热泵式空调系统及其除霜方法

文档序号:4800941阅读:286来源:国知局
热泵式空调系统及其除霜方法
【专利摘要】本发明提供了一种热泵式空调系统,包括:室内换热器、室外换热器、压缩机、四通阀、蓄热器和蓄热回路,其中,四通阀分别与压缩机的吸气端和排气端、室内换热器以及室外换热器相连通;四通阀通过第一管路与压缩机的吸气端相连;蓄热器包裹于压缩机外壁上;蓄热回路上串联有蓄热器,蓄热回路与第一管路并联。上述热泵式空调系统,充分利用了室外换热器内的热量,较大地提高了压缩机吸气端冷媒的吸气过热度和焓值,从而较大地提高了压缩机排气端冷媒的温度,进而提高了热泵式空调系统的除霜效率。本发明还提供了一种热泵式空调系统的除霜方法。
【专利说明】热泵式空调系统及其除霜方法
【技术领域】
[0001]本发明涉及空调设备【技术领域】,更具体地说,涉及一种热泵式空调系统及其除霜 方法。
【背景技术】
[0002]在热泵式空调系统制热过程中,当外界温度较低时,室外换热器上容易结霜,使得 室外换热器的换热效果降低,从而影响热泵式空调系统制热过程的进行,在结霜达到一定 程度的时候,使得室内制热效果较低,甚至会使室内换热器无法制热,即无法吹出高于室内 温度的制热风。这时候就需要除掉室外换热器上的结霜,以恢复其换热效果,确保热泵式空 调系统的制热性能。专利号为CN201180001679.0的专利公开了一种制冷循环装置,在该制 冷循环装置中除霜方式主要为在压缩机壳体上设置蓄热器和蓄热回路,其中蓄热器采集压 缩机运行所产生的热量并供冷媒吸收该热量,蓄热回路一端与室内换热器和膨胀阀之间的 管路相连通,蓄热回路的另一端与压缩机的吸气端相连通。将室内换热器流入膨胀阀的冷 媒部分导入蓄热器中,冷媒流经蓄热器并吸收蓄热器聚集的压缩机运行所产生的热量,然 后流入压缩机,以此来提高压缩机吸气端冷媒的吸气过热度和焓值,从而提高压缩机排气 端冷媒的温度,进而提高整个系统冷媒的温度,即提高室外换热器中冷媒的温度,实现对室 外换热器的除霜。
[0003]上述除霜方式中,由于自室内换热器流入膨胀阀的冷媒为气液混合冷媒,该状态 的冷媒温度较低,焓值较低。该冷媒在蓄热器中吸热气化变为气态冷媒,即蓄热器内的热量 一部分用于该冷媒气化,一部分用于升高该冷媒的吸气过热度和焓值,则导致该冷媒经过 蓄热器加热后,该冷媒的吸气过热度和焓值升高的较小,由于自蓄热器流入压缩机吸气端 的冷媒和自室外换热器流入压缩机吸气端的冷媒相互混合,使得压缩机吸气端冷媒的吸气 过热度和焓值升高的较小,导致上述除霜方式所需除霜时间较长,使得除霜效率较低。
[0004]另外,上述除霜方式中,将室内换热器流入膨胀阀的冷媒部分导入蓄热器中,由于 蓄热器设置于压缩机上,压缩机距膨胀阀的距离以及压缩机距室内换热器的距离均较远, 导致室内换热器流入膨胀阀的冷媒部分导入蓄热器所需的管路较长,使得整个空调系统管 路较复杂,同时也是空调系统的造价较高。
[0005]综上所述,如何提高热泵式空调系统的除霜效率,是目前本领域技术人员亟待解 决的问题。

【发明内容】

[0006]本发明的目的是提供一种热泵式空调系统,以提高热泵式空调系统的除霜效率。 本发明的另一目的是提供一种热泵式空调系统的除霜方法。
[0007]为了实现上述目的,本发明提供如下技术方案:
[0008]一种热泵式空调系统,包括:室内换热器,室外换热器,压缩机,与所述压缩机的吸 气端和排气端、所述室内换热器以及所述室外换热器相连通的四通阀,所述四通阀通过第一管路与所述压缩机的吸气端相连;包裹于所述压缩机外壁上的蓄热器;串联有所述蓄热器的蓄热回路,所述蓄热回路与所述第一管路并联。
[0009]优选的,上述热泵式空调系统中,所述第一管路和所述蓄热回路通过气液分离器与所述压缩机的吸气端相连通。
[0010]优选的,上述热泵式空调系统中,所述蓄热回路上串联有第一二通阀;所述第一管路上串联有第二二通阀。
[0011]优选的,上述热泵式空调系统中,所述第一管路和所述蓄热回路通过三通阀与所述四通阀相连通。
[0012]优选的,上述热泵式空调系统,还包括串联有所述蓄热器,并对所述蓄热器加热的加热回路,所述加热回路的两端分别连通所述第一管路和所述压缩机的排气端。
[0013]优选的,上述热泵式空调系统,还包括一端连通所述室外换热器的热气旁通回路, 所述热气旁通回路的另一端与连通所述压缩机的排气端和所述四通阀的第二管路相连通, 或者与连通所述室内换热器和所述四通阀的第三管路相连通;所述热气旁通回路上串联有第二二通阀。
[0014]优选的,上述热泵式空调系统中,热泵式空调系统的压缩机为双级压缩机或者多级压缩机。
[0015]优选的,上述热泵式空调系统,还包括用于向所述压缩机内补气的补气回路,所述补气回路与热泵式除霜系统的闪蒸器相连通,且所述补气回路上串联有补气阀。
[0016]本发明提供的热泵式空调系统的制热除霜过程和原理如下:
[0017]开启蓄热回路,即将自四 通阀流入压缩机的吸气端的冷媒部分导入蓄热回路,该部分冷媒流入蓄热器中,蓄热器采集了压缩机外壁的热量,由于采用自四通阀流入压缩机的吸气端的冷媒部分进入蓄热回路,即该冷媒经过了室外换热器,在室外换热器中吸收了热量,成为低压低温气体,将低温低压气态冷媒部分导入蓄热器中,使得蓄热器内的热量全部用于升高该低温低压气态冷媒的温度和焓值,从而该冷媒的温度和焓值升高的较大,然后该冷媒流入压缩机的吸气端,与未吸热的低温低压气态冷媒汇合并进入压缩机,很显热, 较大地提高了压缩机吸气端冷媒的吸气过热度和焓值,从而有效提高了压缩机排气端冷媒的温度,进而有效提高了整个系统冷媒的温度,即较大地提高了室外换热器中冷媒的温度, 进而提高了室外换热器的除霜效率。
[0018]由上述除霜过程和原理可知,本发明提供的热泵式空调系统,通过增设与第一管路并联的蓄热回路,以及串联于蓄热回路上,并包裹于压缩机外壁上的蓄热器,其中第一管路为连通四通阀和压缩机的吸气端的管路。由于蓄热回路与第一管路并联,使得流入蓄热器的冷媒为经过室外换热器吸热的低温低压气态冷媒,即将本应流入压缩机吸气端的低温低压气态冷媒部分导入蓄热器内吸热,再回流至压缩机吸气端,与现有技术相比,充分利用了室外换热器内的热量,使得蓄热器内的热量全部用于升高低温低压气态冷媒的温度和焓值,很显然,较大地提高了压缩机吸气端冷媒的吸气过热度和焓值,从而较大地提高了压缩机排气端冷媒的温度,进而较大地提高了整个系统冷媒的温度,即较大地提高了室外换热器中冷媒的温度,减少了室外换热器所需的除霜时间,进而提高了热泵式空调系统的除霜效率。
[0019]同时,上述热泵式空调系统中,将自四通阀流入压缩机吸气端的冷媒部分导入蓄热器中,由于蓄热器设置于压缩机上,压缩机距四通阀的距离较近,与现有技术将自室内换 热器流入膨胀阀的冷媒部分导入蓄热器中相比,很显然,所需管路较短,简化了该热泵式空 调系统的管路;也降低了该热泵式空调系统的造价。
[0020]基于上述热泵式空调系统,本发明还提供了一种用于该热泵式空调系统的除霜方 法,热泵式空调系统的除霜方法包括步骤:
[0021]A:满足预设除霜条件时,控制四通阀切换至制热模式;
[0022]B:将自所述四通阀流入所述压缩机的吸气端的冷媒部分导入包裹于所述压缩机 外壁上的蓄热器内;
[0023]C:将吸收所述蓄热器内热量的冷媒导入所述压缩机的吸气端;
[0024]D:将所述压缩机压缩后的冷媒经所述四通阀和所述室内换热器导入所述室外换 热器。
[0025]优选的,上述热泵式空调系统的除霜方法中,在所述步骤A和所述步骤C之间还包 括步骤:将所述压缩机排出的冷媒部分导入所述蓄热器内放热,然后将放热后的冷媒导入 所述压缩机的吸气端。
[0026]优选的,上述热泵式空调系统的除霜方法中,在所述步骤A后还包括步骤:将自所 述压缩机的排气端流入所述室内换热器的冷媒部分导入所述室外换热器。
[0027]优选的,上述热泵式空调系统的除霜方法中,所述预设除霜条件具体为室外环境 温度低于或者5°C且高于或者等于-20°C。
[0028]优选的,上述热泵式空调系统的除霜方法中,在所述步骤A前还包括步骤A’:
[0029]室外环境温度低于-20°C或者冷媒量低于预设值时,控制所述四通阀切换至制冷 模式;
[0030]控制外风机停止转动,并将自所述室内换热器流入所述压缩机的吸气端的冷媒部 分导入包裹于所述压缩机外壁上的蓄热器内;
[0031]将吸收所述蓄热器内热量的冷媒导入所述压缩机的吸气端;
[0032]将所述压缩机压缩后的冷媒经所述四通阀导入所述室外换热器。
[0033]由于本发明提供的热泵式空调系统的除霜方法是基于上述热泵式空调系统提供 的,所以本发明提供的热泵式空调系统的除霜方法具有与上述热泵式空调系统相应的技术 效果。
【专利附图】

【附图说明】
[0034]为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本 发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以 根据这些附图获得其他的附图。
[0035]图1为本发明实施例提供的热泵式空调系统的结构示意图;
[0036]图2为本发明实施例提供的热泵式空调系统的另一种结构示意图;
[0037]图3为本发明实施例提供的热泵式空调系统的除霜方法中制热模式除霜示意图;
[0038]图4为本发明实施例提供的热泵式空调系统的除霜方法中制冷模式除霜示意图。
[0039]上图1-4 中:[0040]室内换热器1、膨胀阀2、室外换热器3、闪蒸器4、压缩机5、四通阀6、蓄热器7、第 一管路8、第二二通阀9、第一二通阀10、热气旁通回路11、第三二通阀12、补气阀13、补气 回路14、第二管路15、加热回路16、第三管路17、三通阀18、气液分离器19。
【具体实施方式】
[0041]本发明实施例提供了一种热泵式空调系统,充分利用了室外换热器内的热量,较 大地提高了压缩机吸气端冷媒的吸气过热度和焓值,减少了室外换热器所需的除霜时间, 进而提高了热泵式空调系统的除霜效率。
[0042]下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完 整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于 本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他 实施例,都属于本发明保护的范围。
[0043]本发明实施例提供的热泵式空调系统,包括:室内换热器1、室外换热器3、压缩机
5、四通阀6、蓄热器7和蓄热回路,其中,四通阀6分别与压缩机5的吸气端端和排气端、室 内换热器I以及室外换热器3相连通,四通阀6通过第一管路8与压缩机5的吸气端相连; 蓄热器7包裹于压缩机5外壁上;蓄热回路上串联有蓄热器7,且蓄热回路与第一管路8并 联,如图1和图2所示。蓄热器7用于吸收压缩机5外壁的热量,并对自蓄热回路流入的冷 媒加热。室外换热器3和室内换热器I之间设置有膨胀阀2。
[0044]本发明实施例提供的热泵式空调系统的制热除霜过程和原理如下:
[0045]开启蓄热回路,即将自四通阀6流入压缩机5的吸气端的冷媒部分导入蓄热回路, 该部分冷媒流入蓄热器7中,蓄热器7采集了压缩机5外壁的热量,由于采用自四通阀6流 入压缩机5的吸气端的冷媒部分进入蓄热回路,即该冷媒经过了室外换热器3,在室外换热 器3中吸收热量成为低压低温气体,将低温低压气态冷媒部分导入蓄热器7中,使得蓄热器 7内的热量全部用于升高该低温低压气态冷媒的温度和焓值,从而该冷媒的温度和焓值升 高的较大,然后该冷媒流入压缩机5的吸气端,与未吸热的低温低压气态冷媒汇合并进入 压缩机5,很显热,较大地提高了压缩机5吸气端冷媒的吸气过热度和焓值,从而有效提高 了压缩机5排气端冷媒的温度,进而有效提高了整个系统冷媒的温度,即较大地提高了室 外换热器3中冷媒的温度,进而提高了室外换热器3的除霜效率。
[0046]由上述除霜过程和原理可知,本发明实施例提供的热泵式空调系统,通过增设与 第一管路8并联的蓄热回路,以及串联于蓄热回路上,并包裹于压缩机5外壁上的蓄热器7, 其中第一管路8为连通四通阀6和压缩机5的吸气端的管路。由于蓄热回路与第一管路8 并联,使得流入蓄热器7的冷媒为经过室外换热器3吸热的低温低压气态冷媒,即将本应流 入压缩机5吸气端的低温低压气态冷媒部分导入蓄热器7内吸热,再回流至压缩机5吸气 端,与现有技术相比,充分利用了室外换热器3内的热量,使得蓄热器7内的热量全部用于 升高低温低压气态冷媒的温度和焓值,很显然,较大地提高了压缩机5吸气端冷媒的吸气 过热度和焓值,从而较大地提高了压缩机5排气端冷媒的温度,进而较大地提高了整个系 统冷媒的温度,即较大地提高了室外换热器3中冷媒的温度,减少了室外换热器3所需的除 霜时间,进而提高了热泵式空调系统的除霜效率。
[0047]同时,上述实施例提供的热泵式空调系统中,将自四通阀6流入压缩机5吸气端的冷媒部分导入蓄热器I中,由于蓄热器I设置于压缩机5上,压缩机5距四通阀6的距离较 近,与现有技术将自室内换热器流入膨胀阀的冷媒部分导入蓄热器中相比,很显然,所需管 路较短,简化了该热泵式空调系统的管路;也降低了该热泵式空调系统的造价。
[0048]为了避免压缩机5出现液击现象,上述实施例提供的热泵式空调系统中,第一管 路8和蓄热回路通过气液分离器19与压缩机5的吸气端相连通,从而避免液态冷媒流入压 缩机5,实现对压缩机5的保护。
[0049]为了便于对蓄热回路进行控制,上述实施例提供的热泵式空调系统中,蓄热回路 上串联有第一二通阀10 ;第一管路8上串联有第二二通阀9。第一二通阀10和第二二通阀 9分别用于调节蓄热回路和第一管路8内的冷媒量,具体调节量,根据室外换热器3的结霜 情况而定。当然,调节蓄热回路和第一管路8内的冷媒量,还可采用其他的方式,具体地,第 一管路8和蓄热回路通过三通阀18与四通阀6相连通,如图2所示。这样,可减少阀门的 使用量,减少该热泵式空调系统的部件,便于实现冷媒量的控制。
[0050]当蓄热器7的温度较低时,自四通阀6导入蓄热器7的冷媒吸收的热量会减少,导 致该冷媒的温度较低,影响除霜效果。为了解决上述问题,上述实施例提供的热泵式空调系 统,还包括串联有蓄热器7,并对蓄热器7加热的加热回路16,该加热回路16的两端分别连 通第一管路8和压缩机5的排气端。由于压缩机5排出的冷媒为高压高温气体,可对蓄热 器7进行加热,提高蓄热器7的温度,进而增多自蓄热回路流入蓄热器7内的冷媒所吸收的 热量,避免了出现自蓄热器7导入压缩机5的吸气端的冷媒的温度较低,进而降低了蓄热器 7的温度较低时对室外换热器3除霜的不良影响;同时,加热蓄热器7后的冷媒流入压缩机 5的吸气端,与自第一管路7流入压缩机5的较冷的冷媒汇合一定程度上也提高了压缩机的 吸气端的冷媒的温度和焓值,进一步提高了除霜效率。
[0051]上述实施例提供的热泵式空调系统中,由于导入加热回路16的冷媒为高温高压 气体,该高温高压气体要和低温低压气体汇合,为了减少安全隐患,优先选择加热回路16 上串联有第一旁通毛细管,通过第一旁通毛细管对高温高压气体进行节流降压,节流降压 前后冷媒的焓值不变。
[0052]优选的,上述实施例提供的热泵式空调系统,还包括一端连通室外换热器3的热 气旁通回路11,该热气旁通回路11的另一端与压缩机5的排气端和室内换热器I之间的管 路相连通,采用压缩机5排出的冷媒部分导入室外换热器3,直接对室外换热器3进行加热, 并提高室外换热器3中冷媒的温度,进一步提高了室外换热器3的除霜效果。热气旁通回 路11其中一端的连接位置有两种,热气旁通回路11可与连通压缩机5的排气端和四通阀6 的第二管路15相连通,还可与连通室内换热器I和四通阀6的第三管路17相连通。具体 采用哪种连接,本发明是实施例对此不作具体地限定。为了便于控制热气旁通回路11内的 冷媒量,优先选择热气旁通回路11上串联有第三二通阀12和第二旁通毛细管。
[0053]为了进一步优化上述技术方案,上述实施例提供的热泵式空调系统中,热泵式空 调系统的压缩机为双级压缩机或者多级压缩机,提高该热泵式空调系统的工作效率并改善 热泵式空调系统的工作性能。
[0054]当该空调系统为多级压缩系统,存在缺气的情况,对室外换热器3的除霜不利。为 了避免上述情况发生,上述实施例提供的热泵式空调系统,还包括用于向压缩机5内补气 的补气回路14,该补气回路14与热泵式除霜系统的闪蒸器4相连通。为了便于控制补气回路14内的冷媒量,优先选择述补气回路14上串联有补气阀13,具体地,补气阀13为二通阀。
[0055]上述实施例提供的热泵式空调系统中,可根据实际具体需要,在蓄热回路、热气旁 通回路11、补气回路14上设置单向阀,避免出现回流现象,本发明实施例对此不作具体地 限定。
[0056]基于上述实施例提供的热泵式空调系统,本发明实施例还提供了一种用于该热泵 式空调系统的除霜方法,热泵式空调系统的除霜方法包括步骤:
[0057]SA:满足预设除霜条件时,控制四通阀6切换至制热模式;
[0058]热泵式空调系统在制热模式时会出现结霜的现象,当该热泵式空调系统处于制热 模式时,无需再控制四通阀6切换至制热模式,因为已经处于制热模式了。预设除霜条件具 体为室外环境温度低于或者等于5°C且高于或者等于-20°C。当然,还可为其他条件,例如 在制热运行过程中,室外换热器3的盘管温度低于或者等于_5°C,或者室外换热器3的盘管 温度比室外环境温度低10°C。预设除霜条件根据热泵式空调系统的具体工作状态、室外环 境温度和室内环境温度决定,本发明实施例对此不作具体地限定。
[0059]SB:将自四通阀6流入压缩机5的吸气端的冷媒部分导入包裹于压缩机5外壁上 的蓄热器7内;
[0060]由于采用自四通阀6流入压缩机5的吸气端的冷媒部分进入蓄热回路,即该冷媒 经过了室外换热器3,并吸收室外换热器3内的热量,成为低压低温气体,则充分利用了室 外换热器3内的热量低温低压气态冷媒在蓄热器7中充分吸热,使得蓄热器7内的热量全 部用于升高低温低压气态冷媒的温度和焓值,即该冷媒的温度和焓值升高的较大。
[0061]SC:将吸收蓄热器7内热量的冷媒导入压缩机5的吸气端;
[0062]将在蓄热器7中吸热的冷媒导入压缩机5的吸气端,与未吸热的低温低压气态冷 媒汇合并进入压缩机5的吸气端,很显然,较大地提高了压缩机5吸气端冷媒的吸气过热度 和焓值。
[0063]SD:将压缩机5压缩后的冷媒经四通阀6和室内换热器I导入室外换热器3 ;
[0064]由于较大地提高了压缩机5吸气端冷媒的吸气过热度和焓值,从而有效提高了压 缩机5排气端冷媒的温度,进而较大地提高了整个系统冷媒的温度,即较大地提高了室外 换热器3中冷媒的温度,减少了室外换热器3所需的除霜时间,进而提高了室外换热器3的 除霜效率。
[0065]本发明实施例提供的热泵式空调系统的除霜方法,使流入蓄热器7的冷媒为经过 室外换热器3吸热的低温低压气态冷媒,即将本应流入压缩机5吸气端的低温低压气态冷 媒部分导入蓄热器7内吸热,再回流至压缩机5吸气端,与现有技术自室内换热器流入膨胀 阀的冷媒部分导入蓄热器中相比,充分利用了室外换热器3内的热量,使得蓄热器7内的热 量全部用于升高低温低压气态冷媒的温度和焓值,很显然,较大地提高了压缩机5吸气端 冷媒的吸气过热度和焓值,从而较大地提高了压缩机5排气端冷媒的温度,进而较大地提 高了整个系统冷媒的温度,即较大地提高了室外换热器3中冷媒的温度,进而提高了热泵 式空调系统的除霜效率。
[0066]优选的,上述实施例提供的热泵式空调系统的除霜方法中,在步骤SA和步骤SC之 间后还包括步骤:将所述压缩机5排出的冷媒部分导入蓄热器7内放热,然后将放热后的冷媒导入压缩机5的吸气端。由于压缩机5排出的冷媒为高压高温气体,对蓄热器7进行加 热,提高蓄热器7的温度,进而增多自蓄热回路流入蓄热器7内的冷媒吸收的热量,避免了 出现自蓄热器7导入压缩机5的吸气端的冷媒的温度较低,进而降低了蓄热器7的温度较 低时对室外换热器3除霜的不良影响;同时,放热后的冷媒流入压缩机5的吸气端,与自第 一管路7流入压缩机5的较冷的冷媒汇合一定程度上也提高了压缩机的吸气端的冷媒的温 度和焓值,进一步提高了除霜效率。
[0067]优选的,上述实施例提供的热泵式空调系统的除霜方法中,在步骤SA后还包括步 骤:将自压缩机5的排气端流入室内换热器I的冷媒部分导入室外换热器3。采用压缩机5 排出的冷媒部分导入室外换热器3,直接对室外换热器3进行加热,并提高室外换热器3中 冷媒的温度,进一步提高了室外换热器3的除霜效率。
[0068]当该热泵式空调系统的压缩机为双级压缩机或者多级压缩机时,存在缺气的情 况,对室外换热器3的除霜不利。为了避免上述情况发生,上述实施例提供的热泵式空调系 统的除霜方法中,在步骤SA后还包括步骤:向压缩机5内补气。
[0069]优选的,上述实施例提供的热泵式空调系统的除霜方法中,在步骤SA后还包括步 骤:室外温度低于或者等于5°C时,室外风机停止转动。由于除霜的时候,室外换热器3内 有高温冷媒流经进行除霜,此时高温冷媒一般会比室外环境温度高,为了保证高温冷媒进 行除霜,需要室外风机停止转动,避免高温冷媒降温。
[0070]为了进一步优化上述技术方案,上述实施例提供的热泵式空调系统的除霜方法, 在步骤SA前还包括步骤SA’:
[0071]室外环境温度低于-20°C或者冷媒量低于预设值时,控制四通阀6切换至制冷模 式;
[0072]控制外风机停止转动,并将自室内换热器I流入压缩机5的吸气端的冷媒部分导 入包裹于压缩机5外壁上的蓄热器7内吸热;
[0073]将蓄热器7内的冷媒导入压缩机5的吸气端;
[0074]将压缩机5压缩后的冷媒经四通阀6导入室外换热器3。
[0075]在室外环境温度较低或者冷媒量不足时(造成除霜困难时),先采用四通阀6换向 除霜,即热泵式空调系统转换为制冷模式,在制冷模式下除霜,即制冷模式除霜,如图4所 示。当室外环境温度大于或者等于_20°C时,再次控制四通阀6换向,即使该热泵式空调系 统转换为制热模式,继续除霜并进行供热。这样,可加快热泵式空调系统的除霜速度,尽快 完成除霜,进一步提高了该热泵式空调系统的除霜效率。
[0076]对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的 一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明 将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一 致的最宽的范围。
【权利要求】
1.一种热泵式空调系统,包括:室内换热器(1),室外换热器(3),压缩机(5),与所述压缩机(5)的吸气端和排气端、所述室内换热器(I)以及所述室外换热器(3)相连通的四通阀 (6),所述四通阀(6)通过第一管路(8)与所述压缩机(5)的吸气端相连;其特征在于,还包括:包裹于所述压缩机(5)外壁上的蓄热器(7);串联有所述蓄热器(7)的蓄热回路,所述蓄热回路与所述第一管路(8)并联。
2.根据权利要求1所述的热泵式空调系统,其特征在于,所述第一管路(8)和所述蓄热回路通过气液分离器(I 9)与所述压缩机(5)的吸气端相连通。
3.根据权利要求1所述的热泵式空调系统,其特征在于,所述蓄热回路上串联有第一二通阀(10);所述第一管路(8)上串联有第二二通阀(9)。
4.根据权利要求1所述的热泵式空调系统,其特征在于,所述第一管路(8)和所述蓄热回路通过三通阀(18 )与所述四通阀(6 )相连通。
5.根据权利要求1所述的热泵式空调系统,其特征在于,还包括串联有所述蓄热器(7),并对所述蓄热器(7)加热的加热回路(16),所述加热回路(16)的两端分别连通所述第一管路(8)和所述压缩机(5)的排气端。
6.根据权利要求1所述的热泵式空调系统,其特征在于,还包括一端连通所述室外换热器(3)的热气旁通回路(11),所述热气旁通回路(11)的另一端与连通所述压缩机(5)的排气端和所述四通阀(6)的第二管路(15)相连通,或者与连通所述室内换热器(I)和所述四通阀(6)的第三管路(17)相连通;所述热气旁通回路(11)上串联有第三二通阀(12)。
7.根据权利要求1-6中任意一项所述的热泵式空调系统,其特征在于,热泵式空调系统的压缩机为双级压缩机或者多级压缩机。
8.根据权利要求7所述的热泵式空调系统,其特征在于,还包括用于向所述压缩机(5) 内补气的补气回路(14),所述补气回路(14)与热泵式除霜系统的闪蒸器(4)相连通,且所述补气回路(14)上串联有补气阀(13)。
9.一种热泵式空调系统的除霜方法,其特征在于,包括步骤:A:满足预设除霜条件时,控制四通阀(6)切换至制热模式;B:将自所述四通阀(6)流入所述压缩机(5)的吸气端的冷媒部分导入包裹于所述压缩机(5)外壁上的蓄热器(7)内;C:将吸收所述蓄热器(7)内热量的冷媒导入所述压缩机(5)的吸气端;D:将所述压缩机(5 )压缩后的冷媒经所述四通阀(6 )和所述室内换热器(I)导入所述室外换热器(3)。
10.根据权利要求9所述的热泵式空调系统的除霜方法,其特征在于,在所述步骤A和所述步骤C之间还包括步骤:将所述压缩机(5)排出的冷媒部分导入所述蓄热器(7)内放热,然后将放热后的冷媒导入所述压缩机(5)的吸气端。
11.根据权利要求9或10所述的热泵式空调系统的除霜方法,其特征在于,在所述步骤 A后还包括步骤:将自所述压缩机(5 )的排气端流入所述室内换热器(I)的冷媒部分导入所述室外换热器(3)。
12.根据权利要求11所述的热泵式空调系统的除霜方法,其特征在于,所述预设除霜条件具体为室外环境温度低于或者等于5°C且高于或者等于_20°C。
13.根据权利要求12所述的热泵式空调系统的除霜方法,其特征在于,在所述步骤A前还包括步骤A’:室外环境温度低于-20°C或者冷媒量低于预设值时,控制所述四通阀(6)切换至制冷模式;控制外风机停止转动,并将自所述室内换热器(I)流入所述压缩机(5)的吸气端的冷媒部分导入包裹于所述压缩机(5)外壁上的蓄热器(7)内;将吸收所述蓄热器(7)内热量的冷媒导入所述压缩机(5)的吸气端; 将所述压缩机(5 )压缩后的冷媒经所述四通阀(6 )导入所述室外换热器(3 )。
【文档编号】F25B47/02GK103574966SQ201210269782
【公开日】2014年2月12日 申请日期:2012年7月30日 优先权日:2012年7月30日
【发明者】孟琪林, 段亮, 陈绍林, 熊军, 梁志滔 申请人:珠海格力电器股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1