核电站冷却剂回路中氧含量的控制方法

文档序号:4854911阅读:319来源:国知局
核电站冷却剂回路中氧含量的控制方法
【专利摘要】一种核电站冷却剂回路中氧含量的控制方法,包括以下步骤:将容控箱、水泵和冷却剂回路通过管道依次连接并形成一个循环系统;打开水泵,使容控箱内的水与冷却剂回路流通;向容控箱内持续不断地吹扫惰性气体,直至测量容控箱内气相含氧量的百分含量小于1%时停止吹扫惰性气体;向冷却剂回路中第一次添加联氨水溶液来控制冷却剂回路中的氧含量,第一次添加联氨水溶液的体积的计算公式为:ML={V空气×a%×32÷22.4+M总×(C0+1)÷1000}÷w%。通过对冷却剂回路中氧含量的测量结果确定补加联氨的体积以确保冷却剂中的溶解氧含量不反弹,有效地实现了将冷却剂回路中的溶解氧控制在低于0.1mg/Kg的目标,减少了溶解氧对设备的腐蚀;并防止了向冷却剂回路内添加的联氨过量。
【专利说明】核电站冷却剂回路中氧含量的控制方法

【技术领域】
[0001] 本发明涉及核反应堆热工水利【技术领域】,更具体地说,涉及一种核电站冷却剂回 路中氧含量的控制方法。

【背景技术】
[0002] 众所周知,核电站是利用核燃料的核裂变反应所释放的核能来发电,且核电站的 工作原理为:主泵将冷却剂水送入反应堆,冷却剂把核燃料放出的热能带出反应堆并形成 高温高压的水,形成的高温高压的水进入蒸汽发生器,在蒸汽发生器的倒U型管内将热量 传递给二次侧汽轮机工质,被冷却的水再返回到反应堆,如此循环往复,形成一个密封的吸 热和放热的冷却剂回路。
[0003] 如图1所示,为了维持冷却剂回路10中水位恒定,在正常发电时,还设有与冷却剂 回路10相连的容控箱20、以及连接在容控箱20和冷却剂回路10之间的水泵30。该水泵 30用于将容控箱20中的水打入冷却剂回路10中,以维持冷却剂回路10中水位的恒定。冷 却剂回路10中的管道和设备大部分均是由不锈钢制成,因此水中的溶解氧会对管道和设 备造成腐蚀,氧腐蚀的机理如下:阳极:Fe - Fe2++2e ;阴极:02+H20+4e - 40H,生成的Fe2+ 会进一步氧化,最终生成的腐蚀产物是Fe304,且水中溶解氧浓度的升高会加速设备的腐蚀 速率,造成设备的损坏,因此在进行核反应前,需严格控制冷却剂回路10中溶解氧的含量。 为了降低冷却剂回路10的水中溶解氧的含量,一般需要向冷却剂水中添加联氨,通过联氨 与氧的反应来尽量除去水中的溶解氧。现有技术中,一般是通过经验大致决定向冷却剂回 路10中添加的联氨的量,易造成添加联氨的量偏大或偏小,当联氨的加入量偏小时,不能 完全除去水中的溶解氧,还会造成设备的腐蚀;而当联氨的加入量偏多时,过剩的联氨会消 耗掉除盐床树脂的交换容量使其提前失效,而核级树脂造假昂贵且无法再生,造成巨大的 经济损失。


【发明内容】

[0004] 本发明要解决的技术问题在于,针对现有技术的上述无法准确地确定向冷却剂中 添加联氨的量,从而无法控制冷却剂回路中氧含量的缺陷,提供一种能精确地计算向冷却 剂回路中添加联氨的量的核电站冷却剂回路中氧含量的控制方法。
[0005] 本发明解决其技术问题所采用的技术方案是:构造一种核电站冷却剂回路中氧含 量的控制方法,所述方法包括以下步骤:
[0006] 将容控箱、水泵和冷却剂回路通过管道依次连接并形成一个循环系统;
[0007] 打开所述水泵,使所述容控箱内的水与所述冷却剂回路流通;
[0008] 向所述容控箱内持续不断地吹扫惰性气体,直至测量所述容控箱内气相含氧量的 百分含量小于1%时停止吹扫惰性气体;
[0009] 向所述冷却剂回路中第一次添加联氨水溶液来控制冷却剂回路中的氧含量,所述 第一次添加联氨水溶液的体积的计算公式为:
[0010] ML = {V 空气 Xa% X32 + 22. 4+M总 X (C0+l)+1000}+W%,式中:
[0011] 表示整个循环系统中水的总质量,单位为吨;
[0012] Vsn表示第一次添加联氨水溶液前,整个循环系统中存在的空气体积,单位为立方 米;
[0013] Q表示第一次添加联氨水溶液前,冷却剂回路的水中的溶解氧浓度,单位为mg/ Kg ;
[0014] a表示容控箱中气相含氧量的百分含量;
[0015] w表示联氨水溶液的质量分数。
[0016] 在本发明所述的核电站冷却剂回路中氧含量的控制方法中,向所述冷却剂回路中 第一次添加联氨水溶液反应后,所述冷却剂回路内水中的溶解氧含量低于0. lmg/Kg。
[0017] 在本发明所述的核电站冷却剂回路中氧含量的控制方法中,若第一次添加联氨水 溶液后,测得所述冷却剂回路内水中的溶解氧含量高于0. lmg/Kg时,继续向所述冷却剂回 路中添加联氨水溶液,所述继续添加联氨水溶液的体积的计算公式为:
[0018] Vn = Μ总 XCn + 1000+w%,式中:
[0019] η彡2,且η为正整数;
[0020] Vn表示第η次加入的联氨水溶液的体积;
[0021] L表示第η-1次测量的水中的溶解氧的实际值;
[0022] w表示联氨水溶液的质量分数。
[0023] 在本发明所述的核电站冷却剂回路中氧含量的控制方法中,所述w的取值范围是 20% -60%。
[0024] 在本发明所述的核电站冷却剂回路中氧含量的控制方法中,所述w的取值范围是 30% -40%。
[0025] 在本发明所述的核电站冷却剂回路中氧含量的控制方法中,所述惰性气体为氮 气、氩气或氖气。
[0026] 在本发明所述的核电站冷却剂回路中氧含量的控制方法中,测量所述容控箱内气 相含氧量的百分含量时,采用多次测量且未观察到氧含量波动后的测量值。
[0027] 在本发明所述的核电站冷却剂回路中氧含量的控制方法中,所述容控箱的两侧分 别连接有进气管和出气管,所述进气管和出气管分别供所述惰性气体流入和流出。
[0028] 在本发明所述的核电站冷却剂回路中氧含量的控制方法中,所述联氨与氧反应的 化学方程式为:Ν 2Η4+02 - Ν2+2Η20。
[0029] 实施本发明的核电站冷却剂回路中氧含量的控制方法,具有以下有益效果:在第 一次向冷却剂回路内添加联氨水溶液前,先用惰性气体持续不断地吹扫惰性气体,直至测 量到容控箱内气相含氧量的百分含量小于1%,再开始向冷却剂回路内第一次添加联氨,并 给出了计算添加联氨水溶液的量的计算公式。本方法通过向容控箱内吹扫惰性气体和添 加联氨水溶液的配合作用,实现了有效地将冷却剂回路内水中的溶解氧控制在低于〇. lmg/ Kg,减少了溶解氧对设备的腐蚀;并防止了向冷却剂回路内添加过量的联氨水溶液,而消耗 掉除盐床树脂的交换容量的问题,使联氨的残余总量小于〇. 5mg/Kg以防止树脂提前失效, 节省了核电厂的时间和成本。

【专利附图】

【附图说明】
[0030] 下面将结合附图及实施例对本发明作进一步说明,附图中:
[0031] 图1是现有技术中循环系统的结构示意图;
[0032] 图2是本发明较佳实施例提供的循环系统的结构示意图;
[0033] 图3是本发明提供的核电站冷却剂回路中氧含量的控制方法的流程图。

【具体实施方式】
[0034] 为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明 本发明的【具体实施方式】。
[0035] 如图2所示,冷却剂回路3是核反应堆中的一个密封的吸热和放热的循环过程,其 中,水作为核裂变产生热能的冷却剂,在吸收核裂变产生的热能后形成高温高压的水,并在 蒸汽发生器的倒U型管内冷却后再返回到核裂变反应堆中,循环往复,形成了一个密封的 吸热和放热的冷却剂回路3。由于冷却剂回路3内的温度在不断地变化,其内水的体积随着 温度的变化也会相应地发生变化,为了维持冷却剂回路3内水位的恒定,设置了一个与冷 却剂回路3相连的容控箱1,容控箱1内装有一定量的水,且容控箱1通过水泵2向冷却剂 回路3内输送水。
[0036] 具体地,容控箱1、水泵2和冷却剂回路3通过管道依次连接并形成一个循环系统。 当冷却剂回路3内的水位较低时,容控箱1流向冷却剂回路3内的水流较大,而从冷却剂回 路3流出的水流较小,以实现向冷却剂回路3内输送水以维持冷却剂回路3水量恒定的目 的;当冷却剂回路3内的水位较高时,容控箱1流向冷却剂回路3内的水流较小,而从冷却 剂回路3流出的水流较大,以使冷却剂回路3内多余的水流入容控箱1内,从而维持冷却剂 回路3内水量恒定;而当冷却剂回路3内的水刚好达到恒定要求时,从容控箱1内流入冷却 剂回路3内的水量,与从冷却剂回路3中流出的水量相等,保持了冷却剂回路3内水量的恒 定。容控箱1、水泵2和冷却剂回路3的连接方式及工作原理为现有技术,在此不再赘述。
[0037] 众所周知,水中的溶解氧会对管道和设备造成腐蚀,造成设备的损坏,而且溶解氧 浓度越高使设备的腐蚀速率更快,因此在进行核反应前,需要严格控制冷却剂回路3中溶 解氧的含量,尽量将冷却剂回路3中溶解氧的含量降至最低。
[0038] 如图3所示,本发明提供了一种核电站冷却剂回路中氧含量的控制方法,所述方 法包括以下步骤:
[0039] S1 :将容控箱1、水泵2和冷却剂回路3通过管道依次连接并形成一个循环系统。
[0040] 将容控箱1、水泵2和冷却剂回路3通过管道连接起来,以实现容控箱1维持冷却 剂回路3内水位恒定的目的,具体的,容控箱1、水泵2和冷却剂回路3的连接及工作原理为 现有技术,不再赘述。
[0041] S2 :打开所述水泵2,使所述容控箱1内的水与所述冷却剂回路3流通。
[0042] 在容控箱1、水泵2和冷却剂回路3连接后,打开水泵2,使容控箱1为冷却剂回路 3供水并维持冷却剂回路3内水位的恒定。
[0043] S3 :向所述容控箱1内持续不断地吹扫惰性气体,直至测量所述容控箱1内气相含 氧量的百分含量小于1%时停止吹扫惰性气体。
[0044] 在整个循环系统中,存在两个氧平衡,其一是冷却剂回路3中水中的溶解氧与冷 却剂回路3中气体中氧的平衡,其二是容控箱1中液相水中的溶解氧与气相中氧的平衡。由 于容控箱1与冷却剂回路3之间存在一个动态的平衡过程,即容控箱1中的水会流入冷却 剂回路3中,冷却剂回路3中的水也会流入容控箱1中,为了实现减少冷却剂回路3内水中 的溶解氧的含量,可通过减少容控箱1内水中的溶解氧的含量来实现。
[0045] 容控箱2的两侧分别连接有进气管11和出气管12,且进气管11和出气管12均连 通至容控箱1内的气体部分,即进气管11和出气管12均连通至容控箱1的上部,以避免与 容控箱1内的水接触。其中,进气管11是供惰性气体的流入端,出气管12是供惰性气体的 流出端,惰性气体从进气管11流入容控箱1内,然后从出气管12流出,并将容控箱1内的 气体带出。
[0046] 本实施例中,向容控箱1内持续不断地吹扫惰性气体,该惰性气体与容控箱1内的 气体进行交换,并将容控箱1内的部分气体带出,从而降低了容控箱1内气相中氧的含量。 由于容控箱1内气相部分中氧的含量降低,从而破坏了容控箱1内液相水中的溶解氧与气 相中氧的平衡,使容控箱1液相水中的溶解氧进入气相,降低了容控箱1内水中的溶解氧含 量;随着惰性气体的持续通入,容控箱1内水中的溶解氧含量也相应逐渐地降低。则当容控 箱1内的水被水泵2送入冷却剂回路3时,冷却剂回路3内水的溶解氧含量下降,进而使冷 却剂回路3中气相中氧的含量也相应下降,有助于减少冷却剂回路3中的溶解氧含量。惰 性气体为氮气、氩气或氖气,优选地惰性气体为氮气。
[0047] 在向容控箱1内持续不断地吹扫惰性气体时,并对容控箱1内气相中的含氧量进 行测量,当容控箱1内气相中的含氧量的百分含量大于1%之前,惰性气体的吹扫对去除容 控箱1和冷却剂回路3内水中溶解氧的含量效果非常明显;当容控箱1内气相中的含氧量 的百分含量小于1 %后,继续对容控箱1吹扫惰性气体对去除容控箱1和冷却剂回路3内 水中的溶解氧的含量的贡献不大。当测量到容控箱1内气相含氧量的百分含量小于1% 时,停止向容控箱1内吹扫惰性气体,为了缩短除氧时间,可通过向冷却剂回路3中添加联 氨水溶液继续除氧。为了准确地测量容控箱1内气相含氧量的百分含量,并确保其氧含量 小于1 %,采用多次测量且未观察到氧含量波动后的测量值,否则可能会使后续添加的联氨 的量偏小,不能使溶解氧的含量达标。本实施例中,向容控箱1内吹扫惰性气体的流速为 15_20m/s。
[0048] S4 :向所述冷却剂回路3中第一次添加联氨水溶液来控制冷却剂回路中的氧含 量,所述第一次添加联氨水溶液的体积的计算公式为:
[0049] ML = {V 空气 Xa% X32 + 22. 4+M总 X (C0+l)+1000}+w%,式中:
[0050] 表示整个循环系统中水的总质量,单位为吨⑴;
[0051] Vsn表示第一次添加联氨水溶液前,整个循环系统中存在的空气体积,单位为立方 米(m3);
[0052] Q表示第一次添加联氨水溶液前,冷却剂回路(3)的水中的溶解氧浓度,单位为 mg/Kg ;
[0053] a表不容控箱(1)中气相含氧量的百分含量;
[0054] w表示联氨水溶液的质量分数。
[0055] 当测量到容控箱1内气相含氧量的百分含量小于1%时,继续吹扫惰性气体已不 能有效地去除冷却剂回路3内水中的溶解氧的含量。此时,停止向容控箱1内吹到惰性气 体,通过向冷却剂回路3内添加联氨水溶液,使联氨与氧发生反应以将氧除去。联氨与氧反 应的化学方程式为:Ν2Η4+02 - N2+2H20 ;联氨与氧反应生成了氮气和水,氮气是惰性气体,不 会对设备造成腐蚀,水可留在冷却剂回路3中作为冷却剂。
[0056] 其中,第一次添加联氨水溶液的体积的计算公式为:
[0057] ML = {V 空气 Xa% X32 + 22. 4+M总 X (C0+l)+1000}+w%,式中:
[0058] 表示整个循环系统中水的总质量,单位为吨⑴;即包括容控箱1、水泵2、冷 却剂回路3和管道中所有的水的总质量;
[0059] Vsn表示第一次添加联氨水溶液前,整个循环系统中存在的气体体积,单位为立方 米(m3);
[0060] Q表示第一次添加联氨水溶液前,冷却剂回路(3)的水中的溶解氧浓度,单位为 mg/Kg ;
[0061] a ;表不容控箱(1)中气相含氧量的百分含量;
[0062] w表示联氨水溶液的质量分数,w的取值范围是20% -60 %,优选地w的取值范围 是30% -40%,以使加入的联氨扩大与水的接触面积,使反应加速;
[0063] 第一次添加联氨水溶液的量A的单位是升(L)。
[0064] 在该计算公式中,"VMXa% X32 + 22.4+W%"表示用于除掉整个循环系统气相 中氧而加入的联氨体积,"MgXQ+lOOO+w%"表示用于除掉整个循环系统水中的溶解氧 而加入的联氨体积;"M, & Xl + 1000+w%"表示为了使整个循环系统中联氨有lmg/Kg冗余 而加入的联氨体积。该计算公式,充分考虑了整个循环系统中气相和液相中存在的氧,并为 了使氧能够彻底地除去,能够保证一次添加联氨水溶液成功,以实现将整个循环系统中的 氧完全除去;而且在保证充分除氧的前提下增加了 lmg/Kg冗余的联氨,能够使联氨与氧的 化学反应平衡右移,提高联氨与氧的反应速率。
[0065] 为了减少水中的溶解氧对设备的氧腐蚀,需将冷却剂回路3内水中的溶解氧含量 控制在低于〇. lmg/Kg。根据上述计算公式,在第一次添加联氨水溶液后,冷却剂回路3内水 中的溶解氧都低于〇. lmg/Kg,符合核电厂溶解氧浓度的要求。但在一些特殊情况,如容控箱 1内气相中的含氧量的百分含量测量不准,或者氧含量发生反复波动时,会使第一次计算的 联氨的添加量偏小,而导致冷却剂回路3内水中的溶解氧高于0. lmg/Kg。此时,可继续向所 述冷却剂回路3中添加联氨水溶液,所述继续添加联氨水溶液的体积的计算公式为:
[0066] Vn = Μ总 XCn + 1000+w%,式中:
[0067] η彡2,且η为正整数;
[0068] Vn表示第η次加入的联氨水溶液的体积,单位为L ;
[0069] L表示第η-l次测量的水中的溶解氧的实际值;
[0070] w表示联氨水溶液的质量分数。
[0071] 由该计算公式可知,第二次添加联氨水溶液的体积为Μ总XCi + 1000+w%,其中Q 表示第一次添加联氨水溶液后冷却剂回路3中水中的溶解氧的实际值,Μ,&表示整个循环系 统中水的总质量,单位为吨。如若第二次添加联氨水溶液后,冷却剂回路3内水中的溶解氧 的含量仍高于〇. lmg/Kg,则继续第三次向冷却剂回路3中添加联氨水溶液,则第三次添加 联氨水溶液的体积为M,& XC2+1000+w%,其中C2表示第二次添加联氨水溶液后冷却剂回 路3中水中的溶解氧的实际值,表示整个循环系统中水的总质量,单位为吨。依次类推, 直至测量到冷却剂回路3内水中的溶解氧的含量低于0. lmg/Kg为止。
[0072] 由此可知,为了保证第一次添加联氨的量准确,即第一次添加联氨水溶液就将冷 却剂回路3内水中的溶解氧的含量控制在低于0. lmg/Kg的水平,需要在添加联氨水溶液前 控制惰性气体吹扫容控箱1的终点,即确保添加联氨水溶液前,准确测量容控箱1内气相含 氧量的百分含量低于1%。
[0073] 本发明的核电站冷却剂回路中氧含量的控制方法,在向冷却剂回路3内添加联氨 水溶液前,先用惰性气体持续不断地吹扫惰性气体,直至测量到容控箱1内气相含氧量的 百分含量小于1 %,再开始向冷却剂回路3内第一次添加联氨水溶液,并给出了计算添加联 氨水溶液的量的计算公式。本方法通过向容控箱1内吹扫惰性气体和添加联氨的配合作 用,实现了有效地将冷却剂回路3内水中的溶解氧控制在低于0. lmg/Kg,减少了溶解氧对 设备的腐蚀;并防止了向冷却剂回路3内添加过量的联氨,而消耗掉除盐床树脂的交换容 量的问题,使联氨的残余总量小于〇. 5mg/Kg以防止树脂提前失效,节省了核电厂的时间和 成本。
[0074] 上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体 实施方式,上述的【具体实施方式】仅仅是示意性的,而不是限制性的,本领域的普通技术人员 在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多 形式,这些均属于本发明的保护之内。
【权利要求】
1. 一种核电站冷却剂回路中氧含量的控制方法,其特征在于,所述方法包括以下步 骤: 将容控箱(1)、水泵(2)和冷却剂回路(3)通过管道依次连接并形成一个循环系统; 打开所述水泵(2),使所述容控箱(1)内的水与所述冷却剂回路(3)流通; 向所述容控箱(1)内持续不断地吹扫惰性气体,直至测量所述容控箱(1)内气相含氧 量的百分含量小于1%时停止吹扫惰性气体; 向所述冷却剂回路(3)中第一次添加联氨水溶液来控制冷却剂回路中的氧含量,所述 第一次添加联氨水溶液的体积的计算公式为: ML = {V空气 Xa% X32 + 22. 4+M总 X (C0+l)+1000}+¥%,式中: M,e,表示整个循环系统中水的总质量,单位为吨; Vsn表示第一次添加联氨水溶液前,整个循环系统中存在的空气体积,单位为立方米; Q表示第一次添加联氨水溶液前,冷却剂回路(3)的水中的溶解氧浓度,单位为mg/ Kg ; a表不容控箱(1)中气相含氧量的百分含量; w表示联氨水溶液的质量分数。
2. 根据权利要求1所述的核电站冷却剂回路中氧含量的控制方法,其特征在于,向所 述冷却剂回路(3)中第一次添加联氨水溶液反应后,所述冷却剂回路(3)内水中的溶解氧 含量低于〇· lmg/Kg。
3. 根据权利要求2所述的核电站冷却剂回路中氧含量的控制方法,其特征在于,若第 一次添加联氨水溶液后,测得所述冷却剂回路(3)内水中的溶解氧含量高于0.1mg/Kg时, 继续向所述冷却剂回路(3)中添加联氨水溶液,所述继续添加联氨水溶液的体积的计算公 式为: Vn = Μ总 XCn + 1000+w%,式中: η彡2,且η为正整数; Vn表示第η次加入的联氨水溶液的体积; Cm表示第η-1次测量的水中的溶解氧的实际值; w表示联氨水溶液的质量分数。
4. 根据权利要求1-3任意一项所述的控制冷却剂回路中氧含量的方法,其特征在于, 所述w的取值范围是20% -60%。
5. 根据权利要4所述的核电站冷却剂回路中氧含量的控制方法,其特征在于,所述w的 取值范围是30% -40%。
6. 根据权利要求1所述的核电站冷却剂回路中氧含量的控制方法,其特征在于,所述 惰性气体为氮气、氩气或氖气。
7. 根据权利要求1所述的核电站冷却剂回路中氧含量的控制方法,其特征在于,测量 所述容控箱(1)内气相含氧量的百分含量时,采用多次测量且未观察到氧含量波动后的测 量值。
8. 根据权利要求1所述的核电站冷却剂回路中氧含量的控制方法,其特征在于,所述 容控箱⑴的两侧分别连接有进气管(11)和出气管(12),所述进气管(11)和出气管(12) 分别供所述惰性气体流入和流出。
9.根据权利要求1所述的核电站冷却剂回路中氧含量的控制方法,其特征在于,所述 联氨与氧反应的化学方程式为:Ν2Η4+02 - N2+2H20。
【文档编号】C02F1/20GK104090592SQ201410301002
【公开日】2014年10月8日 申请日期:2014年6月27日 优先权日:2014年6月27日
【发明者】明迁, 惠珑伟, 李西安, 王志明, 胡文清, 杨波 申请人:中广核工程有限公司, 中国广核集团有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1