回转化铁炉水冷外混式纯氧燃气烧嘴的制作方法_2

文档序号:9487237阅读:来源:国知局
状,如果燃气喷孔12与氧气喷孔13分布在大小不同的矩形线格上,但只要烧嘴前端的燃气出口、氧气出口为多个喷孔,并且燃气喷孔12与氧气喷孔13的中心线形成的线簇在有关的视平面上的投影存在小于90°的交汇角,则均属于本发明的保护范围。
[0031]图4也是图1的B向视图。该图表示,外侧两圈的氧气喷孔13的中心线不仅与烧嘴中线10存在一定角度,而且与图4的视平面存在一定角度。结合图2可以知道,外侧两圈的氧气喷孔13的中心线顺时针方向倾斜,氧气喷孔13中心线形成的线簇为双曲面。位于最内侧的燃气喷孔12中心线形成的线簇为圆柱面。位于次内侧的燃气喷孔12中心线形成的线簇也为双曲面,但是每个喷孔的中心线沿逆时针倾斜。如果喷孔中心线形成的线簇为双曲面,则由喷孔喷射出的气流在向前运动的同时进行旋转运动,其运动轨迹为螺旋形,气流的这种运动状态被称之为“旋流”。气体旋流产生的惯性离心力、切向速度,非常有利于气体之间的混合。
[0032]图5也是图1的B向视图,该图表示了本发明的另外一种结构形态,氧气喷孔13与燃气喷孔12分布在矩形格线上。外侧布置的两圈氧气喷孔13的中心线形成的线簇均为四棱锥面;最内侧一圈的燃气喷孔12中心线形成的线簇为四棱柱面,次内侧一圈的燃气喷孔12中心线形成的线簇为四棱锥面。烧嘴喷孔分布在矩形格线上的烧嘴,烧嘴横截面的轮廓往往为矩形(包括正方形)。虽然横截面外轮廓为矩形的烧嘴存在着制造成本方面的局限性,但也属于本发明的保护范围。
[0033]图6为图1中冷却水螺旋流道叶片11的视图。冷却水在流向烧嘴前端的过程中,在进水腔8和冷却水螺旋流道叶片11的作用下,运动轨迹为螺旋线。进水腔8和进水腔螺旋流道叶片11在烧嘴冷却水流道中形成的螺旋流道,与环形流道相比,其优越性在于缩小了流道的水力学半径、大幅度提高了冷却水的流速、强化了冷却水与烧嘴之间的对流换热效率。虽然图1和图6所表示的进水腔螺旋流道叶片11仅仅设置在进水腔8,但在出水腔3设置进水腔螺旋流道叶片,或者在进水腔8和出水腔3同时设置进水腔螺旋流道叶片11及回水腔螺旋流道叶片17,也属于本发明的保护范围。
[0034]本发明有多种实施方式,以下结合图7介绍本发明的一种实施例。
[0035]图7为本发明的一个实施例,炉壳15内有炉衬16,烧嘴通过联结螺栓14固定在炉壳15上;进水腔8中有进水腔螺旋流道叶片11,出水腔3中有回水腔螺旋流道叶片17 ;燃气与氧气喷头19通过螺纹20与烧嘴本体联结为一体。氧气流道5中的隔离支筋18,对相邻的流道,特别是燃气流道6起一定的固定和加强作用。
[0036]图8为图7的D部局部放大图,更清楚地表示了燃气与氧气喷头19的结构以及与烧嘴本体的螺纹联结关系。
[0037]图9为图7的E向视图,更清楚地表示了燃气与氧气喷头19的结构细节。燃气喷孔12与氧气喷孔13布置在几个直径不同的圆上;布置在外侧的两圈氧气喷孔13的形状由两圆弧与两直线组成;布置在内侧的两圈燃气喷孔12的形状为圆。另外,为了方便拆卸或安装,燃气与氧气喷头19的外缘,开设有数个扳手缺口 21。
[0038]将图8与图9相结合,可以发现燃气与氧气喷头19上设置的两圈氧气喷孔13的中心线所形成的线簇均为双曲面,每个氧气喷孔13的中心线在图9的视平面上顺时针方向倾斜;而两圈燃气喷孔12的中心线所形成的线簇也为双曲面,每个燃气喷孔12的中心线在图9的视平面上逆时针方向倾斜。也就是说,本实施例所涉及的烧嘴,在燃气和天然气经过有关喷孔、进入炉膛后,其运动轨迹均为螺旋线,可以利用两种气体的旋流作用,促进气体间的均匀混合。
[0039]本实施例所涉及的烧嘴,在其前端的出水腔3和进水腔8流道中,分别设置了回水腔螺旋流道叶片17和进水腔螺旋流道叶片11,冷却水对烧嘴有较为强烈的冷却作用,有利于保护烧嘴、延长烧嘴的服役时间。另外,本实施例所涉及的烧嘴,燃气与氧气喷头19为可拆卸结构,利用螺纹20与烧嘴本体组合为一体。通过更换不同技术参数的燃气与氧气喷头19,可以方便地改变烧嘴的火焰长度,拓展了烧嘴的适用范围。
[0040]上述实施例仅仅是本发明多种实施例中的一种。
[0041]图10和图11展示了现有技术纯氧燃气烧嘴的结构和工作原理,通过相互对比,可以发现本发明多方面的优越性。
[0042]在图10和图11中,烧嘴通过联结法兰1与炉体相联结;由于该烧嘴火焰长度大,燃烧高温区距离烧嘴体较远,因此该烧嘴的冷却水流道结构相对简单,冷却水腔为单层,其中不存在冷却水流道螺旋叶片;在氧气脱离烧嘴前端的瞬间,氧气束流的横截面呈环形,在燃气脱离烧嘴前端的瞬间,燃气束流的横截面呈圆柱形;在氧气和燃气束流脱离烧嘴前端时,两者的中心线相互平行。正是由于结构的原因,现有的纯氧燃气烧嘴的混合性差、火焰长度大。同时由于结构一定的燃气烧嘴,其实际的燃烧功率与燃烧火焰的长度有直接的关系,燃烧功率越大、火焰的长度越大。因此,炉膛长度一定的回转化铁炉,如果使用现有技术的烧嘴,必然导致加热功率密度低、生产效率低的弊端。
[0043]本发明涉及的水冷外混式纯氧燃气烧嘴,可以较大幅度地提高回转化铁炉的加热功率密度,缩短其熔化时间,提高其生产效率,对铸造生产的节能环保、提高我国新能源工业炉窑的技术水平有一定积极意义。
【主权项】
1.回转化铁炉外混式纯氧燃气烧嘴,包括:烧嘴,烧嘴上设有冷却水的进水流道及回水流道,其特征在于,烧嘴前端设置有多个当量直径小的燃气喷孔(12)和氧气喷孔(13),同时使燃气喷孔(12)中心线形成的线簇和氧气喷孔(13)中心线形成的线簇在烧嘴前方空间呈交汇状态。2.根据权利要求1所述的回转化铁炉水冷外混式纯氧燃气烧嘴,其特征在于,燃气喷孔(12)和氧气喷孔(13)按一定规律排列,并且燃气喷孔(12)中心线形成的线簇与氧气喷孔(13)中心线形成的线簇之间存在着小于90°的交汇角,经过燃气喷孔(12)和氧气喷孔(13)的两种气流在烧嘴前方一定位置交汇。3.根据权利要求1或2所述的回转化铁炉水冷外混式纯氧燃气烧嘴,其特征在于,燃气喷孔(12)或氧气喷孔(13)分布在几个直径不同的圆上或矩形线格上,燃气喷孔(12)与氧气喷孔(13)中心线形成的线簇在其视平面上投影呈交汇状态。4.根据权利要求3所述的回转化铁炉水冷外混式纯氧燃气烧嘴,其特征在于,燃气喷孔(12)或氧气喷孔(13)中心线形成的线簇包括:圆锥面、双曲面、圆柱面、棱锥面、或者棱柱面。5.根据权利要求3所述的回转化铁炉水冷外混式纯氧燃气烧嘴,其特征在于,燃气喷孔(12)与氧气喷孔(13)的横截面形状为圆形,分布在几个直径不同的圆上;位于外侧的两圈氧气喷孔(13)中心线形成的线簇为两个圆锥面,两个圆锥的顶点均在烧嘴中线(10)上;位于最内侧的燃气喷孔(12)中心线形成的线簇为圆柱面,位于次内侧的燃气喷孔(12)中心线形成的线簇为圆锥面,锥顶点在烧嘴中线(10)上。6.根据权利要求3所述的回转化铁炉水冷外混式纯氧燃气烧嘴,其特征在于,燃气喷孔(12)与氧气喷孔(13)分布在大小不同的矩形线格上,并且燃气喷孔(12)与氧气喷孔(13)的中心线形成的线簇在其视平面上的投影存在小于90°的交汇角。7.根据权利要求5所述的回转化铁炉水冷外混式纯氧燃气烧嘴,其特征在于,外侧两圈的氧气喷孔(13)的中心线与烧嘴中线(10)存在一定角度,且外侧两圈的氧气喷孔(13)的中心线顺时针方向倾斜,氧气喷孔(13)中心线形成的线簇为双曲面;位于最内侧的燃气喷孔(12)中心线形成的线簇为圆柱面,位于次内侧的燃气喷孔(12)中心线形成的线簇也为双曲面,每个喷孔的中心线沿逆时针倾斜。8.根据权利要求6所述的回转化铁炉水冷外混式纯氧燃气烧嘴,其特征在于,氧气喷孔(13)与燃气喷孔(12)分布在矩形格线上,外侧布置的两圈氧气喷孔(13)的中心线形成的线簇均为四棱锥面;最内侧一圈的燃气喷孔(12)中心线形成的线簇为四棱柱面,次内侧一圈的燃气喷孔(12)中心线形成的线簇为四棱锥面。9.根据权利要求1所述的回转化铁炉水冷外混式纯氧燃气烧嘴,其特征在于,烧嘴冷却水的进水流道或回水流道中设有螺旋流道叶片,进水流道中的进水腔(8)或出水流道中的出水腔与螺旋流道叶片在烧嘴冷却水流道中形成的螺旋流道。10.根据权利要求1所述的回转化铁炉水冷外混式纯氧燃气烧嘴,其特征在于,烧嘴冷却水的进水流道和出水流道中同时设冷却水螺旋流道叶片(11),进水流道中的进水腔(8 )和回水流道中的出水腔分别与冷却水螺旋流道叶片(11)和回水腔螺旋流道叶片(17)在烧嘴冷却水流道中形成的螺旋流道。
【专利摘要】本发明涉及一种纯氧燃气烧嘴,特别是回转化铁炉使用的纯氧燃气烧嘴,用于铸造领域。本发明烧嘴前端设置有多个当量直径小的燃气喷孔和氧气喷孔,同时使燃气喷孔中心线形成的线簇和氧气喷孔中心线形成的线簇在烧嘴前方空间呈交汇状态。通过缩短火焰长度,提高纯氧燃气回转化铁炉的功率密度,提高其熔化效率、缩短其熔化时间,节省燃料、降低生产成本。通过在进水腔设进水螺旋流道叶片在烧嘴冷却水流道中形成的螺旋流道,大幅度提高了冷却水流速、强化了冷却水与烧嘴之间的对流换热效率,加强了冷却水对烧嘴的冷却,预防了烧嘴火焰缩短后高温火焰对烧嘴的热损坏。
【IPC分类】F23D14/58, F23D14/78, F23D14/32, F23D14/22
【公开号】CN105240850
【申请号】CN201510701251
【发明人】殷黎丽, 张明, 杨彬
【申请人】殷黎丽, 张明
【公开日】2016年1月13日
【申请日】2015年10月27日
当前第2页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1