采选矿一体船的制作方法

文档序号:17302034发布日期:2019-04-03 05:08阅读:189来源:国知局
采选矿一体船的制作方法

本发明涉及船舶领域,具体而言,涉及一种采选矿一体船。



背景技术:

目前正在使用的采矿、选矿系统大都分开安装在不同的船体上,一般有一条或两条采矿船搭配一条选矿船形成一个采选矿系统,当然也有少数采选矿一体船,这些船只一般采用水下吸砂泵抽吸矿砂,矿砂被输送至选矿系统中进行选别后,合格的矿砂进入到储矿仓,不合格的尾矿将被排出至船体附近。

此外,相关技术中,水下吸砂泵自身的抽吸能力有限,只能开采具有流动性的矿层,如遇到板结的矿层,或含有粘土的矿层则无法开采;此外选矿系统在矿砂选别完毕后,会将作为废物的矿渣排至船体附近,容易造成二次开采,降低了采矿效率。



技术实现要素:

本发明旨在至少解决现有技术中存在的技术问题之一。

为此,本发明的第一方面实施例,本发明提出一种结构新颖、功能集中、节能环保、生产成本更低、生产效率更高的采选矿一体船。

根据本发明的第一方面实施例,本发明提出了一种采选矿一体船,包括:船体,船体包括甲板以及船壳和船壳内部的船舱;动力系统,设置在船尾上,用于为船体的行进提供动力;采矿系统,可活动的设置在船壳上,用于对海底中各种砂质的矿藏进行采集;选矿系统,设置在甲板上,用于对采矿系统采集到的矿砂进行选别;储矿系统,设置在船舱内,储矿系统包括:精矿舱与尾矿舱,分别用于存储选别后的精矿以及选别过程中淘汰的尾矿;尾矿处理系统,设置在甲板上,用于将尾矿舱中的尾矿回排至矿砂的采空区内;卸运系统,设置在甲板上,用于将精矿运出船体;电力系统,设置在船舱内,为采选矿一体船的各项作业进行供电。

本发明实施例提供的采选矿一体船集成了采矿系统和选矿系统,提高了船体的利用率,不仅省去了传统的多船进行采矿和选矿所带来的不便,还可节省航行的成本,间接降低了采集矿石的成本,提高了矿石的市场竞争力;此外,采矿系统可对海底中各种砂质的矿藏进行采集,便于采选矿一体船在广裹的海上作业,并且相比同类型的其他船只,在采矿时对采矿地拥有了更多的选择性;另外,在船尾设置有尾矿系统,尾矿系统可以将尾矿通过尾矿泵输送至采空区内,既可以防止尾矿被采矿系统二次开采,又可以使采空区恢复原貌,最大程度地保护了海底的环境。

具体地,本发明提出的采选矿一体船,在采矿时将设置在船壳上的采矿系统放下海底,采集海底的砂质矿藏,将沙质矿藏通过设置在甲板上的选矿系统进行多种步骤的筛选,并将筛选过后的精矿储存至设置在船舱内的精矿舱,同时,对每步筛选中淘汰的尾矿储存至设置在船舱内的尾矿舱,再由尾矿处理系统将尾矿舱内的尾矿排回至矿砂的采空区域,在采矿作业完成后通过卸运系统将精矿舱内的精矿运输出采选矿一体船,其中,可以将精矿运输至运输船或运输车。

另外,本发明提供的上述实施例中的采选矿一体船还可以具有如下附加技术特点:

在上述技术方案中,优选地,还包括:管路系统,分布在船体上,依次连接采矿系统、选矿系统、储矿系统以及尾矿处理系统,用于运输矿砂、精矿以及尾矿;其中,管路系统连接尾矿处理系统与尾矿舱。

在该技术方案中,矿砂在采矿系统、选矿系统、储矿系统以及尾矿处理系统中转运时,均通过管路系统转运,从而避免了扬沙等情况的发生,保证了甲板的整洁,并且,为船员提供了良好的工作环境。

在上述任一技术方案中,优选地,采矿系统包括:采矿臂,可活动地设置在船壳上,并可下沉至水下;电动绞刀,设置在采矿臂上,用于将水下的矿砂绞散;水下吸砂泵,设置在采矿臂上,用于将被电动绞刀绞散的矿砂与水形成的矿浆吸入管路系统,并将矿浆通过管路系统输送至选矿系统中。

在该技术方案中,通过采矿臂可活动地连接在安装在船壳上,在采矿时将采矿臂放入进海底,由电动绞刀绞散的矿砂,再通过水下矿砂泵将飞散的矿砂与海水共同吸入管路系统,以供给选矿系统进行对矿砂的筛选,而在船只行进时,将采矿臂升起,以保证船只的正常行进。

在上述任一技术方案中,优选地,采矿臂一端与船壳相铰接,另一端与第一卷扬机通过相连接;其中,电动绞刀位于采矿臂与第一卷扬机相连接的一端;第一卷扬机设置在船首上。

在该技术方案中,通过将采矿臂的一端与船壳相铰接,在将采矿臂的另一端连接在第一卷扬机的线缆上,在通过第一卷扬机的运转实现将电动绞刀升起和放下,该采矿臂结构简单,工作效果可靠。

在上述任一技术方案中,优选地,甲板包括:主甲板设置在船壳上;二层甲板,搭建在主甲板上方;居住甲板,搭建在二层甲板上方,二层甲板与居住甲板之间至少有3米距离;驾驶甲板,搭建在居住甲板上方;罗经甲板,搭建在驾驶甲板上方。

在该技术方案中,通过在船只上设置多层甲板,以便船员在不同的甲板上进行不同的生产或生活作业。

在上述任一技术方案中,优选地,选矿系统设置在二层甲板上,选矿系统包括:矿浆缓冲分配箱,通过第一支撑架设置在二层甲板上,对矿浆进行分配;直线筛,设置在第一支撑架上,对矿浆缓冲分配箱分配进入的矿浆进行筛选,筛上物为杂质和设定尺寸的砂砾、筛下物为合格的矿砂;分矿箱,低于直线筛的设置在二层甲板上,对经直线筛筛选合格的矿砂进行分配;磁选机,对分矿箱分配的矿砂进行选别,得到精矿,精矿通过管路系统自流进入精矿舱;其中,矿浆缓冲分配箱、直线筛、分矿箱、磁选机通过管路系统依次连接;直线筛与磁选机淘汰的尾矿通过管路系统自流进入尾矿舱。

在该技术方案中,将选矿系统设置在二层甲板上,更能方便精矿或尾矿自行滑入相应的精矿舱与尾矿舱。具体地,由采矿臂采集的矿砂经由水下吸砂泵提供动力,通过管路系统送入安装在搭建在二层甲板上的第一支撑架上的矿浆缓冲分配箱中,由矿浆缓冲分配箱将降低矿砂的冲击力,之后在将矿砂送入直线筛,以对矿砂进行初步筛选。其中,矿浆缓冲分配箱的安装位置要高于直线筛的位置,进而实现矿砂的自行流动至直线筛中,而在直线筛震动的过程中,较大块的杂质无法通过直线筛,成为筛上物,并通过管路系统将筛上物输送进尾矿舱。而筛下物则通过管路系统输送进分矿箱,由分矿箱将初选后的矿砂分别送入多个磁选机中,以对矿砂进行精选从而得到精矿,并由管路系统将精矿输送进入精矿舱。在磁选机中淘汰的尾矿通过管路系统输送至尾矿舱。其中,分矿箱的安装位置高于磁选机的安装位置。由于矿浆缓冲分配箱、直线筛、分矿箱、磁选机为依次由高至低分布,进而使得矿砂能够依次自行流动,该选矿系统的分布方式更加科学化,在人工成本与物料成本上均得到的降低。

在上述任一技术方案中,优选地,磁选机包括:粗磁选机,通过第二支撑架设置在二层甲板上,分矿箱高于粗磁选机,用于对经分矿箱流进粗磁选机的矿砂进行第一段磁选;精磁选机,设置在二层甲板上,用于对经粗磁选机流进精磁选机的矿砂进行第二段磁选,得到精矿;其中,第二支撑架低于第一支撑架。

在该技术方案中,通过粗磁选机与精磁选机双重磁选,极大程度的提升了精矿的纯度与品质。具体地,将粗磁选机安装在第二支撑架上,并将粗选后的矿砂通过管路系统送入安装在第二层甲板上的精磁选机,从而得到高纯度精矿。

在上述任一技术方案中,优选地第一支撑架高于二层甲板8米以上;第二支撑架高于二层甲板2米以上。

在该技术方案中,第一支撑架的搭建高度在8米以上,其中,较优地第一支撑架的高度为9米,第二支撑架的搭建高度在2米以上,较优地,第二支撑架的高度为3米。

在上述任一技术方案中,优选地,一个分矿箱为两个粗选机输送矿砂;粗选矿机的个数是精选矿机个数两倍。

在该技术方案中,通过分矿箱进行分配矿砂,并且,由于粗磁选机的磁选,筛去一部分尾矿,进而减少了进入第二段精磁选机矿砂的总量。因此,适当减少精磁选机的数量同样能够完成对矿砂的精选。并且,降低了生产成本,节约了二层甲板的空间。

在上述任一技术方案中,优选地,尾矿处理系统包括:冲水泵,设置在船底,用于冲散尾矿以降低尾矿浓度;尾矿泵,设置在船底,将尾矿通过管路系统回排至采空区。

在该技术方案中,冲水泵可冲散筛上物和尾矿以降低浓度,以便将尾矿排出尾矿舱,其中,尾矿泵和冲水泵由柴油机进行驱动。

在上述任一技术方案中,优选地,卸运系统包括:漏斗,设置在主甲板上;传送带,设置在主甲板上,位于漏斗下方,用于将精矿运输出船体;至少一个起重机,设置在主甲板上,用于将精矿分批次吊起;其中,精矿通过漏斗落至传送带上。

在该技术方案中,通过安装在主甲板上的起重机,将精矿吊出精矿舱,再将精矿通过漏斗卸运在传送带上,使得精矿通过漏斗掉掉落至传送带上,在经由传送带将精矿运送至其他运输船,或运输车上。

在上述任一技术方案中,优选地,传送带包括:一级传送带,位于漏斗下方,可双向传送;两个二级传送带,分别设置在一级传送带两端,且部分位于一级传输带下方;其中,精矿经一级传送带运输至二级传送带,并通过二级传送带运输至船体外。

在该技术方案中,通过一级传送带将精矿双向传送至二级传送带,并有两个二级传送带将精矿运输至船体两侧,进而实现采选矿一体船的双向卸矿。

在上述任一技术方案中,优选地,二级传送带位于一级传输带下方的一端与船体相铰接,另一端与第二卷扬机相连接。

在该技术方案中,由于船只卸运的特征,在卸运时,需要将精矿运输至距离船体较远的位置。因此,通过将二级传送带设置为活动式传输带,在船只航行或采矿时,将二级传送带收起,使二级传送带处于直立状态,进而减小船只的横向宽度,使得船只能够通行进入地形较复杂的航道,从而扩大了船只的采矿区域。

在上述任一技术方案中,优选地,还包括:锚定位系统,设置在主甲板上;锚定位系统包括:多个锚组件。

在该技术方案中,在采选矿一体船作业时,锚定位系统可最大程度的保持船体在水中的位置,使采矿系统的工作更为稳定,提高了采选矿一体船的生产效率。

在上述任一技术方案中,优选地,还包括:控制系统,设置在船体上,用于检测和监控动力系统、采矿系统、选矿系统、储矿系统、尾矿处理系统、电力系统以及锚定位系统。

在该技术方案中,通过控制系统监控整个船只的中的生产、生活作业的状态,以便在某部分系统发生故障是能够及时发现,避免小故障无法及时解决而演变成生产事故。

在上述任一技术方案中,优选地,电力系统包括:多个发电机组,设置在船底,为采选矿一体船的各种作业进行供电;以及电路系统,用于将发电机组产生的电力供给到采选矿一体船各处。

在该技术方案中,采选矿一体船采用柴油发电机组供电,并经由电路系统将电力输送至船体各处,为采选矿一体船上的各个生产、生活电器供电。

在上述任一技术方案中,优选地,控制系统包括:全变频控制系统,全变频控制系统与发电机组、采矿系统和动力系统相连接,使采矿系统和动力系统采用全变频电力驱动和控制。

在该技术方案中,通过全变频控制系统实现采矿系统和电力推进系统采用全变频电力驱动和控制,以实现对船只行进速度与采矿速度的无级控制。

在上述任一技术方案中,优选地,采选矿一体船上还配置有船舶定位系统,船舶定位系统可用以确定船位和船向。

在该技术方案中,通过船舶定位系统可使采选矿一体船准确地停泊在预定的采矿区上,保持预定的船向进行接下来的生产作业,因此,船舶定位系统提高了采矿系统工作的准确性,使采矿系统更为高效。

在上述任一技术方案中,优选地,矿藏为磁铁矿、钒钦磁铁矿矿床。

在该技术方案中,采选矿一体船所采集的矿藏为磁铁矿、钒钦磁铁矿矿床。

本发明的附加方面和优点将在下面的描述部分中变得明显,或通过本发明的实践了解到。

附图说明

本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:

图1示出本发明一个实施例提供的采选矿一体船的结构示意图;

图2示出如图1所示的采选矿一体船采矿中的a处的局部示意图;

图3示出如图1所示的采选矿一体船采矿时的结构示意图;

图4示出如图1所示的采选矿一体船的俯视图;

图5示出如图1所示的采选矿一体船的中舱底的结构示意图;

图6示出如图5所示的舱底中船尾的结构示意图;

图7示出如图1所示的采选矿一体船中二层甲板的俯视图;

图8示出如图1所示的采选矿一体船中居住甲板平面图;

图9示出如图1所示的采选矿一体船中驾驶甲板平面图;

图10示出如图1所示的采选矿一体船中选矿系统的俯视图;

图11示出如图10所示的选矿系统的主视图;

图12示出如图11所示的选矿系统中精磁选机的分布图;

图13示出如图12所示精磁选机的结构示意图;

图14示出如图13所示精磁选机的俯视图;

图15示出如图13所示精磁选机的左视图;

图16示出如图13所示精磁选机的安装位置地脚示意图;

图17示出如图11所示选矿系统中直线筛的结构示意图;

图18示出如图17所示直线筛的俯视图;

图19示出如图17所示直线筛的基础布置图;

图20示出如图3所示尾矿泵的结构示意图;

图21示出如图20所示尾矿泵的左视图;

图22示出如图21所示尾矿泵的安装结构示意图;

图23示出如图1所示的采选矿一体船卸载精矿的示意图。

其中,图1至图23中附图标记与部件名称之间的对应关系为:

1采选矿一体船,100主甲板,102二层甲板,104居住甲板,106驾驶甲板,108罗经甲板,12船舱,122精矿舱,124尾矿舱,14管路,16采矿系统,162采矿臂,164电动绞刀,166水下吸砂泵,18选矿系统,180矿浆缓冲分配箱,182直线筛,184分矿箱,186粗磁选机,188精磁选机,20第一支撑架,22第二支撑架,24冲水泵,26尾矿泵,28卸运系统,282漏斗,284一级传送带,286二级传送带,288起重机,30锚组件,32发电机组,34动力系统。

具体实施方式

为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。

在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。

下面参照图1至图23描述根据本发明一些实施例提供的采选矿一体船1。

如图1至图12所示,根据本发明的第一方面实施例,本发明提出了一种采选矿一体船1,包括:船体,船体包括甲板以及船壳和船壳内部的船舱12;动力系统34,设置在船尾上,用于为船体的行进提供动力;采矿系统16,可活动的设置在船壳上,用于对海底中各种砂质的矿藏进行采集;选矿系统18,设置在甲板上,用于对采矿系统16采集到的矿砂进行选别;储矿系统,设置在船舱12内,储矿系统包括:精矿舱122与尾矿舱124,分别用于存储选别后的精矿以及选别过程中淘汰的尾矿;尾矿处理系统,设置在甲板上,用于将尾矿舱124中的尾矿回排至矿砂的采空区内;卸运系统28,设置在甲板上,用于将精矿运出船体;电力系统,设置在船舱12内,为采选矿一体船1的各项作业进行供电。

本发明实施例提供的采选矿一体船1集成了采矿系统16和选矿系统18,提高了船体的利用率,不仅省去了传统的多船进行采矿和选矿所带来的不便,还可节省航行的成本,间接降低了采集矿石的成本,提高了矿石的市场竞争力;此外,采矿系统16可对海底中各种砂质的矿藏进行采集,便于采选矿一体船1在广裹的海上作业,并且相比同类型的其他船只,在采矿时对采矿地拥有了更多的选择性;另外,在船尾设置有尾矿系统,尾矿系统可以将尾矿通过尾矿泵26输送至采空区内,既可以防止尾矿被采矿系统16二次开采,又可以使采空区恢复原貌,最大程度地保护了海底的环境。

本发明提供的采选矿一体船1,集成了采矿系统16和选矿系统18,提高了船体的利用率,不仅省去了传统的多船进行采矿和选矿所带来的不便,还可节省航行的成本,间接降低了采集的矿石的成本,提高了矿石的市场竞争力,此外,采矿系统16可对海底中各种砂质的矿藏进行采集,相比同类型的其他船只,在采矿时对采矿地拥有了更多的选择性,便于采选矿一体船1在广裹的海上作业,具体地,在采矿时将设置在船壳上的采矿系统16放下海底,采集海底的砂质矿藏,将沙质矿藏通过设置在甲板上的选矿系统18进行多种步骤的筛选,并将筛选过后的精矿储存至设置在船舱12内的精矿舱122,同时,对每步筛选中淘汰的尾矿储存至设置在船舱12内的尾矿舱124,再由尾矿处理系统将尾矿舱124内的尾矿排回至矿砂的采空区域,在采矿作业完成后通过卸运系统28将精矿舱122内的精矿运输出采选矿一体船1,其中,可以将精矿运输至运输船或运输车。

众所周知,采矿船只在海上采矿时,由于受到船只的载重吨位限制,无法无限制的采集,只能采用装满之后再运回的方式进行往复采集,因此,采用上述采选矿一体船1在采集矿砂的过程中兼顾了对矿砂的筛选,一方面,由于仅将筛选后的精矿存储在船舱12内,而将尾矿排回采空区,使得船只每次运回的矿砂均为精矿,进而极大的提升了船只在海上进行采矿作业的工作效率,并且,使得船只具有远海采矿的可行性,另一方面,由于将选矿后淘汰的尾矿排回采空区,进而避免了尾矿的二次采集,以及将海底的地貌恢复原状,进而在获取资源的同时,保护了海底的生态系统,进而做到了环保和可持续发展。

如图1至图12所示,其中,优选地,还包括:管路14系统,分布在船体上,依次连接采矿系统16、选矿系统18、储矿系统以及尾矿处理系统,用于运输矿砂、精矿以及尾矿;其中,管路14系统连接尾矿处理系统与尾矿舱124。

在该实施例中,矿砂在采矿系统16、选矿系统18、储矿系统以及尾矿处理系统中转运时,均通过管路14系统转运,从而避免了扬沙等情况的发生,保证了甲板的整洁,并且,为船员提供了良好的工作环境。

在本发明的一个实施例中,优选地,如图1、图3、图4所示,采矿系统16包括:采矿臂162,可活动地设置在船壳上,并可下沉至水下;电动绞刀164,设置在采矿臂162上,用于将水下的矿砂绞散;水下吸砂泵166,设置在采矿臂162上,用于将被电动绞刀164绞散的矿砂与水形成的矿浆吸入管路14系统,并将矿浆通过管路14系统输送至选矿系统18中。

在该实施例中,电动绞刀164将水下的矿砂绞散可以使水下吸砂泵166吸入的矿砂浓度提高,提高了采矿系统16采集矿砂的效率,同时电动绞刀164可打散海底中的各种砂质,相比同类型的其他船只,在采矿时对采矿地拥有了更多的选择性,便于采选矿一体船1在广裹的海上作业。

具体地,如图3所示,船体位于船头一侧呈叉子形,其中,中间齿为采矿壁,采矿臂162一端与船壳相铰接,另一端与第一卷扬机通过相连接;其中,电动绞刀164位于采矿臂162与第一卷扬机相连接的一端;第一卷扬机设置在船首上。

在该实施例中,通过将采矿臂162的一端与船壳相铰接,在将采矿臂162的另一端连接在第一卷扬机的线缆上,在通过第一卷扬机的运转实现将电动绞刀164升起和放下,该采矿臂162结构简单,工作效果可靠,并且,保证了船体的平衡。

在本发明的一个实施例中,优选地,如图2、图7至图12所示,甲板包括:主甲板100设置在船壳上;二层甲板102,搭建在主甲板100上方;居住甲板104,搭建在二层甲板102上方,二层甲板102与居住甲板104之间至少有3米距离;驾驶甲板106,搭建在居住甲板104上方;罗经甲板108,搭建在驾驶甲板106上方。

在该实施例中,通过在船只上设置多层甲板,以便船员在不同的甲板上进行不同的生产或生活作业,其中,搭建在主甲板100上的二层甲板102便于精矿流入精矿舱122,并且,居住甲板104中设置有起居室、餐厅、冷库、粮食库等生活空间。

在具体实施例中,如图4与图5所示,主甲板100中间为敞开式结构,精矿舱122与尾矿舱124为露天式船舱12,精矿舱122的两侧的主甲板100上设置有两个起重机288,以便起重机288的吊运范围能够覆盖整个精矿舱122,并在,精矿舱122的露天开口上,搭设有漏斗282,在漏斗282下设置有一级传送带284;并在一级传送带284两端设置有两个二级传送带286;其中,如图23所示,一级传送带284可双向传送,二级传送带286位于一级传输带下方的一端与船体相铰接,另一端与第二卷扬机相连接,工作时,起重机288能够直接由露天式的精矿舱122中吊取精矿,并将精矿卸入漏斗282内,使得精矿由漏斗282内部进入一级传送带284,在通过一级传送带284运送至二级传送带286,进而将精矿运输至运输船或运输车或搭建在陆地上的传送带。另外,也可以在露天的精矿舱122和/或尾矿舱124上设置有可活动的顶棚。

在本发明的一个实施例中,优选地,如图10至图12以及图13至图16所示,选矿系统18设置在二层甲板102上,选矿系统18包括:矿浆缓冲分配箱180,通过第一支撑架20设置在二层甲板102上,对矿浆进行分配;直线筛182,设置在第一支撑架20上,对矿浆缓冲分配箱180分配进入的矿浆进行筛选,筛上物为杂质和设定尺寸的砂砾、筛下物为合格的矿砂;分矿箱184,低于直线筛182的设置在二层甲板102上,对经直线筛182筛选合格的矿砂进行分配;磁选机,对分矿箱184分配的矿砂进行选别,得到精矿,精矿通过管路14系统自流进入精矿舱122;其中,矿浆缓冲分配箱180、直线筛182、分矿箱184、磁选机通过管路14系统依次连接;直线筛182与磁选机淘汰的尾矿通过管路14系统自流进入尾矿舱124,其中,第一支撑架20高于二层甲板102九米。

在该实施例中,将选矿系统18设置在二层甲板102上,更能方便精矿或尾矿自行滑入相应的精矿舱122与尾矿舱124。具体地,由采矿臂162采集的矿砂经由水下吸砂泵166提供动力,通过管路14系统送入安装在搭建在二层甲板102上的第一支撑架20上的矿浆缓冲分配箱180中,由矿浆缓冲分配箱180将降低矿砂的冲击力,之后在将矿砂送入直线筛182,以对矿砂进行初步筛选。其中,矿浆缓冲分配箱180的安装位置要高于直线筛182的位置,进而实现矿砂的自行流动至直线筛182中,而在直线筛182震动的过程中,较大块的杂质无法通过直线筛182,成为筛上物,并通过管路14系统将筛上物输送进尾矿舱124。而筛下物则通过管路14系统输送进分矿箱184,由分矿箱184将初选后的矿砂分别送入多个磁选机中,以对矿砂进行精选从而得到精矿,并由管路14系统将精矿输送进入精矿舱122。在磁选机中淘汰的尾矿通过管路14系统输送至尾矿舱124。其中,分矿箱184的安装位置高于磁选机的安装位置。由于矿浆缓冲分配箱180、直线筛182、分矿箱184、磁选机为依次由高至低分布,进而使得矿砂能够依次自行流动,该选矿系统18的分布方式更加科学化,在人工成本与物料成本上均得到的降低。

其中,如图17与图18所示的直线筛182的具体参数为:粒度组成为含有小于百分之5大于3毫米的物料,筛孔直径为3毫米,处理能力为425吨每小时,双振幅6至8毫米,振次为960次每分钟,单点最大动载荷为55000牛,配电采用两台30千瓦的电机,电压为380伏;磁选机为半逆流磁选机,槽体形式为半逆流形,其具体的参数为:筒直径为1200毫米,筒长为3000毫米,滚筒转速为19圈每分钟,分选物料粒度为0至3毫米,槽体与滚筒之间工作间隙调整范围45毫米至70毫米,精矿排矿间隙调整20毫米至40毫米,处理能力,干矿量为100至140吨每小时,矿浆体积量为260立方米至460立方米每小时,磁选机外观尺寸为长4735毫米、宽2298毫米、高1922毫米,设备重量为7800千克,承装矿浆重量为2200千克,磁选机用水量为卸矿水8立方米每小时,冲散水为20立方米每小时,给水水压为大于等于0.15兆帕,驱动电机额定功率为11千瓦,驱动电机电源电压为380伏,平率频率为50赫兹,电源环境为三相电,减速机型齿轮为硬齿面。

在具体实施例中,由于磁选机与直线筛182震动工作,因此,如图16与所示,磁选机将磁选机安装在地脚上,其中,在磁选机安装的地面上设置有尾矿出料口与精矿出料口,如图17至图19所示,直线筛182需要固定在基础上,以保证直线筛182工作时的稳定性。

在本发明的一个实施例中,优选地,如图10至图16所示,磁选机包括:粗磁选机186,通过第二支撑架22设置在二层甲板102上,分矿箱184高于粗磁选机186,用于对经分矿箱184流进粗磁选机186的矿砂进行第一段磁选;精磁选机188,设置在二层甲板102上,用于对经粗磁选机186流进精磁选机188的矿砂进行第二段磁选,得到精矿;其中,第二支撑架22低于第一支撑架20,优选地,第二支撑架22高于二层甲板102三米。

在该实施例中,通过粗磁选机186与精磁选机188双重磁选,极大程度的提升了精矿的纯度与品质。具体地,将粗磁选机186安装在第二支撑架22上,并将粗选后的矿砂通过管路14系统送入安装在第二层甲板102上的分矿箱184,在通过分矿箱184将矿砂分配至精磁选机188,从而得到高纯度精矿。

在具体实施例中,粗磁选机186与精磁选机188的型号可以相同也可以不同。

在具体实施例中,如图10与图12所示,一个分矿箱184为两个粗选矿机输送矿砂;粗选矿机的个数是精选矿机个数两倍。

在该实施例中,通过分矿箱184进行分配矿砂,并且,由于粗磁选机186的磁选,筛去一部分尾矿,进而减少了进入第二段精磁选机矿砂的总量。因此,适当减少精磁选机188的数量同样能够完成对矿砂的精选。并且,降低了生产成本,节约了二层甲板102的空间。

在本发明的一个实施例中,优选地,如图3、图20至图22所示,尾矿处理系统包括:冲水泵24,设置在船底,用于冲散尾矿以降低尾矿浓度;尾矿泵26,设置在船底,将尾矿通过管路14系统回排至采空区。

在该实施例中,冲水泵24可冲散筛上物和尾矿以降低浓度,以便将尾矿排出尾矿舱124,其中,尾矿泵26和冲水泵24由柴油机进行驱动。

需要说明的是,所述尾矿泵26与一500至2000米长的输送管相连接,可将筛上物和尾矿输送至距所述采选矿一体船1的船尾500至2000米外的采空区,尾矿系统可以将尾矿通过尾矿泵26和输送管输送至500至2000米外的采空区内,既可以防止尾矿被采矿系统16二次开采,提高了采选矿一体船1中的采矿系统16的采集效率,还可使采空区恢复原貌,最大程度地保护了海底的环境。

在本发明的一个实施例中,优选地,如图4至图6所示,还包括:锚定位系统,设置在主甲板100上;锚定位系统包括:多个锚组件30。

在该实施例中,在采选矿一体船1作业时,锚定位系统可最大程度的保持船体在水中的位置,使采矿系统16的工作更为稳定,提高了采选矿一体船1的生产效率。

具体地,锚组件30在船体的首位分别呈“八”字形设置,在船体的左舷和右舷也分别设置有一个定位锚。

在本发明的一个实施例中,优选地,还包括:控制系统,设置在船体上,用于检测和监控动力系统34、采矿系统16、选矿系统18、储矿系统、尾矿处理系统、电力系统以及锚定位系统。

在该实施例中,通过控制系统监控整个船只的中的生产、生活作业的状态,以便在某部分系统发生故障是能够及时发现,避免小故障无法及时解决而演变成生产事故。

在本发明的一个实施例中,优选地,如图5与图6所示,电力系统包括:多个发电机组32,设置在船底,为采选矿一体船1的各种作业进行供电;以及电路系统,用于将发电机组32产生的电力供给到采选矿一体船1各处。具体地,在船底内设置有3个发电机组32。

在该实施例中,采选矿一体船1采用柴油发电机组32供电,并经由电路系统将电力输送至船体各处,为采选矿一体船1上的各个生产、生活电器供电。

在本发明的一个实施例中,优选地,控制系统包括:全变频控制系统,全变频控制系统与发电机组32、采矿系统16和动力系统34相连接,使采矿系统16和动力系统34采用全变频电力驱动和控制。

在该实施例中,通过全变频控制系统实现采矿系统16和电力推进系统采用全变频电力驱动和控制,以实现对船只行进速度与采矿速度的无级控制,其中,全变频控制系统可对发电机组32中产生的电能进行更好的分配和利用,并且更为节能环保。

需要说明的是,控制系统还包括有用于监控生产作业系统的作业控制系统和用于监控电站系统的泵机控制系统,作业控制系统可对生产作业系统进行实时检测和控制,泵机控制系统可对发电机组32和航行发电机组32进行实时检测和控制。

作业控制系统提供数据用于反映的生产作业情况,使操作人员可针对当前情况及时做出调整,保证了生产作业系统工作的稳定性和可控性;泵机控制系统可对采选矿一体船1上的电能供应情况进行检测和控制,保证了采选矿一体船1上各系统的电能供应稳定。

在本发明的一个实施例中,优选地,采选矿一体船1上还配置有双gps所组成的船舶定位系统,船舶定位系统可用以确定船位和船向。

在该实施例中,通过船舶定位系统可使采选矿一体船1准确地停泊在预定的采矿区上,保持预定的船向进行接下来的生产作业,因此,船舶定位系统提高了采矿系统16工作的准确性,使采矿系统16更为高效。

在本发明的一个实施例中,优选地,矿藏为磁铁矿、钒钦磁铁矿矿床。

在该实施例中,采选矿一体船1所采集的矿藏为磁铁矿、钒钦磁铁矿矿床。

在具体实施例中,船舱12还包括:首尖舱、压载水舱、空舱、淡水舱、燃油舱、空舱、机舱,其中,全变频控制系统设置在机舱内,并且,机舱内还设置有机舱监控室、电工间、维修间、储物间。

本发明一个实施例提供的采选矿一体船1的具体参数为:总长在165米,船体长136.5米,船体宽度为35米,船体深度为8米,满油水的吃水深度为6米,载重4700吨的吃水深度为4米,最大转载量为9600吨,船体肋距为0.7米,最大挖掘深度为60米(为水平夹角45度的挖掘状态),额定船员28人,功率为2250千瓦的柴油发电机组323台,功率为1850千瓦的尾矿泵26柴油机2台,功率为1000千瓦的尾矿冲水泵24柴油机1台,功率为1000千瓦的电动全回转辅助推进4台,最大辅助推进航速为8节,功率为100千瓦的停泊兼航行发电机2台,水下吸砂泵166的流量为8000立方米每小时,水下吸砂泵166的扬程为40米,电动绞刀164功率为600千瓦。

本发明一个实施例提供的采选矿一体船1,集成了采矿系统16和选矿系统18,提高了船体的利用率,不仅省去了传统的多船进行采矿和选矿所带来的不便,还可节省航行的成本,间接降低了采集矿石的成本,提高了矿石的市场竞争力;此外,采矿系统16可对海底中各种砂质的矿藏进行采集,便于采选矿一体船1在广裹的海上作业,并且相比同类型的其他船只,在采矿时对采矿地拥有了更多的选择性;另外,在船尾设置有尾矿系统,尾矿系统可以将尾矿通过尾矿泵26输送至采空区内,既可以防止尾矿被采矿系统16二次开采,又可以使采空区恢复原貌,最大程度地保护了海底的环境。

在本发明中,术语“相连”、“连接”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。

在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1