元执行的无逆变器行驶中的控制例程的示例的流程图;

图4是示出当图1所示的高电压侧的电力线的电压vh是预定电压时第一电机的旋转速度与第一电机的再生转矩之间的关系的图;

图5是示出当在混合动力车辆以无逆变器行驶进行行驶的状态下加速器操作量等于或大于阈值并且第一电机的旋转速度大于阈值时的行星齿轮机构的诺模图的示例的图;

图6是示出当在无逆变器行驶中加速器操作量小于阈值时的行星齿轮机构的诺模图的示例的图;以及

图7是示出当以三相接通图1所示的第二逆变器时的行星齿轮机构的诺模图的示例的图。

具体实施方式

在下文中,将参照附图描述本发明的实施方式。

图1是示意性地示出根据本发明的实施方式的混合动力车辆20的配置的图。图2是示意性地示出包括第一电机mg1和第二电机mg2的电机驱动系统的配置的图。如图所示,根据该实施方式的混合动力车辆20包括发动机22、行星齿轮机构30、第一电机mg1、第二电机mg2、第一逆变器41、第二逆变器42、升压/降压转换器55、作为电力存储装置的电池50、系统主继电器56以及混合动力电子控制单元(下文中称为“hvecu”)70。

发动机22被配置为使用汽油或柴油作为燃料输出动力的内燃机。发动机22的操作由发动机电子控制单元(下文中称为“发动机ecu”)24控制。

尽管未在附图中示出,发动机ecu24被配置为微处理器(例如,cpu),并且除了cpu之外还包括存储处理程序的rom、暂时存储数据的ram、输入和输出端口以及通信端口。用于控制发动机22的操作所需的来自各种传感器的信号(例如,来自检测发动机22的曲轴26的旋转位置的曲轴位置传感器23的曲轴角度θcr)经由输入端口被输入至发动机ecu24。经由输出端口从发动机ecu24输出用于控制发动机22的操作的各种控制信号。发动机ecu24经由通信端口与hvecu70连接。发动机ecu24基于来自曲轴位置传感器23的曲轴角度θcr来计算发动机22的旋转速度ne。

行星齿轮机构30被配置为单个小齿轮式行星齿轮组机构。第一电机mg1的转子连接至行星齿轮机构30的太阳齿轮。经由差动齿轮38连接至驱动轮39a和39b的驱动轴36被连接至行星齿轮机构30的齿圈。发动机22的曲轴26经由减震器28连接至行星齿轮机构30的行星架。

第一电机mg1被配置为同步发电电机,该同步发电电机包括其中嵌入有永磁体的转子和其上缠绕有三相线圈的定子,并且第一电机mg1的转子连接至如上所述的行星齿轮机构30的太阳齿轮。第二电机mg2与第一电机mg1类似地被配置为同步发电电机,并且第二电机mg2的转子连接至驱动轴36。

第一逆变器41和第二逆变器42用于驱动第一电机mg1和第二电机mg2。如图2所示,第一逆变器41连接至高电压侧的电力线54a,并且包括六个晶体管t11至t16以及与六个晶体管t11至t16并联连接的六个二极管d11至d16。晶体管t11至t16被布置为两个晶体管一对,以用作相对于高电压侧的电力线54a的正极线和负极线的源侧和负源侧。晶体管t11至t16中构成一对的晶体管之间的每个接合点连接至第一电机mg1的对应的三相线圈(u相、v相或w相)。因此,当向第一逆变器41施加电压时,通过电机电子控制单元(下文中称为“电机ecu”)40来调节构成每对的晶体管t11至t16的接通时间比,由此在三相线圈中形成旋转磁场,并且第一电机mg1被旋转地驱动。与第一逆变器41类似,第二逆变器42连接至高电压侧的电力线54a,并且包括六个晶体管t21至t26和六个二极管d21至d26。当给第二逆变器42施加电压时,由电机ecu40来调节构成每对的晶体管t21至t26的接通时间比,由此在三相线圈中形成旋转磁场,并且第二电机mg2被旋转地驱动。

升压/降压转换器55连接至高电压侧的电力线54a和低电压侧的电力线54b,并且包括两个晶体管t31和t32、并联连接至两个晶体管t31和t32的两个二极管d31和d32以及电抗器l。晶体管t31连接到高电压侧的电力线54a的正极线。晶体管t32连接至晶体管t31以及高电压侧的电力线54a和低电压侧的电力线54b的负极线。电抗器l连接至晶体管t31与晶体管t32之间的接合点以及低电压侧的电力线54b的正极线。当通过电机ecu40调节晶体管t31和晶体管t32的接通时间比时,升压/降压转换器55使低电压侧的电力线54b的电力升高并且将升高的电力供给高电压侧的电力线54a,或者降低高电压侧的电力线54a的电力并且将降低的电力供给低电压侧的电力线54b。平滑电容器57附接至高电压侧的电力线54a的正极线和负极线,并且平滑电容器58附接至低电压侧的电力线54b的正极线和负极线。

尽管未在附图中示出,电机ecu40被配置为微处理器(例如,cpu),并且除了cpu之外还包括存储处理程序的rom、暂时存储数据的ram、输入和输出端口以及通信端口。如图1所示,用于控制第一电机mg1、第二电机mg2和升压/降压转换器55的操作所需的来自各种传感器的信号经由输入端口输入至电机ecu40。输入至电机ecu40的信号的示例包括来自检测第一电机mg1和第二电机mg2的转子的旋转位置的第一旋转位置传感器43和第二旋转位置传感器44的第一旋转位置θm1和第二旋转位置θm2,以及来自检测第一电机mg1和第二电机mg2的相中流动的电流的电流传感器45u、45v、46u和46v的相电流iu1、iv1、iu2和iv2。输入至电机ecu40的信号的示例还包括来自附接在电容器57的端子之间的电压传感器57a的电容器57(高压侧的电力线54a)的电压(高电压侧的电压)vh,以及来自附接在电容器58的端子之间的电压传感器58a的电容器58(低电压侧的电力线54b)的电压(低电压侧的电压)vl。用于控制第一电机mg1、第二电机mg2以及升压/降压转换器55的操作的各种控制信号经由输出端口从电机ecu40输出。从电机ecu40输出的信号的示例包括用于第一逆变器41的晶体管t11至t16以及第二逆变器42的晶体管t21至t26的开关控制信号,以及用于升压/降压转换器55的晶体管t31和t32的开关控制信号。电机ecu40经由通信端口连接至hvecu70。电机ecu40基于来自第一旋转位置传感器43和第二旋转位置传感器44的第一电机mg1和第二电机mg2的转子的第一旋转位置θm1和第二旋转位置θm2来计算第一电机mg1和第二电机mg2的角速度ωm1和ωm2或旋转速度nm1和nm2。

电池50被配置为具有例如250v、280v或300v的额定电压的锂离子二次电池或镍氢二次电池,并且连接至低电压侧的电力线54b。电池50由电池电子控制单元(下文中称为“电池ecu”)52控制。

虽然在附图中未示出,但电池ecu52被配置为微处理器(例如,cpu),并且除了cpu之外还包括存储处理程序的rom、暂时存储数据的ram、输入和输出端口以及通信端口。用于控制电池50所需的来自各种传感器的信号经由输入端口输入至电池ecu52。输入至电池ecu52的信号的示例包括来自附接至电池50的端子之间的电压传感器51a的电池50的电压vb、来自附接至电池50的输出端子的电流传感器51b的电池50的电流ib以及来自附接至电池50的温度传感器51c的电池50的温度tb。电池ecu52经由通信端口连接至hvecu70。电池ecu52基于来自电流传感器51b的电池50的电流ib的积分值来计算荷电状态soc。荷电状态soc是指可以从电池50放电的电力的容量与电池50的总容量的比率。

系统主继电器56被布置成比低电压侧的电力线54b中的电容器58更靠近电池50。当通过hvecu70控制系统主继电器56的on(开)和off(关)时,系统主继电器56使电池50与升压/降压转换器55连接或断开连接。

尽管未在附图中示出,但hvecu70被配置为微处理器(例如,cpu),并且除了cpu之外还包括存储处理程序的rom、暂时存储数据的ram、输入和输出端口以及通信端口。来自各种传感器的信号经由输入端口输入到hvecu70。输入至hvecu70的信号的示例包括来自点火开关80的点火信号和来自检测换挡杆81的操作位置的换挡位置传感器82的换挡位置sp。输入至hvecu70的信号的示例还包括来自检测加速器踏板83的下压量的加速器踏板位置传感器84的加速器操作量acc、来自检测制动踏板85的下压量的制动踏板位置传感器86的制动踏板位置bp以及来自车辆速度传感器88的车辆速度v。换档位置sp的示例包括驻车位置(p位置)、倒档位置(r位置)、空档位置(n位置)和驱动位置(d位置)。如上所述,hvecu70经由通信端口与发动机ecu24、电机ecu40以及电池ecu52连接。

具有上面提及的配置的混合动力车辆20在混合动力行驶(hv行驶)模式下以及在电动行驶(ev行驶)模式下进行行驶,其中,在混合动力行驶(hv行驶)模式下,车辆在发动机22运行的情况下进行行驶,在电动行驶(ev行驶)模式下,在车辆在发动机22未运行的情况下进行行驶。

在hv行驶模式中,hvecu70基于加速器操作量acc和车辆速度v设置驱动轴36所需的要求转矩td*,并且通过将设置的要求转矩td*与驱动轴36的旋转速度nd(第二电机mg2的旋转速度nm2)相乘来计算驱动轴36所需的要求电力pd*。随后,hvecu70通过从要求电力pd*中减去基于电池50的荷电状态soc的要求充电/放电电力pb*(当从电池50放出电力时其具有正值)来设置发动机22所需的要求电力pe*。然后,hvecu70设置发动机22的目标旋转速度ne*或目标转矩te*以及第一电机mg1和第二电机mg2的转矩命令tm1*和tm2*,使得从发动机22输出要求电力pe*并且将要求转矩td*输出至驱动轴36。随后,hvecu70基于第一电机mg1和第二电机mg2的转矩命令tm1*和tm2*或旋转速度nm1和nm2来设置高电压侧的电力线54a的目标电压vh*。然后,hvecu70向发动机ecu24发送发动机22的目标旋转速度ne*或目标转矩te*,或者向电机ecu40发送第一电机mg1和第二电机mg2的转矩命令tm1*和tm2*或高电压侧的电力线54a的目标电压vh*。发动机ecu24执行发动机22的进气控制、燃料喷射控制、点火控制等,使得发动机22基于目标旋转速度ne*和目标转矩te*进行操作。电机ecu40执行第一逆变器41的晶体管t11至t16以及第二逆变器42的晶体管t21至t26的开关控制,使得第一电机mg1和第二电机mg2按照转矩命令tm1*和tm2*进行操作,并且执行升压/降压转换器55的晶体管t31和t32的开关控制,使得高电压侧的电力线54a的电压vh达到目标电压vh*。

在ev行驶模式中,hvecu70基于加速器操作量acc和车辆速度v来设置要求转矩td*,将第一电机mg1的转矩命令tm1*设置成为0值,设置第二电机mg2的转矩命令tm2*,使得要求转矩td*被输出至驱动轴36,并且基于第一电机mg1和第二电机mg2的转矩命令tm1*和tm2或旋转速度nm1和旋转速度nm2来设置高电压侧的电力线54a的目标电压vh*。hvecu70将第一电机mg1的转矩命令tm1*和第二电机mg2的转矩命令tm2*或高电压侧的电力线54a的目标电压vh*发送至电机ecu40。通过电机ecu40对第一逆变器41和第二逆变器42或升压/降压转换器55进行的控制与上面描述的控制相同。

下面将描述具有上面提及的配置的、根据该实施方式的混合动力车辆20的操作,特别是在无逆变器行驶(跛行回家模式下的行驶)中的操作,在无逆变器行驶(跛行回家模式下的行驶)中,混合动力车辆在发动机在第一逆变器41和第二逆变器42被关闭的状态(晶体管t11至t16和t21至t26全部关断的状态)下运行的情况下行驶。在此处,当在第一逆变器41或第二逆变器42中出现异常或在用于在hv行驶模式下进行行驶期间控制第一逆变器41和第二逆变器42的传感器(例如,第一旋转位置传感器43和第二旋转位置传感器44)中出现异常时执行无逆变器行驶。图3是示出该实施方式中的由hvecu70执行的无逆变器行驶时的控制例程的示例的流程图。在无逆变器行驶期间重复执行该控制例程。在无逆变器行驶期间,在升压/降压转换器55中,高电压侧的电力线54a的目标电压vh*被设置成预定电压vhset(例如,330v、350v或370v),并且执行晶体管t31和t32的开关控制,使得高电压侧的电力线54a的电压vh达到目标电压vh*。

当执行该例程时,hvecu70接收加速器操作量acc或第一电机mg1和第二电机mg2的旋转速度nm1和nm2(步骤s100)。在此处,由加速器踏板位置传感器84检测到的值被输入作为加速器操作量acc。基于第一电机mg1和第二电机mg2的转子的由第一旋转位置传感器43和第二旋转位置传感器44检测到的第一旋转位置θm1和第二旋转位置θm2计算的值、或者基于由车辆速度传感器88检测到的车辆速度v等计算的值作为第一电机mg1和第二电机mg2的旋转速度nm1和nm2通过通信从电机ecu40输入。

当以这种方式输入数据时,将输入的加速器操作量acc与阈值aref进行比较(步骤s110),然后将第一电机mg1的旋转速度nm1与阈值nref进行比较(步骤s120)。在此处,阈值aref是用于确定驾驶员是否请求向驱动轴36输出驱动转矩(驾驶员是否发出驱动力请求)的阈值,并且例如,可以使用1%、3%或5%作为阈值。阈值nref是用于确定是否生成了基于由于第一电机mg1的旋转引起的反电动势电压vcef的再生转矩tcef的阈值。下面将描述阈值nref。

图4是示出当高电压侧的电力线54a的电压vh是预定电压vhset时的第一电机mg1的旋转速度nm1与基于由于第一电机mg1的旋转引起的反电动势电压vcef的再生转矩tcef之间的关系的图。在该图中,对在第一电机mg1中没有再生转矩tcef生成的区域进行阴影线化。当第一电机mg1的反电动势电压vcef高于高电压侧的电力线54a的电压vh时,从第一电机mg1生成基于第一电机mg1的反电动势电压vcef与高电压侧的电力线54a的电压vh之间的电压差(vcef-vh)的再生转矩tcef。具体地,通过以下方式来生成再生转矩tcef:使第一电机mg1通过与发动机22的操作的旋转联动而旋转,基于第一电机mg1的反电动势电压vcef使用第一逆变器41的二极管d11至d16来整流电力,并且经由高电压侧的电力线54a、升压/降压转换器55以及低电压侧的电力线54b将经整流的电力供给至电池50。当第一电机mg1的反电动势电压vcef等于或低于高电压侧的电力线54a的电压vh时,在第一电机mg1中没有再生转矩tcef生成。在此处,第一电机mg1的反电动势电压vcef与第一电机mg1的角速度ωm1和反电动势电压常数ke的乘积对应。鉴于此,第一电机mg1的反电动势电压vcef等于高电压侧的电力线54a的电压vh时的旋转速度(例如,1500rpm、1750rpm或2000rpm)在该实施方式中被用作阈值nref。当高电压侧的电力线54a的电压vh不被固定为预定电压vhset而是变化时,阈值nref可以随着电压vh的改变而改变。

当在步骤s110中确定加速器操作量acc等于或大于阈值aref并且第一电机mg1的旋转速度nm1大于阈值nref时,确定存在来自驾驶员的驱动力请求,并且可以从第一电机mg1生成再生转矩tcef,并且将第一电机mg1的目标旋转速度nm1*设置成预定旋转速度nm1set(步骤s130)。例如,使用4000rpm、5000rpm或6000rpm作为预定旋转速度nm1set。

图5是示出当在无逆变器行驶中第一电机mg1的旋转速度nm1大于阈值nref时的行星齿轮机构30的诺模图的示例的图。在该图中,左侧的s轴表示作为第一电机mg1的旋转速度nm1的行星齿轮机构30的太阳齿轮的旋转速度,c轴表示作为发动机22的旋转速度ne的行星齿轮机构30的行星架的旋转速度,并且r轴表示作为第二电机mg2的旋转速度nm2(以及驱动轴36的旋转速度nd)的行星齿轮机构30的齿圈的旋转速度。在该图中,“ρ”表示行星齿轮机构30的齿轮比(太阳齿轮的齿数/齿圈的齿数)。当第一电机mg1的旋转速度nm1大于阈值nref、第一电机mg1的反电动势电压vcef高于高电压侧的电力线54a的电压vh时,如图所示,在第一电机mg1中生成基于第一电机mg1的反电动势电压vcef与高电压侧的电力线54a的电压vh之间的电压差(vcef-vh)的再生转矩tcef,并且将基于再生转矩tcef的驱动转矩(反作用转矩)trf(=-tcef/ρ)输出至驱动轴36。

当以这种方式设置第一电机mg1的目标旋转速度nm1*时,使用第一电机mg1的目标旋转速度nm1*、第二电机mg2的旋转速度nm2(驱动轴36的旋转速度nd)和行星齿轮机构30的齿轮比ρ通过等式(1)来设置发动机22的目标旋转速度ne*((步骤s140),将目标旋转速度ne*发送至发动机ecu24,将关闭命令发送至电机ecu40(步骤s150),然后该例程结束。在此处,使用图5可以容易地得到等式(1)。当接收到发动机22的目标旋转速度ne*时,发动机ecu24执行发动机22的进气控制、燃料喷射控制和点火控制,使得发动机22的旋转速度ne达到目标旋转速度ne*。当接收到关闭命令时,电机ecu40关闭第一逆变器41和第二逆变器42。当通过该控制加速器操作量acc等于或大于阈值aref并且第一电机mg1的旋转速度nm1大于阈值nref时,混合动力车辆可以使用驱动轴36的基于第一电机mg1的再生转矩tcef1的驱动转矩进行行驶。

ne*=(nm1*×ρ+nm2)/(1+ρ)…(1)

当在步骤s110中确定加速器操作量acc小于阈值aref时,确定没有来自驾驶员的驱动力请求,将发动机22的目标旋转速度ne*设置成容许的下限旋转速度nemin(步骤s160),向发动机ecu24发送目标旋转速度ne*,向电机ecu40发送关闭命令(步骤s170),然后该例程结束。当接收到发动机22的目标旋转速度ne*时,发动机ecu24控制发动机22,使得发动机22的旋转速度ne达到目标旋转速度ne*。当接收到关闭命令时,电机ecu40关闭第一逆变器41和第二逆变器42。在此处,发动机22的容许的下限旋转速度nemin是发动机22能够自主运转的旋转速度范围,并且例如,使用900rpm、1000rpm或1100rpm的下限旋转速度。通过以这种方式使发动机22以容许的下限旋转速度nemin旋转,可以将第一电机mg1的旋转速度nm1设置成足够地低于加速器接通时的旋转速度(预定旋转速度neset)。图6是示出当在无逆变器行驶中加速器操作量acc小于阈值aref时的行星齿轮机构30的诺模图的图。当加速器操作量acc小于阈值aref时,如图所示,在第一电机mg1中没有再生转矩tcef1生成,因此不向驱动轴36输出驱动转矩trf。

当在步骤s110中确定加速器操作量acc等于或大于阈值aref并且第一电机mg1的旋转速度nm1等于或小于阈值nref时,确定存在来自驾驶员的驱动力请求,但不从第一电机mg1生成再生转矩tcef,而是将发动机22的目标旋转速度ne*设置成例程先前被执行时设置的目标旋转速度ne*(之前的ne*)(步骤s180),将发动机22的目标旋转速度ne*发送至发动机ecu24,将第一逆变器41的关闭命令和第二逆变器42的三相接通命令发送至电机ecu40(步骤s190),然后该例程结束。当接收到发动机22的目标旋转速度ne*时,发动机ecu24控制发动机22,使得发动机22的旋转速度ne达到目标旋转速度ne*。当接收到第一逆变器41的关闭命令时,电机ecu40继续使第一逆变器41关闭。当接收到三相接通命令时,电机ecu40使第二逆变器42中的上臂晶体管(t21至t23)和下臂晶体管(t24至t26)中的任一者中的所有晶体管接通。

图7是示出以三相接通第二逆变器42时的行星齿轮机构30的诺模图的图。在该图中,实线表示紧接以三相接通第二逆变器42之前的行星齿轮机构30的诺模图的示例。虚线表示以三相接通第二逆变器42时的行星齿轮机构30的诺模图的示例。当如图所示的那样以三相接通第二逆变器42时,在使第二电机mg2的旋转速度nm2减小的方向上的转矩(阻力转矩)tdrg2作为用于使第一马达mg1的旋转速度增大的扭矩tdrg1(=-ρ·tdrg2)经由行星齿轮机构30输出至第一电机mg1的旋转轴。因此,可以增大第一电机mg1的旋转速度nm1。通常,第二电机mg2比发动机22具有更好的控制响应性。因此,与当通过增大发动机22的旋转速度ne来增大第一电机mg1的旋转速度nm1时相比,当通过以三相接通第二逆变器42来增大第一电机mg1的旋转速度nm1时,可以使旋转速度nm1更快地增大。

当以这种方式将第一电机mg1的旋转速度nm1增大到大于阈值nref时,例程转到步骤s130,设置第一电机mg1的目标旋转速度nm1*和发动机22的目标旋转速度ne*(步骤s130和s140),将发动机22的目标旋转速度ne*发送至发动机ecu24,向电机ecu40发送关闭命令(步骤s150),然后该例程结束。当接收到发动机22的目标旋转速度ne*时,发动机ecu24控制发动机22,使得发动机22的旋转速度ne达到目标旋转速度ne*。当接收到关闭命令时,电机ecu40使第一逆变器41和第二逆变器关闭。因此,混合动力车辆可以使用基于第一电机mg1的再生转矩tcef1的驱动轴36的驱动转矩来执行无逆变器行驶。

在根据上述实施方式的混合动力车辆20中,当加速器操作量acc在无逆变器行驶中等于或大于阈值aref并且第一电机mg1的旋转速度nm1等于或小于阈值nref时,可以通过以三相接通第二逆变器42将第一电机mg1的旋转速度nm1更迅速地增大到比阈值nref大。此后,当第一电机mg1的旋转速度nm1等于或大于阈值nref时,关闭第二逆变器42,并且因此混合动力车辆可以执行无逆变器行驶。

在根据该实施方式的混合动力车辆20中,在步骤s180和s190中,将先前的目标旋转速度ne*设置为发动机22的目标旋转速度ne*,并且在保持发动机22的旋转速度ne时以三相接通第二逆变器42,但也可以在使发动机22的旋转速度ne增大时以三相接通第二逆变器42。

根据该实施方式的混合动力车辆20包括升压/降压转换器55,但也可以不包括升压/降压转换器55。

在根据该实施方式的混合动力车辆20中,电池50被用作电力存储装置,但是也可以使用任何装置,只要其是可充电装置(例如,电容器)即可。

根据该实施方式的混合动力车辆20包括发动机ecu24、电机ecu40、电池ecu52和hvecu70,但其中的至少两个可以被配置为单个电子控制单元。

下面将描述实施方式中的主要元件与在发明内容中描述的本发明的主要元件之间的对应关系。在该实施方式中,发动机22是“发动机”的示例。第一电机mg1是“第一电机”的示例。行星齿轮机构30是“行星齿轮机构”的示例。第二电机mg2是“第二电机”的示例。第一逆变器41是“第一逆变器”的示例。第二逆变器42是“第二逆变器”的示例。电池50是“电力存储装置”的示例。hvecu70、发动机ecu24和电机ecu40是“电子控制单元”的示例。

实施方式中的主要元件与在发明内容中描述的本发明的主要元件之间的对应关系不限于在发明内容中描述的本发明的元件,这是因为该实施方式是用于具体描述在发明内容中描述的本发明的一方面的示例。即,应当注意的是,在发明内容中描述的本发明必须基于发明内容的描述进行分析,并且该实施方式仅是在发明内容中描述的本发明的具体示例。

尽管上面描述了本发明的实施方式,但是本发明不限于该实施方式,并且可以在不背离本发明的主旨的情况下以各种形式进行修改。

本发明适用于制造混合动力车辆等的工业。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1