泡沫铜-相变材料储能构件及采用它的温控装置的制作方法

文档序号:4532154阅读:783来源:国知局
专利名称:泡沫铜-相变材料储能构件及采用它的温控装置的制作方法
技术领域
泡沫铜-相变材料储能构件及采用它的温控装置技术领域本发明属于环保节能领域,具体涉及泡沫铜-相变材料储能构件 及采用它的温控装置。
背景技术
采用相变材料作为工作介质制成的相变储能装置,可用于解决 热能供给和需求失配的矛盾,是提高能源利用效率和保护环境的重 要技术,在太阳能利用、电力的"移峰填谷"、废热和余热的回收 利用,以及工业与民用建筑釆暖与空调的节能等领域具有广泛的应 用前景,已成为世界范围的研究热点。相变材料(phase change material - PCM )是指在其物相变化 过程中,可以从环境吸收热(冷)量或向环境放出热(冷)量,从 而达到能量的储存和释放目的的一类材料。相变包括固(相)-液 (相)、液(相)-气(相)等多种形式,本发明是指利用固-液相 变潜热来储存热能的技术,因其具有储热密度大、储热过程近似等 温、过程易控制等优点,而成为最具实际发展潜力、目前应用最多 和最重要的储能方式(见张正国复合相变储热材料的研究与发 展[J].化工錄,2003, 22 ( 4 ) : 462-463 )。目前常用的相变材料包括无机物类和有机物类。绝大多数无机 物相变材料具有腐蚀性,相变过程中存在过冷和相分离的缺点,这 限制了其使用。有机类相变材料具有固体成型好,不易发生相分离 及过冷现象,腐蚀性较小,性能稳定等特征,但与无机类相比,其 热导率低,在相变过程中传热性能差。有机相变材料热导率低,在相变过程中传热性能差的缺点直接 导致相变储能装置储、放热过程即相变速率低,这对于储热或放热 时间有严格要求的储热系统(如空间太阳能储热系统)将严重影响其性能和效率。对于地面民用太阳能装置,由于相变材料热导率 低,导致在有限的日照时间内,只有表面少量相变材料熔化(如图l 所示),从而使太阳能储能装置只能够储存有限的热能。类似的问 题,在用于电力"移峰填谷"、废热和余热的回收利用,以及工业 与民用建筑和空调的节能等领域也存在,由于把热能(电能)导入 和随后导出相变材料是一个緩慢、低效的过程,致使在有效工作时间内仅有有限的相变材料发生物相变化过程,从而使能量的储存和 释放也十分有限。此外,相变储能装置在重力场中使用时,如传热 面在上表面,则因相变材料在重力作用下凝固时脱离传热面而导致 其传热速率和效率大大降低,破坏了相变储能装置的储能性能和结构的稳定性;单纯相变材料难以实现真正意义上的等温(实际熔化 吸热过程是在其熔点以上的某一范围内),也难以实现精确的温度 控制。目前国内外在解决太阳能利用以及建筑空调节能用储能装置的 相变速率提高和相变速率的均匀性方面,釆取的一项措施是采用组 合相变材料储能装置,即在同 一储能装置中采用相变温度不同的相 变材料,进行合理组合。有的文献研究结果表明(见王剑锋.组合 相变材料储热系统的储热速率研究[J].太阳能学报,2000, 21 (3): 258-263 ),选用多种石蜡作为相变材料进行组合,其相变 速率较之单一相变材料可提高2 0%左右。在电子设备散热等实际工程 应用中,常釆用添加高热导率材料如铜粉、铝粉或石墨作为填充物 以提高热导率(见 I. M. Bugaje. Enhancing the thermal response of latent heat storage systems [J]. International Journal of Energy Research , 1997 , 21 : 759 — 766; R. Velraj, R. V. Seeniraj, B. Hafner, et al. Heat Transfer Enhancement A Latent Heat Storage Syetem[J] . Solar Energy , 1999 , 65 (3) : 171 ~ 180;以及,L. F. Cabeza, H. Mehling, S. Hiebler, et al. Heat transfer enhancement in water when used as PCM in thermal energy storage [J]. Applied Thermal Engineering, 2002, 22(10): 1141 ~ 1151 ),或采用内置翅片(见R. Velraj, R. V. Seeniraj, B. Hafner, et al. Experimental analysis and numerical modelling of inward solidification on a finned vertical tube for a latent heat storage unit [J]. Solar Energy, 1997, 60 (5): 281 ~ 290 )、铝蜂窝(见:B. G. Schelden, J. 0. Golden. Development of Phase Change Thermal Control Device [R]. AIAA 7th Thermophysics Conference. SAN ANTONIO, Texas/April 10-12, 1972 ),来提高传热性能,但这些强化传热的 方法对提高有机相变材料热导率的作用有限。曹建光等(见曹建光等.泡沫铝在相变储能装置中的应用[R]. 北京卫星热控制技术研讨会论文集,2003: 297-305 )为解决卫星 上间歇工作的电子组件散热问题,将泡沫铝组合放置于相变材料正 十八烷中,试验结果表明,組合泡沫铝后正十八烷的热导率从O. 225 W/(m K)提高到4. 05 W/(m.K),约提高了18倍。近年来讨论较多的是关于复合相变储能材料的研制,如张正国等采用熔胶-凝胶工艺将有机相变材料(硬脂酸)嵌入到二氧化硅 的三维纳米网格内构成的硬脂酸/二氧化硅纳米复合储热材料,其热
导率比硬脂酸提高了l倍左右。肖敏等(见肖敏,龚克成.良导 热、形状保持相变蓄热材料的制备及性能[J].太阳能学报,2001, 22 (4) :427 - 430 )在苯乙烯-丁二烯-苯乙烯三嵌段共聚物(SBS ) 与石蜡共混制得得定型固-液相变储热材料的基础上,针对石蜡热 导率低的缺点,在其中加入了膨胀石墨,经混合热炼后得到良导热 的定形相变储热材料,测试结果表明,其放热速率较纯石蜡提高1.5 倍。P. Xavier等(见P. Xavier, M. Sylvain. Paraffin porous—graphite—matrix compote as a high and constant power thermal storage material [J]. International Journal of Heat and Mass Transfer, 2001, (44): 2727 ~ 2737 )将有机相变储热材 料石蜡吸附在具有多孔结构的膨胀石墨内,构成石蜡/石墨复合相变 储热材料,试验结果表明,其热导率较之纯石蜡提高了20余倍。
还有一些其他相关的研究(见崔海亭等.蓄热技术的研究进展 与应用[J].化工躲,2002, 21(1):23~25)。
综上所述可以看出,为了提高相变储能装置中所采用有机相变 材料的热导率,可采取如下几种措施①填充高热导率材料,如铜 粉、铝粉和石墨等;②采用内置翅片、铝蜂窝或泡沫铝;③采用 组合相变材料;④采用复合相变材料。较之采用单纯有机相变材 料,采取以上四种措施中任一种后,储热装置的热导率一般可提高 20%-150°/。,最高可提高20余倍。
通过大量的文献检索可以看出,上述四种提高有机相变材料的 热导率的措施其作用有限,这四种措施中,其中①、②一般是用于 电子设备,特别是航空、宇航电子设备的散热或空间太阳能利用, 由于成本和工艺等方面的原因,罕见有用于地面太阳能利用以及空
调和釆暖节能的报导。措施③组合相变材料提高储能装置的相变速 率的幅度较小,这限制了其应用范围。最具应用前景的措施是采用 复合相变材料,但目前文献披露的复合相变材料复合技术较为复 杂,热导率或相变速率有待进一步提高,尚须加强对其结构稳定 性、热物性等的研究。
本发明针对有机相变材料存在的缺点,将泡沫铜引入相变储能 装置,构成以泡沫铜为骨架的新型相变储能装置。我们的初步研究 结果表明,这种泡沫铜/ (有机)相变材料储能装置较之单纯相变材 料可以提高热导率达30~ 50倍以上,并可改善相变材料的应用效 果。
泡沫铜是一种新型功能材料,目前采用电化学方法生产泡沫铜 的工艺已比较成熟。该方法的优点是成本低,工艺流程相对简单,过程易于控制,能制造出高孔隙、高强度和韧性好的泡沫铜材料。 与泡沫铝相比,泡沫铜成型过程中能较好控制孔径、孔隙率和网孔的连续、均匀性;其成品加工性能好,可进行精确切削加工。此 外,泡沫铜的传热性能和耐腐蚀性也优于泡沫铝。泡沫铜的这些特 点有利于制造低成本、高性能的相变储能装置。发明内容根据本发明的一个方面,提供了一种储能构件,其特征在于包括导热的封装;以及设置在所述封装之内的泡沫铜-相变材料装置,所述泡沫铜-相变材料装置包括泡沫铜,以及填充在所述泡沫铜中的相变材料。根据本发明的另一个方面,提供了一种室温调控装置,包括 太阳能集热器,用于利用它所吸收的太阳能加热流过它的水;一个热交换保温储水箱;集热器输水管,它为在所述太阳能集热器中,皮加热的水构成 了在所述热交换保温储水箱与所述太阳能集热器之间的循环回路; 其特征在于进一步包括一个泡沫铜-相变材料装置模块(104),该;漠块包括至少一个储能构件,该储能部件包括导热的封装(43, 63, 106、 107);以及 设置在所述封装之内的泡沫铜-相变材料装置,所述泡 沫铜-相变材料装置包括泡沫铜(41, 61, 101),以及 填充在所述泡沫铜中的相变材料(42, 62,102),其中所述热交换保温储水箱中的水通过一根才莫块输水管而流 经所述泡沫铜-相变材料装置模块。相变储能是包括中国在内世界各国政策导向和大力支持的环保 节能技术发展项目,本发明在提高相变储能装置效率、保证储能性 能和结构稳定性方面有其独特的优势。本发明直接应用的技术领域包括 國太阳能储存利用 隱电力调峰及电热余热储存 固建筑空调与供暖节能如上所述,有机相变材料具有固体成型好,不易发生相分离及 过冷现象,腐蚀性较小,性能稳定等优点,但是由于其热导率低, 导致用有机相变材料制成的相变储能装置有相变速率低,相变速率 均匀性差,系统整体效率低等缺点,这影响了其在太阳能利用及建 筑空调节能等领域的实际工程应用。本发明的目的在于■大幅度提高采用有机相变材料制成的储能装置的相变速率,改善相变速率的均匀性,提高系统的储能量和整体效能。 ■提高相变储能装置在用于需要精确控制温度场合的温控精 度。■改善单纯相变材料在重力作用下凝固时脱离传热面导致其传 热速率和效率大大降低的缺点,提高相变储能装置储热性能 和结构的稳定性。


图l是纯相变材料储能装置传热示意图;图2是泡沫铜结构示意图;图3a是纯相变材料储能装置传热示意图;图3b是泡沫铜-相变材料储能装置传热示意图;图4a是采用泡沫铜-相变材料制作的砖结构示意图;图4b是采用泡沫铜-相变材料制作的瓦结构示意图;图4c是泡沫铜-相变材料储能板示意图;图5a是板式泡沫铜-相变材料储能装置(储能板)嵌入建筑物屋 顶的示意图;图5b是板式泡沫铜-相变材料储能装置(储能板)嵌入建筑物墙 壁的示意图;图5c是板式泡沫铜-相变材料储能装置(储能板)镶嵌在建筑物 墙壁内壁的示意图;图6是圆柱形泡沫铜-相变材料储能装置(储能管)示意图; 图7是一个典型通讯设备间的温控系统; 图8是附带有储热(冷)室的工作间的空调原理示意图; 图9是储能管(板)与太阳能集热器组合构成的多功能系统原理图;图1 Oa是由多个中心装有通水管的储能管组合而成的取暖地板模块;
图iob是泡沫铜-相变材料储能管示意图。
具体实施方式

为大幅度提高采用有机相变材料制成的储能装置的相变速率, 改善相变速率的均匀性,以及保证储热性能和结构的稳定性,本发 明将新型功能材料-泡沫铜引入相变储能装置,构成以泡沫铜为骨 架的新型相变储能装置。
我们的研究工作表明,把相变材料熔化渗入到泡沫铜骨架中, 形成泡沫铜-相变材料一体化结构,可以大大提高相变材料的传热性 能。这是因为泡沫铜是由铜或铜合金基体在一定工艺下发泡制成, 形如相互交结在一起的纤维,且在纤维交点处存在不规则的金属结
点(参见图2),因此泡沫铜具有良好导热性能。尤其是,泡沫铜可
以使用钎焊工艺与储能装置传热面焊接起来,也可以将导热脂涂于 传热面和泡沫铜之间,再经加压与储能装置传热面胶接起来,这样 可在储能装置内部形成一体化的传热网络,大大减小了装置内部相 变材料的热阻,增强了传热能力。此外,泡沫铜是一种在铜基体中 均匀分布着大量通孔洞的新型轻质多功能材料,其本身具有很大比 表面积,当相变材料在液态被注入装置中时,泡沫铜的孔洞即自然 将相变材料分隔成一个个的小单元,而这每一相变材料小单元都具
有小尺寸和大的比表面积,并被高热导率泡沫铜材包围。如图3 (b)所示,在泡沫铜-相变材料储能构件中,由传热面导入的热 量,迅速通过泡沫铜形成的一体化传热网络传导,然后再通过泡沫 铜纤维向被其分割的小孔洞中的相变材料传导热量,使小孔洞中的 相变材料能在有限时间内完全熔化吸热,从而可大大提高相变材料 的热响应速度和整体结构的储热量。
根据用途和性能要求的不同,在传统的太阳能及建筑空调用相 变储能装置中,嵌入孔径大小和空隙率不同的泡沫铜,可以构成高 性能的太阳能及建筑空调用相变储能装置,其优点如下
① 这种以泡沫铜为骨架的新型相变储能装置,既保留了传统相 变储能装置所具有的储能密度大的优点,又可提高相变材料的热导 率和热响应速度。在显著提高系统效率的同时,可以更好维持相变 速率的均匀性,这对储热或放热时间有严格限制的储能系统具有重 要意义。
② 通过选择不同孔径、不同空隙率的泡沫铜,以及选择不同熔 点的相变材料并进行合理匹配,可以提高相变储能装置的等温性、 温控精度以及相变材料的利用率。这一点在对温度控制要求严格的 场合(如某些精密仪器用房)有重要应用价值。③利用具有大比表面积微孔结构的泡沫铜作为骨架材料,由于 微孔结构的毛细管力的作用,液态的相变材料很难从微孔中溢出, 从而可避免相变材料在重力作用下凝固时脱离上表面传热面而导致 其传热速率和效率大大降低,保证储能性能和结构的稳定性。
有益效果和应用
相变储热是包括中国在内世界各国政策导向和大力支持的环保 节能技术发展项目,泡沫铜-相变材料储能装置在提高系统效率、保 证储能性能和结构稳定性方面有其独特的优势。泡沫铜-相变材料储
能装置在环保节能方面主要有以下几个方面的应用 太阳能热储存
太阳能是巨大的能源宝库,具有清洁无污染、取用方便的特 点。但到达地球表面的太阳辐射受地理、昼夜和季节等规律性变化 的影响,以及阴晴云雨等随机因素的制约,其辐射强度不断发生变 化,具有显著的稀薄性、间断性和不稳定性。为了保持供热或供电 装置稳定不间断地运行,就需要储能装置把太阳能储存起来,在太 阳能不足时再释放出来,从而满足生产和生活用能连续和稳定供应 的需要。几乎所有用于釆暖、供应热水、生产过程用热等的太阳能 装置都需要储存热能。泡沫铜-相变材料储能装置是保持各种太阳能 供热或供电装置连续稳定运行的有效手段。
电力调峰及电热余热储存
在电厂中采用泡沫铜-相变材料储能装置可以经济地解决高峰负 荷需要,填平需求低谷,以緩冲储能方式调节机组负荷十分方便。 采用储能装置可以节约燃料,降低电厂的初投资和燃料费用,提高 机组的运行效率和改善机组的运行条件,从而提高电厂的运行效益 和改善电厂的利用率,降低排气污染,改善环境。泡沫铜-相变材料 储能装置由于其独特的优势,在水电站、风力发电厂、火力发电 厂、太阳能电站以及核电站的电力调峰及电热余热储存方面可以发 挥巨大作用。
建筑空调与供暖节能
将泡沫铜-相变材料组合结构嵌入建筑物的墙壁、屋顶、或者是 制成砖、瓦等结构件,在建筑节能空调方面有极其广阔的应用前 景。例如,这种新的结构在冬天可用于储存太阳能,在夏天的夜晚 可储存室外循环流动空气的冷量,这样可大大节省用于室内空调的 能量。此外,利用泡沫铜-相变材料储能装置系统效率高、储热性能和结构稳定等优点,可以实现对一些精密设备间精确的温度控制。
例如,将熔化温度为25lC的泡沫铜-相变材料組合结构嵌入墙壁,在 白天通过相变材料熔化吸热从而可储存太阳的热能并维持室内温度 在25t:;到夜晚因气温下降,建筑物释放热量,相变材料会降温至 25匸以下,并将凝固而释放相变潜热,凝固潜热会阻止设备间内温 度下降,这样就起到稳定设备间内环境温度的作用。即泡沫铜-相变 材料组合结构具有自适应调温功能。
在建筑物采暖系统中热能的生产随需求的变化要随时调整,因 此储能的作用显得更加重要。借助泡沫铜-相变材料储能装置,可以 降低能量转换装置以及二次能传输系统(区域热力管网)的设计功 率,因为在一年中只有较短的一段时间需要最大采暖功率。鉴于我 国已逐步实行峰谷分时电价政策,泡沫铜-相变材料储能装置在建筑 物冬天采暖、夏天制冷的电力移峰填谷中可发挥巨大作用。例如, 在电热采暖和供应热水的过程中,可以把用电时间安排到非高峰时 期,从而降低运行成本。采用储能装置后,不存在部分负荷运行情 况,能量的转换效率提高。采暖锅炉由于需求的波动导致锅炉启停 频繁,则启停过程的能量损失非常大。采用泡沫铜-相变材料储能装 置后,有效地增加了系统储热容量,在一定范围内可以满足波动负 荷的要求,从而降低锅炉启停的频率,降低能量消耗。
泡沫铜-相变材料储能构件其基本结构单元可采用板式和管式等 多种封装形式。
将泡沫铜-相变材料组合结构嵌入建筑物的墙壁、天花板(屋 顶)、或者是制成砖、瓦、板等结构件,可建成冬暖夏凉的工作室 或住宅,在建筑空调节能方面有极其广阔的应用前景。
图4 (a) 、 4 (b) 、 4 (c)是根据本发明的一个实施例的、采 用泡沫铜-相变材料制作而成的砖、瓦及板构件示意图。在图4(a) -图4 (c)中,标号41表示泡沫铜,42表示相变材料,43表示封 装。
在图4所示本发明的构件中,泡沫铜41和相变材料42被封装在由 诸如铜板构成的封装43之内;该铜板的厚度为例如l - 3腿;也可根 据建筑物结构或实际需要,采用塑料、石膏板或其它适当非导热材 料作为泡沫铜和相变材料的封装43或该封装43的一部分。封装43之 内的泡沫铜的支撑作用可以保证所制作的砖、瓦、板构件有足够的 强度。
如图4所示的本发明的砖、瓦、板构件可以釆用焊接或胶接的方 法制作。例如,在一种实施例中,在铜壳体43的内表面均匀涂布焊 锡膏,再将已加工成型的泡沫铜41扦7v或压入壳体43内,封装成一体后置于恒温加热炉内,经加温加压使泡沫铜41与铜板壳体43焊接 成一体。然后,采用高真空设备对所获得的泡沫铜装置抽真空,在 达到一定真空度后灌注液体相变材料42,再对其进行密封,从而获 得如图4所示的采用泡沫铜-相变材料制作成的储能构件。
在图5(a)-图5(c)中,标号54表示板式储能装置,55表示空 调,56表示设备,57表示设备间,58表示活动遮阳(隔热)板。
图5 (a)和图5 (b)分别为板式泡沫铜-相变材料储能装置(储能 板)嵌入建筑物屋顶和墙壁以对该建筑物内部进行温度调节的设置 示意图。这种新颖的设置在冬天的白天可用于储存太阳能(相变材 料吸热熔化),晚上相变材料冷凝放热可提高室内温度;在夏天白 天,相变材料可吸收室内空气热量熔化,降低室内温度,夜晚可储 存室外循环流动空气的冷量,这样可大大节省用于室内空调的能
在图5 (c)所示的设置中,将由本发明的泡沫铜-相变材料制作而 成的储能构件所组成的板式储能装置54镶嵌在隔热良好建筑墙壁的 内壁,白天当室内温度高于储能装置54的相变温度时,储能装置54 吸收热量使房间气温下降;夜晚当房间温度低于相变温度时,储能 装置54释放热量使房间温度上升。在昼夜温差大的地区,可以使室 内温度波动减小,增强居住舒适度,同时节约房间空调55的用电 量。
泡沫铜-相变材料组合结构也可被封装在圆柱形管壳体内,制成 储能管构件。如图6所示,在本发明的储能管构件的一个实施例中, 泡沫铜61和相变材料62被封装在圆柱形管壳63内。在本发明的一个 具体实施例中,该圆柱形管壳优选的为铜壳体,且其厚度为例如1-3mm;也可以釆用导热性能好的塑料作为管壳63或管壳63的一部分。 这种储能管构件的制作方法与制作如图4所示的砖、瓦构件的制作方 法相同。例如,在采用铜管作为封装壳体的情况下,可先在铜管内 壁涂上焊锡膏,将泡沫铜61挤压进圆柱形铜管,再将其置于恒温加 热炉内加温,使泡沫铜61和圆柱形铜管壳63焊接成一体,然后再采 用真空泵对其抽真空,达到一定真空度后灌注液体相变材料62,并 进行密封。
图7表示了釆用本发明的储能管构件74的一个典型的通讯设备间 77的温度控制系统,其中,标号74表示储能管构件,75表示空调装 置,76表示设备,77表示设备间,78表示斜支架,79表示风扇,710 表示隔热建筑物。在设备间的空调装置75失效或空调装置75的制冷 能力不足时,安装在设备76上方斜支撑架上的泡沫铜-相变材料储能管构件74开始熔化吸热,从而可精确控制室内温度在相变材料的熔 化温度附近,并可节省空调装置75的用电量。
也可将图7所示通讯i殳备间77的温控原理用于乂〉共场所(如图书 馆、办公楼和商场等)和其它设备间(如恒温车间、电脑间和实验 室等)。如将熔化温度为251C的泡沫铜-相变材料储能管架放在室内 合适的地方,在白天通过相变材料熔化吸热(相当于储存太阳热 能)维持室内温度在25'C;到夜晚因气温下降,建筑物释放热量, 相变材料会降温至25。C以下,并将凝固而释放相变潜热,凝固潜热 会阻止室内温度下降,这样起到稳定办公室或房间内温度的作用。 即这种泡沫铜-相变材料储能管具有自适应调温功能。众所周知,空 调室内空调器直接吹出的凉风和空调机运转噪声会使人感到很不舒 服,而利用储能管的自适应调温功能来解决办公室和房间空气温度 调节问题,既能提高室内温控精度和舒适度,减小温度波动,又能 达到节能和减少空调机噪声影响时间的效果,这无疑是一个简单易 行、极具吸引力而又有广阔应用前景的新颖的空调解决方案。
也可将储能管构件84集中排列放置在一个专门的储热(冷)室 88内,如图8所示。在图8中,标号84表示储能管构件,85表示空调 装置,86表示设备,87表示设备间,88表示储热(冷)室,89表示 风扇,810表示隔热建筑物,811表示循环风扇,812表示温控器, 813表示隔热墙。该储热(冷)室88可用于工业废热回收,也可用于 建筑物的空调装置85 (如中央空调)电力"移峰填谷"。例如在 冬天用电低谷时间(如夜晚),通过通电加热,使储热(冷)室88 内的储能管构件的相变材料熔化,而在用电高峰时间(如白天工作 时间),储热(冷)室88中的储能管构件84的相变材料凝固释放潜 热,通过风扇89的循环作用,可使工作间87内空气4皮加热而维持在 允许温度范围内。在夏天储热(冷)室作用过程正好相反,在白天 通过风扇89的循环作用,可使工作间87中的热空气进入储热(冷) 室88而被冷却(相变材料熔化吸热),在夜晚可通过引入室内、外 冷空气,或者是通过空调装置85制冷,使储热(冷)室88内的相变 材料凝固。这样,储热(冷)室88可大大緩解空调装置85在高峰用 电时间的用电量。
在本发明的一个实施例中,把储能管(板)嵌入地板并和太阳 能热水器结合使用,构成室内采暖、制冷和供应热水的高效多功能 装置。这样的多功能装置的原理图如图9所示。在图9中,标号94表 示储能管(板),95表示太阳能热水器,96表示热交换保温储水 箱,97表示淋浴,98表示厨房热水,99表示模块输水管,910表示模 块输水泵,911表示集热器输水泵,912表示集热器输水管,913表示非采暖季热水电补热。储能管(板)94被铺放在地板下面。在冬 季,安装在屋顶或室外的太阳能热水器95中的热水经导管(和/或热 交换保温储水箱96)被输送到地板下,流经储能管(板)94,使储 能管(板)94内的相变材料熔化,并将热水的热能存储起来,当室 内温度低于相变材料熔化温度(如23匸)时,储能管(板)将释放 热能为室内采暖。
夏季当不需要进行采暖时,可以通过控制开关(未显示)切断
输送热水到地板下的管路,这样太阳能热水器可以发挥常规供应热 水的功能。
图10 (a)显示了可用于图9的装置的一种将输水导管同储能装 置结合成一体的储能管组合取暖地板模块l04;其中标号104表示模 块,IOI表示泡沫铜,102表示相变材料,106表示内管,107表示外 管。这种储能管105(其结构见图10 (b))的铜内管106可以用于通过 热水,在铜内管106与铜外管107之间设置有泡沫铜101 -相变材料 102。内管和外管也可以采用铝及其它导热性能好的金属材料制作, 内管106的两端配有标准管螺紋连接接头,由多个这种形式储能管 105组成的地板采暖模块104,具有灵活方便、安装容易的优点。
同样道理,在夏季用冷水通过储能管(板)进行储冷,也可以 达到同样的保温时间,真正做到冬暖夏凉,使建筑物的节能效率大
大提向o
多功能系统具有能效高、运行成本低、安装容易、环保安全、 使用寿命长和只需很少维护等优点。多功能系统的灵活、方便、可 靠和经济性使其可广泛应用于住宅、商场和工业等各式新、老建 筑。
另外,作为本发明的一些实施例,泡沫铜-相变材料储能构件还 可以在其它广泛的领域发挥重要作用,这些领域包括
■血清(浆)、疫苗及其它生物制品的运输保温(恒温)控
制,包括恒温运输车、船、箱、袋; ■室外或野外的通讯转换设备、雷达以及其它的监测和作业设 备的温度控制;
■ 一些军事哨所,地质勘探及其它野外作业的长期和临时的工 作站,天文、气象、地震等方面的观测站等的温度调节和控 制;
■航空航天及其它高科技领域中短期或间断工作的高密度、大 功率电子设备的散热。
权利要求1.一种储能构件,其特征在于包括导热的封装(43,63,106、107);以及设置在所述封装之内的泡沫铜-相变材料装置,所述泡沫铜-相变材料装置包括泡沫铜(41,61,101),以及填充在所述泡沫铜中的相变材料(42,62,102)。
2. 根据权利要求的储能构件,其中所述封装的至少一部分是铜板。
3. 根据权利要求2的储能构件,其特征在于所述铜板与所述泡沫 铜之间用钎焊工艺焊接在一起。
4. 根据权利要求2的储能构件,其特征在于所述铜板与所述泡沫 铜之间用导热胶粘接在一起。
5. 根据权利要求的储能构件,其中所述封装的一部分是非导热 材料。
6. —种室温调控装置,包括太阳能集热器,用于利用它所吸收的太阳能加热流过它的水;一个热交换保温储水箱;集热器输水管,它为在所述太阳能集热器中#:加热的水构成了在所述热交换保温储水箱与所述太阳能集热器之间的循环回路; 其特征在于进一步包括一个泡沫铜-相变材料装置模块(104),该模块包括至少一个储能构件,该储能部件包括导热的封装(43, 63, 106、 107);以及设置在所述封装之内的泡沫铜-相变材料装置,所述泡 沫铜-相变材料装置包括泡沫铜(41, 61, 101),以及 填充在所述泡沫铜中的相变材料(42, 62,102),其中所述热交换保温储水箱中的水通过一才艮才莫块输水管而流 经所述泡沫铜-相变材料装置模块。
7. 根据权利要求6的室温调控装置,其中所述储能构件包括 导热内管(106),导热外管(107)封装在导热内管(106)与导热外管(107)之间的泡沫铜101和 相变材料(102),经过所述模块输水管的水从所述导热内管(106)中流过。
8. 根据权利要求7的室温调控装置,其中所述导热内管(106) 和导热外管(107)都是铜管。
9. 根据权利要求7的室温调控装置,其中所述导热内管(106) 和导热外管(107)都是铝管。
专利摘要泡沫铜-相变材料储能构件的基本组成包括导热的封装和设置在封装之内的泡沫铜-相变材料装置,基本形式有储能板和储能管两种。相变材料利用设计的灌注工艺填充在泡沫铜中,泡沫铜和封装之间采用钎焊工艺焊接或导热胶粘接,可以制作成砖、瓦、板、管等结构件,也可将输水导管同储能装置组合成一体的地板取暖模块,与太阳能热水器组合使用。本实用新型在建筑空调与供暖节能、工业余热回收、电力移峰填谷以及其它需要温控的设备和场所等方面有非常广阔的应用前景。
文档编号F28D20/00GK201107006SQ20072017448
公开日2008年8月27日 申请日期2007年9月28日 优先权日2007年9月28日
发明者余建祖, 涛 张, 晟 杨, 谢永奇, 迟鹏涛, 高红霞 申请人:北京航空航天大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1