具有改进的热曲线的对流炉的制作方法

文档序号:4576539阅读:280来源:国知局
专利名称:具有改进的热曲线的对流炉的制作方法
相关申请的交叉引用本申请要求根据35 U.S.C.§119(e)要求2002年9月26日申请的临时专利申请60/413,879的优先权,该专利申请的内容结合在此作为参考。
关于联邦资助研究或研制的声明N/A背景技术多区域对流炉被用于各种热处理应用中,例如元件在印刷电路板上的回流焊接和陶瓷多层电路或者其他陶瓷物体的烧结。对流炉本质上使得在多个独立热控制区域内的循环路径中移动大量气体。很难防止在不同温度下操作的相邻区域之间的气体混合。较高温度区域内的气体倾向于流向较低温度区域,这将导致较低温度区域内的温度变得比预定的高。结果是,难于维持规定的温度曲线,并要求更多的临界调整,以努力维持预定的曲线。
发明概述根据本发明,提供一种多区域对流炉,其中为了提供规定的热曲线,来自对流炉的冷却室的气体被引入对流炉的一个或多个加热区域。从冷却室引入一个或多个加热区域的气体与加热区域中存在的气体为相同类型的气体,其典型地为氮气。冷却气体从冷却室向一个或多个加热区域的引入使得加热区域被过度加热至超过预定温度水平的趋势最小化,并将一个或多个加热区域的温度维持在预定的温度规范内。
在优选的实施例中,该对流炉包括加热室和冷却室,该加热室由多个相邻的加热区域组成,该冷却室位于加热室的出口端。为了使产品移动通过对流炉的加热区域和冷却室,一输送器延伸穿过对流炉。各个加热区域包括用于为产品提供加热气体的加热组件。在一个实施例中,气体冲击到产品的顶部和底部。在可替换的技术方案中,仅仅使加热气体冲击到产品的顶部或底部。每个加热组件包括一置于一压力通风系统内的电加热器和驱动压力通风系统(plenum)内的叶轮的鼓风电机,该鼓风电机促使加热气体流动通过孔板上的孔,且加热气体通过这些孔冲击到产品上。所述组件可以采用相同或类似的结构,也可以是模块式组件或标准件,以便可以在维修或更换时容易拆卸。各个加热组件可被独立地控制,以便沿着对流炉的多个区域的长度方向产生预定的热曲线。冷却室连接到一个或多个加热区域上,以使来自冷却室的冷却气体可以被引入选定的加热区域。在一种型式中,一冷却气体通道被提供给所有的加热区域,且通过打开相关的阀,冷却气体可被引入预定区域。可替换地,冷却气体通道可以仅仅提供给需要引入冷却气体的预定区域。


从下面结合附图所做的详细描述中将可更详细地理解本发明,其中图1是根据本发明的一多区域对流炉的图解性侧视图;图2是示出了冷却气体通道的多区域对流炉的一部分的示意图;图3是具有图2所示冷却气体通道的多区域对流炉的底视图;图4示出了沿着对流炉区域的长度方向的示例性热曲线;图5是示出了一种阀布局的本发明的图解性视图;图6是示出了另一种阀布局的本发明的图解性视图;图7是用于多区域对流炉中的压力通风箱的示意;图8是用于多区域对流炉中的鼓风组件的示意。
具体实施例方式
参照图1,示出了一多区域对流炉10,在所示出的实施例中,它具有一六区域式加热室。各个区域包括用于将加热气体引导至产品14上的上、下加热组件12,该产品14由输送器16输送穿过对流炉。一冷却室18被置于加热室的出口端,为了将产品从加热区域移动穿过冷却室,并因此离开对流炉出口,输送器延伸通过该冷却室。冷却室18可具有一个或多个可独立控制的区域,并经由管系20和阀22与各个加热区域相连。各个阀22被置于连接到各个区域的管系20的各个支路中。所述阀可以采用打开或者关闭气体通道的型式,也可以采用控制通道中的流量的型式。通过打开用于预定区域的相应的阀,来自冷却室18的冷却气体可以有选择地提供给任意一个或多个加热区域。所述气体通常为氮气,该气体与对流炉加热区域中用于对流加热产品的气体相同。
在可替换的实施例中,冷却气体通道可以仅仅提供给需要引入冷却气体的选定的加热区域。由于冷却气体仅仅用于预定的加热区域,所以不需要阀来关闭气体通道。控制阀可以用于调整气体流量,如将在下面描述的那样。参照图2,其示出了用于三个区域的加热组件,各个加热组件被连接到一冷却气体管道13,该冷却气体管道13具有连接到冷却室18的入口15。图3示出了该多区域对流炉的底视图,并给出了用于接收冷却气体的三个加热组件12。
冷却气体被足量引入选定的区域,以维持预定的热曲线。图4中示出了一个典型的热曲线。可明显看出,移动通过对流炉的产品的温度在一预热区间逐渐上升至预定的温度水平(通常称作均热周期),并在若干区域中稳定保持在该温度水平,然后温度上升至更高水平(通常称作顶峰周期),然后随着产品移动通过冷却室和离开对流炉而降低。众所周知,温度曲线可以设计成适于特定产品的工艺要求。可以用管系的尺寸来确定供给选定的加热区域的冷却气体量,从而提供预定量的气体,或者,可以通过使用一个或多个阀来控制气体的流量来确定供给选定的加热区域的冷却气体量。图5中示出了一种阀布局(或阀装置),其中控制阀23设置在管系20中,以控制供给至选定区域的冷却气体的流动。图6中示出了另一种阀布局(或阀装置),其中独立的控制阀22提供在管系的各个支路上,其通向选定区域的各个加热区域。
冷却气体从对流炉的冷却室引入到一个或多个加热区域,这种冷却气体的引入使得加热区域被过度加热至高于预定温度水平的趋势最小化,并将一个或多个加热区域的温度维持在预定的热规范内。
各加热组件优选为模块式结构或标准组件,因此它们可以在维修或者更换时可以容易地拆卸。对流炉和加热组件可以如美国专利US6,394,794中所述。每个加热组件12包括一压力通风箱30和一鼓风机组件32。在图7中示出了该压力通风箱。该压力通风箱包括一个或多个具有一组开口的孔板34,通过这些开口,气体流冲击到位于输送器上的产品上。电加热器33(图1)位于该压力通风箱内,以使得经过加热器的气体被加热到所需的温度,然后穿过孔板上的开口冲击到产品上。多个压力通风箱被整体安装在对流炉壳体内,并根据对流炉的结构决定位于产品的上方和/或下方。在图1所示的优选实施例中,压力通风箱为置于加热室的加热区域中的上、下加热组件的一部分。类似的压力通风箱可以用于冷却室,以将冷却气体流喷射到输送器上的产品上。对于在冷却室内的使用来说,不需要任何加热器。
图8中示出一鼓风机组件32。该鼓风机组件被密封至相关的压力通风箱,并在压力通风箱内产生高压以及在压力通风箱外产生低压,从而促使气体流动穿过孔板并在室内循环流动。该鼓风机组件是可现场更换的装置,其在维修或更换时易于安装或拆卸。鼓风机组件包括安装到一板38上的鼓风机马达36,并具有衬垫或其他密封件,以防止空气泄露。如图3中所示,容纳有叶轮的风扇壳体40通过压力通风箱的开口延伸进入压力通风箱。该风扇壳体包括一进气口41,该进气口41用于从对流炉腔室内抽出气体,以使其通过压力通风箱和孔板再循环,并喷射到产品上。为了将冷却气体引入压力通风箱,并在此使其与加热气体混合,一导管43连接到冷却气体管系20上。鼓风机组件与压力通风箱之间的衬垫或其他密封件提供压力通风箱与鼓风机组件之间的气密封。在前述的美国专利US 6,394,794中描述了鼓风机组件的详细结构和操作。
在可应用的加热区域,加热组件的压力通风箱的吸入促使冷却气体从冷却室向选定的加热区域的移动。如果需要附加的气体推进力,可以在冷却气体通道中提供一鼓风机,例如图5中所示的鼓风机21。
对流炉将通常包括现有技术中已知的特征,如入口和出口、用于温度和气体的流量收集装置和控制器。
本发明不限于这里已经示出和描述的内容,其包括后附权利要求的精神和全部范围。
权利要求
1.一种对流炉,包括加热室,其具有多个加热区域,每个加热区域具有至少一个加热组件,该加热组件用于向输送通过对流炉的产品提供加热气体;输送器,用于输送产品通过对流炉;冷却室,其位于加热室的出口端,并具有至少一个冷却组件,该冷却组件用于向输送通过冷却室的产品提供冷却气体;以及从对流炉的冷却室到至少一个加热区域的气体通道,以引导冷却气体从冷却室流入加热室的至少一个加热区域,其中引入至少一个加热区域的冷却气体量这样设定,以在至少一个加热区域中提供预定温度。
2.如权利要求1所述的对流炉,其特征在于,该气体通道从冷却室连接到炉腔的多个加热区域。
3.如权利要求2所述的对流炉,其特征在于,通向多个加热区域的每个气体通道包括一阀,该阀具有一个容许冷却气体引入相关加热区域的打开位置和一个禁止冷却气体引入相关加热区域的关闭位置。
4.如权利要求1所述的对流炉,其特征在于,该气体通道将冷却室连接到炉腔的所有加热区域,该气体通道包括阀装置,该阀装置可操作地将冷却气体选择性地引入一个或多个加热区域。
5.如权利要求1所述的对流炉,其特征在于,每个加热组件包括一压力通风箱和一鼓风机组件,该压力通风箱具有孔板,该孔板上具有一组开口,加热气体流从该开口冲击到产品上,该鼓风机组件用于在压力通风箱内产生高压,从而促使加热气体流过孔板。
6.如权利要求5所述的对流炉,其特征在于,每个压力通风箱采用模块式结构,并沿加热室的长度以类似孔箱的方式相邻地安装。
7.如权利要求6所述的对流炉,其特征在于,每个鼓风机组件为模块式组件,并被可拆卸地安装到各自的压力通风箱上。
8.如权利要求1所述的对流炉,其特征在于,多个加热区域中的每一个包括位于输送器上方和下方的加热组件。
9.如权利要求1所述的对流炉,其特征在于,冷却气体以由气体通道的大小所确定的气体量被促使从冷却室流入至少一个加热区域。
10.如权利要求1所述的对流炉,其特征在于,冷却气体以在气体通道中的阀装置所确定的气体量被促使从冷却室流入至少一个加热区域。
11.如权利要求1所述的对流炉,其特征在于,还包括位于气体通道内的鼓风机,其可操作地使冷却气体从冷却室流入加热室的至少一个加热区域。
12.如权利要求1所述的对流炉,其特征在于,通过来自至少一个加热组件的抽吸力使冷却气体从冷却室流入加热室的至少一个加热区域。
13.一种对流炉,包括加热室,其具有多个加热区域,每个加热区域具有至少一个加热组件,以向输送通过对流炉的产品提供加热气体;输送器,用于输送产品通过对流炉;冷却室,其位于加热室的出口端,并具有至少一个冷却组件,以向输送通过冷却室的产品提供冷却气体;所述冷却室通过气体通道被连接到一个或多个加热组件,通过该气体通道,一定量的冷却气体从冷却室引入一个或多个加热区域,以在一个或多个加热区域提供预定温度。
14.如权利要求13所述的对流炉,其特征在于,通过来自加热区域的抽吸力将冷却气体从冷却室引入加热室的一个或多个加热区域。
15.如权利要求13的对流炉,其特征在于,冷却室被连接到多个加热区域的加热组件。
16.如权利要求15所述的对流炉,其特征在于,从冷却室到加热区域的气体通道具有用于控制冷却气体进入加热区域的流量的阀装置。
17.如权利要求16所述的对流炉,其特征在于,所述阀装置包括位于气体通道内的控制阀,其可操作地控制流入所有接收冷却气体的加热区域的流量。
18.如权利要求16所述的对流炉,其特征在于,所述阀装置包括通向接收冷却气体的每个加热区域的气体通道内的控制阀,用于控制该通道内的冷却气体流量。
全文摘要
提供一种多区域对流炉,其中,为了形成规定的热曲线,来自冷却室的气体被引入对流炉的一个或多个加热区域。从冷却室引入一个或多个加热区域的气体与存在于加热区域中的气体为同一类型的气体,其通常是氮气。在优选的实施例中,对流炉包括由多个相邻的加热区域组成的加热室以及位于加热室出口端的冷却室。为了使产品移动通过对流炉的加热区域和冷却室,输送器延伸通过对流炉。冷却室被连接到一个或多个加热区域,以使来自冷却室的冷却气体可引入选定的加热区域。在一种型式中,冷却气体通道提供给所有的加热区域,通过打开相关的阀,冷却气体被引入预定区域。或者,冷却气体通道可仅仅提供给需要引入冷却气体的预定区域。
文档编号F27B9/24GK1672005SQ03801624
公开日2005年9月21日 申请日期2003年7月15日 优先权日2002年9月26日
发明者加里·奥尔贝克, 罗伯特·霍恩奥尔斯, 韦恩·L·吉布斯 申请人:Btu国际公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1