用于制造和储存冰的装置的制作方法

文档序号:17438012发布日期:2019-04-17 04:23阅读:173来源:国知局
用于制造和储存冰的装置的制作方法

在日本专利说明书jph08261918中公开了一种用于制造和储存冰的装置,包括具有隔热壁的封闭储罐,其中包括嵌入式储水器,其具有多个分开的内腔。腔室通过具有管状交换器的热交换单元分开,管状交换器水平安装并且彼此间隔开。所有热交换单元的交换器由一低沸点热工作介质的管状流动通道制成,在每个单元的高度上以曲折的方式弯曲,并且端部通过垂直弯曲的端部连接上下方相邻的板状热交换单元。在每个单元的高度处,流动通道的直段通过散热器板连接。热交换单元的流动通道包括在压缩机热泵的热工作介质回路中,该回路包括压缩机、冷凝器、膨胀阀、蒸发器和控制热工作介质流动方向变化的阀组。当设置阀将介质流引导到在热工作介质回路中作为蒸发器工作的装置时,从水中抽取热量使得其温度降低到低于冷冻温度,并且水在流动通道和各散热器的两侧冷冻,改变其物理状态。在热交换单元的上下表面上形成适当厚度的冰后-通过改变内置于热泵回路中的电磁阀–使得热工作介质的流动方向改变。温度高于0℃的气态压缩介质流过装置的管状通道,具有将附着在热交换单元表面上的冰融化的效果。分离的冰层在各个腔室中向上浮动,连续地填充腔室。在该装置中,冰的分离受到通过散热器板中的孔的水流支持,所述孔平行设置并且紧邻流动通道。分离并向上漂浮后的第一层冰保持在与散热器和流动通道的下表面的附着位置-这导致在随后的循环中冻结和分离同一层冰的能量损失。此外,串联热交换单元的长流道中的热力学变换由于在通道长度上的多样化导致局部不均匀。另外,从散热器底部分离的冰板保留在分离的位置,这使得它们在随后的冷冻循环期间彼此结合形成冰块,减少甚至阻止积聚冷却能量的有效收集。

在专利说明书ep0987502中公开的装置中,管状热交换单元浸没在由垂直壁分开的内腔室中的储水器中。每个单元具有在垂直平面中形状如横幅(streamer)的流动通道,并且通过入口集热器和出口集热器并联连接到热泵的热工作介质回路。每个单元中的流动通道的横幅通过散热器的垂直板进行热焊接,而集热器安装在储水器上方。在制冰阶段,当装置打开蒸发器功能时,在热交换单元的垂直表面的两侧发生冰板形式的结冰,然后在将热泵回路的方向改变为冷凝器功能的装置操作之后,循环地在达到一定厚度之后通过介质的热量进行分离。单元的除冰后的冰板向上流动至一共同高度,在那里它们接触在流动通道处积聚的凸起-降低了储水器可用容量的冰填充程度。另外,这种布置冰板的方式使得该布置是偶然的。在浮力影响下分离的冰板倾向于能够在蒸发器之间的空间中倾斜,这降低了容器的冰填充程度。由于冰板的不规则排列,在后的剥离板楔入在先分离的剥离板并将其推出蒸发器,这可能导致在下一循环中损坏装置。

在用于制造和储存冰的装置中,在所有热交换单元中制造的冰板的几何相似性是重要的,其在水浴中剥离的分离后,表面相互附着。在所有热交换单元中整个结冰表面上的温度条件的均匀性是至关重要的。在如说明书us20220292004所述的竖琴交换器的解决方案中-为了确保介质均匀流动通过垂直连接到入口集热器的所有流动通道并且在其中发生相似强度的相变,对流动通道的局部温度进行影响-沿入口集热器安装管状喷嘴分配器。分配器具有沿侧面与流动通道同轴定向的喷嘴孔。在喷嘴孔和入口集热器的壁中的流动通道的孔之间存在间隙,其中涡流被抑制。对于喷嘴的初始部分尤其重要。管状喷嘴分配器的壁中的喷嘴孔的直径从热工作介质的供应端连续增加。在竖琴交换器中,热工作介质在入口集热器处开始相变,穿过流动通道并在出口集热器处终止-导致沿着流动通道的长度存在温度差。

本发明的一个目的是开发一种装置,其中以尽可能低的电能量来制冰及储存冰以及实现储水器的几何容量的最高冰填充度。

根据本发明的装置部分地使用已知解决方案的技术特征,其使用具有嵌入内部的储水器的隔热储罐,其中多个内腔室通过水平安装且间隔开的具有管状热交换器的单元分隔开。热交换单元通过入口集热器和出口集热器并联在热泵的热工作介质回路中,入口集热器和出口集热器通过垂直管状流动通道平行连接,并通过散热器板热焊接在一起。管状喷嘴分配器纵向插入入口集热器的内部。该装置并入热泵回路中,该热泵回路包括控制热工作介质的流动方向的阀组件。

本发明的特征在于热交换单元的特殊设计。每个热交换单元包括两个相同的热交换器,这些热交换器并联在换热器的热泵回路中。交换器具有与出口集热器连接的流动通道的最终部分,其从散热器平面弯曲,这由从入口集热器出来的流动通道的直线部分确定。偏转的尺寸大于入口和出口集热器外径之和的一半,热交换器叠置使得它们的流动通道的长直部分在散热器平面中彼此交替并连接在一个共用的散热器板上。两个热交换器中的入口集热器位于出口集热器的上方,并且第一和第二热交换器的喷嘴分配器内建在两个入口集热器的相邻端部中。

优选的是,每个热交换单元具有插入在两个交换器中垂直相邻的入口集热器和出口集热器之间的集热器间绝热带,并且两个热交换器中的出口集热器之间的表面从底部覆盖有低导热系数的防水材料制成的反向板。反向板附着在流动通道和散热器板的整个表面上。

还有利的是实现一种装置,其中-在每个热交换单元的两个交换器中-垂直相邻的成对的入口集热器和出口集热器的区域纵向覆盖有防水的边缘隔热层。

在根据本发明的装置中,每个内腔室被水平布置的热交换单元分开,所述热交换单元具有确保在整个热交换表面上均匀温度分布的结构。优选的温度效应是由两个相同的具有竖琴系统的管式换热器叠置得到,其中在与热泵的热工作介质回路并联连接的两个热交换器的交替相邻的流动通道中具有相反方向流动的介质,并且流动通道在一个平面上通过底部覆盖有绝热反向板的散热器的公用板连接。通过相邻、逆流、定量相等的介质流向散热器上表面进行单向热量传递的局部补偿-在物理转变阶段具有恒定的参数差-对于平板冰块的生产效率和储存容量是异常重要的。由于方向向上的单向热量导致的除冰阶段被缩短,直到薄冰盖熔化,然后在上部内腔室的热交换单元的绝热反向板下方向上流动。还可以指出的是,对于通过朝向出口集热器弯曲的流动通道的最终部分的装置操作而言,优选通过压缩机引入热工作介质的油的油滴效应。热交换单元的这种设置导致分离的冰板在单元之间的空间中均匀布置,其在浮起之后不会冻结位于上方的热交换单元。单元中的交换器的逆流系统使得冰板在整个表面上具有均匀的厚度,这有利于它们的规则流动以及位于热交换单元之间的空间中。具有表面散热器和布置在单侧散热器挤出件中的管道的热交换单元的设计使得冰板具有单侧波浪形状,这大大提高了冷却器的排放效率,因为它允许水在冰板之间自由流动。

根据本发明的装置的解决方案类似于附图中示出的示例性实施方案的描述,附图中示出:

图1-具有与其余热泵单元连接的系统的装置的总图,

图2-热交换单元的示意图,

图3-单元的透视图,

图4-通过第一热交换器的流动通道的轴线的垂直截面图,

图5-根据图3的线aa的热交换单元的示例性实施例的垂直截面的中间部分,

图6-通过第一热交换器的流动通道的轴线的根据图3的线cc的单元的垂直截面图,

图7-通过第二热交换器的流动通道的轴线的根据图3的线dd的单元的垂直截面图,

图8-具有反向板和边缘隔热层的热交换单元的左侧的垂直截面图,

图9是描述热交换单元上的冰形成的片段。

例如,根据本发明的用于制造和储存冰的装置可以用作温度约为6℃的冷水源,在泄漏的情况下对环境是安全的。晚上以较便宜的电力为代价将水制成冰储存在装置中,然后在空调安装的工作时间内使用其中包含的冷却能量。该装置嵌入在由互连压缩机“s”、热交换器“wc”、膨胀阀“zr”和根据本发明的装置组成的热泵的热工作介质回路中。取决于由阀单元“z4”确定的热工作介质的流动方向,该装置在制冰阶段作为蒸发器工作,在除冰期间作为冷凝功能工作。该装置包括封闭、隔热的储罐“a”,其内部嵌有储水器“w”,该储水器具有多个内腔室“k”,被水平安装且彼此间隔的热交换单元1隔开。每个热交换单元1包括两个管状热交换器:第一热交换器2和第二热交换器3,并联连接在热工作介质回路中。交换器2和3具有平行的入口集热器7.1和7.2以及出口集热器8.1和8.2并且通过垂直管状流动通道5.1和5.2连接。出口集热器8.1和8.2位于入口集热器7.1和7.2的轴线水平之下,尺寸“e”大于入口7.1、7.2和出口8.1、8.2的外径“d1”和“d2”之和的一半。通过这种布置,流动通道5.1和5.2到出口集热器8.1和8.2的最终部分10.1和10.2相对于从入口集热器7.1、7.2出来的流动通道5.1和5.2的长直部分偏转。热交换器2和3叠置使得流动通道5.1和5.2的长直部分在一个平面9-9上彼此交替,并且热焊接到散热器4的一个公共板上。两个热交换器2和3中的入口集热器7.1和7.2设置在出口集热器8.1和8.2以及集热器间绝热带14的上方,从而消除了在它们之间的间隙中引入热交换的可能性。在侧面具有多个喷嘴孔12并且喷嘴孔12与流动通道5同轴定向的管状喷嘴分配器11纵向插入入口集热器7.1和7.2的内部。喷嘴孔12的直径d3从热工作介质的供应端连续增大。两个交换器2和3的出口集热器8.1和8.2之间的表面在底部覆盖有由低导热系数的防水材料制成的反向板6。在反向板6中设置用于流动通道5.1和5.2的凹槽,这允许反向板6附着到流动通道5.1和5.2的整个表面以及散热器4的板上。在每个热交换单元1中,垂直相邻的成对的入口集热器7.1和7.2以及出口集热器8.2和8.2的区域纵向覆盖有防水边缘隔热层15。

该装置的操作取决于热泵回路中热工作介质的流动方向,该方向决定了四通阀“z4”的位置。在制冰阶段,该装置作为蒸发器工作,其中介质的流动方向如图1中的实线箭头所示,对于除冰阶段,方向用虚线箭头表示。在两个阶段中,显然有必要使得通过压缩机“sp”的气态热工作介质保持恒定流动。在制冰阶段,压缩气体热工作介质从压缩机“s”引导至热交换器“wc”,在那里冷凝。然后,在通过膨胀阀“zr”之后,将其供应至根据本发明的装置中的热交换单元1,该装置用作蒸发器。介质的蒸发伴随着从水中移除热量,在散热器4中水变成冰16。此外,已经是气态形式的介质流过四通阀“z4”被压缩机“s”吸入。在除冰阶段,温度约为35℃的压缩介质由四通阀“z4”引导至所述装置的热交换单元1,在那里由于冷凝,通过加热散热器4的板散发热量,同时分离冰板。

随着冰厚度的增加,散热器4上冰层的积聚速率降低-这伴随着压缩机“sp”的吸入管线中的压降。通过图1中未示出的控制系统来改变装置的操作阶段,该控制系统可以根据吸入管线中的真空度数值来确定改变四通阀“z4”的设定的最佳时刻。用于使四通阀“z4”过载的真空度数值应相应地高于由压缩机制造商标示的吸入压力下限值。

附图标记列表

a.储罐

w.储水器

k内腔室

s压缩机

z4四通阀

wc换热器

zr膨胀阀

1.热交换单元

2.第一热交换器

3.第二热交换器

4.散热器板

5.流动通道

5.1第一交换器的流动通道

5.2第二交换器的流动通道

6.反向板

7.入口集热器

7.1第一交换器的入口集热器

7.2第二交换器的入口集热器

8.出口集热器

8.1第一交换器的出口集热器

8.2第二交换器的出口集热器

9-9散热器平面

10.流动通道的最终部分

10.1第一交换器的流动通道的最终部分

10.2第二交换器的流动通道的最终部分

11.管状喷嘴分配器

12.喷嘴孔

13.流动通道入口

14.集热器间绝热带

15.边缘隔热层

16.冰

e.入口集热器相对于出口集热器的偏移尺寸

d1.入口集热器的外径

d2.出口集热器的外径

d3.喷嘴孔的直径

k.热工作介质的流动方向

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1