氧气浓缩系统及方法

文档序号:5028089阅读:874来源:国知局

专利名称::氧气浓缩系统及方法
技术领域
:本发明涉及一种变压吸附系统,更具体地,涉及一种氧气浓縮器系统及其操作方法,所述系统具有多室罐以用于接收来自压縮机的压縮空气并将所述空气引导通过整合在单个组件内的一系列室从而在变压吸附系统中产生浓縮氧气。
背景技术
:吸附分离过程取决于某些固体从气体混合物中选择性地吸附一种或多种组分的能力。在供患者使用的氧气浓縮器中,吸附分离过程通常是固定床操作,包括两个主要步骤,吸附步骤和解吸步骤。变压吸附(PSA)是一种在这样的医学用途中对气体混合物的组分进行分离的有用技术。将气体混合物(典型地为周围空气)送入室中,在室中将各组分分离,从而生成具有一种组分高百分比的气流。空气含有很多组分,即近似21%的氧气、78%的氮气、0.9%的氩气和0.1%的其他微量气体。可以使用PSA从进入空气中分离出氧气,以给患者供应更高浓度的氧气。—般而言,通过使用沸石或分子筛实现在室中的这种组分分离,沸石或分子筛具有能吸附混合物中某种组分的选择性亲和力。沸石是具有均匀孔隙或晶体孔穴的天然或人工制成的分子筛。足够小到适合沸石孔隙的化学组分被吸附到沸石材料的表面上。在沸石上吸附组分有多容易取决于与沸石球中孔隙形状和大小相比的分子的形状和大小。沸石能吸附任何直径高达其自己孔隙大小的分子。变压吸附依赖压力的变动从而使所述室顺序地从选择性吸附到解吸进行循环。这种变动可以发生从高压到大气压或从大气压到真空。如果所述变动发生从大气压到真空,则在技术上将其认为是真空变压吸附(VPSA)。对于本领域技术人员而言,众所周知的是用于组分分离的PSA和VPSA技术是非常不同的,每种技术具有伴随其自身的优点和缺点。典型的变压吸附系统是氧气浓縮器,其从空气中分离出氧气以供患者随后吸入。常规系统提供介于0.5升每分钟(LPM)到IOLPM之间。这种氧气浓縮器包括多个将气体分离成氧气馏分和氮气馏分的分子筛床,借此随后将氧气提供给患者,而将氮气留在筛床中并随后被吹扫掉。这些氧气浓縮器包括若干部件,例如空气压縮机、两个三通空气阀、多个罐(每一个收纳单独的分子筛)和产物贮存箱。这样的结构要求大量的影响这些系统效率和成本的阀和管道。—些现有技术的PSA系统包括用于变压吸附系统的包括至少三个室的多室罐。所述罐包括具有一般长度的外罩。将第一分子筛室置于所述外罩内,用于容纳将来自周围环境中的空气分离成浓縮气体组分的第一分子筛。同样至少将第二分子筛室置于所述外罩内,用于容纳将来自周围环境的空气分离成浓縮气体组分的第二分子筛。将供应室置于所述外罩内,用于接收来自周围环境的空气,并用于将所述空气传送给第一或第二分子筛室。'虽然很多常规系统能够输送足以满足患者需要的流率,但是它们不能满足包括期望高效率、产物气体浓度高和重量轻的患者需求中的很多。例如,很多常规系统要求操作数量巨大的分子筛材料和功率。其他系统在一定流率下提供的氧气纯度不够。一些常规系统已经实现了试图解决这些不足中的一些的特征和方法。例如,美国专利No.6,683,256("专利'256")公开了一种分子筛型气体分离装置,其根据产物气体的期望浓度而改变解吸再生阶段和吸附生生阶段的持续时间。更具体地,专利'256公开了一种用于使用了响应于产物气体构成浓度的氧气传感器的气体分离装置的自适应控制方法。根据从所述氧气传感器接收的数据,所述气体分离装置可以修改吸附生成阶段和解吸再生阶段的持续时间。如果所述传感器指示产物气体的浓度构成高于所期望的,则可縮短所述解吸阶段,从而可以减少进入气体供应的需求。类似地,美国专利No.5,906,672("专利'672")公开了一种氧气浓縮器,其集成有微处理器以便对来自所述氧气浓縮器的产物气体输出进行评估。附加地,所设置的设备包括闭环反馈回路,以对变压吸附循环阶段的持续时间进行评估。所述微处理器命令该设备递增地增加阀时序,直到感测到氧气输出减少。当检测到氧气输出减少时,所述微处理器命令该设备返回以前的时序。美国专利No.5,474,595("专利'595")公开了一种具有压縮机容量控制系统的变压吸附装置。所述容量控制系统在所述单元的外罩内设置机械阀,可对其手动设定以限制吸入压縮机的周围空气。数量受到限制的周围空气降低了所述压縮机的载荷,因而降低了该系统所消耗的功率。虽然现有技术的系统适合它们预期的目的,但是它们不能在具有最小重量、大小、声级和功率消耗特征的系5LPM统中以输送90X或更高的可靠氧气浓度。此外,现有技术未教导出一种能够对于从0到5LPM的流率而言有可能生成最大氧气浓縮纯度的设备。此外,现有技术未教导出一种能够在从0到5LPM的流率下以最小功率要求操作的系统。另外,现有技术未教导出一种能够在低功率模式和以氧气增加模式中操作的系统。本发明主要关注的正是这种氧气浓縮系统。
发明内容因此,本发明的目的是提供一种克服常规吸附系统缺陷的吸附系统和/或方法。根据本发明的一个实施例,这一目的通过提供一种用于将空气分离成浓縮气体组分的方法来实现,在该方法中通过吸附系统的操作生成最大量的浓縮气体组分。此外,由所述吸附系统输送输出量的浓縮气体,并将吹扫量的浓縮气体分配到正经历吹扫循环的所述吸附系统的筛室。所述吹扫量的值等于或小于最大量和输出量之间的差,并且根据所述输出量对所述吹扫量进行控制。另外,本发明的示范性实施例提供了一种吸附系统以及一种操作吸附系统以将空气分离成浓縮气体组分的方法,在该方法中用压縮空气供应对第一分子筛室进行加压。此外,从第一分子筛室输出产物气体,然后将第一分子筛室中的压力水平与第二分子筛室中的压力水平相平衡。随后,同时对第一分子筛室和第二分子筛室进行加压以达到高于所述筛室的均衡压力水平的压力水平。本发明的又一目的是提供一种将空气分离成浓縮气体组分的吸附系统和方法,其包括提供压縮空气供应的压縮机、第一和第二筛室、置于所述筛室内的分子筛材料以及在第一分子筛室和第二分子筛室之间传送浓縮气体组分的吹扫设备。所述系统还包括控制所述吹扫设备的控制器,使得所述吹扫设备在多种操作模式下进行操作。可以例如根据所监测的由所述筛材料产生的气流的氧气浓度,手动或自动选择所述操作模式。在参考附图考虑说明书和权利要求书后,本发明的这些及其他目的、特点和特征,以及相关结构元件的操作方法和功能以及各部件及制造经济性的组合将变得显然,全部附图形成本说明书的一部分,其中相似的附图标记指代各图中的对应部分。然而,可以清楚地明了,附图只是为了图示和描述的目的,并非拟为本发明的限定定义。如说明书和权利要求中所用的那样,单数形式的"一"、"一个"和"该"包括复数含义,除非上下文另有清晰地规定。图1是根据本发明原理的变压吸附系统的示意图;图2是示出了在PSA过程期间PSA产物箱内的典型压力图表,而图3是示出了当为流量估计目的而取得压力信号斜率时的"T"窗示例的相同图表;图4是示出了产物箱的压力信号斜率与来自所述系统的氧气流率之间的关系的图表;图5A和5B分别是根据本发明原理的变压吸附系统的一部分的顶透视图和底透视图;图6A和6B分别是根据本发明原理的图5A和5B变压吸附系统中顶盖组件的顶透视图和底透视图;图7A和7B分别是根据本发明原理的图2A和2B变压吸附系统中顶盖的顶透视图和底透视图;图9是根据本发明原理的图5A和5B变压吸附系统中端盖组件的底透视图;图10是根据本发明原理的图5A和5B变压吸附系统内传送流体流量的端盖透视图;图11是图10的端盖透视图,包括在本发明的变压吸附系统内传送流体流量的主动吹扫控制设备;图12是根据本发明原理的变压吸附系统实施例的变压吸附循环的某些阶段与流率关系图表;图13是根据本发明原理的变压吸附系统实施例的产物气体的氧气浓度的图表;图14A是根据本发明原理的变压吸附系统固定吹扫设备实施例的压力值与时间关系图表;图14B是根据本发明原理的变压吸附系统主动吹扫设备实施例的压力值与时间关系图表;图152是在功率节省模式下操作的本发明变压吸附系统实施例的变压吸附循环不同阶段的时间值图表;图15是在功率节省模式下操作的本发明变压吸附系统实施例的功率消耗图表;图17是根据本发明原理的变压吸附系统各个实施例的产物气体氧气浓度和功率消耗图表;图18是根据本发明原理的声音降低模式的阀时间表;图19是示出了PSA系统在声音降低模式下操作时其各个部件的峰值压力图表;图20是示出了PSA系统在氧气增加模式下操作时其各个部件的峰值压力图表;图21是示出了关于本发明的变压吸附系统在延长的平衡模式中操作的氧气浓度的效果图表;以及图22是示出了根据本发明原理的变压吸附系统实施例的平衡时间和切换压力与氧气输出浓度间的关系图表。具体实施例方式现在详细参照各附图,其中相似的附图标记表示遍及若干视图中的相似部分。图1示出了根据本发明实施例的变压吸附系统100的示意(方框)图。变压吸附系统100包括一些本领域技术人员已知的标准部件。美国专利Nos.5,183,483和5,997,617中公开了变压吸附系统100常规各方面的操作和设计,这两份专利文献以引用方式并入本文中。本领域技术人员将领会到的是,虽然本文的公开可能关注于生成氧气的变压吸附系统,但是本发明各实施例可以并入并应用于很多不同类型的变压吸附系统。本文使用同义词术语"分子筛室"、"筛室"和"筛床"来指代在分离气体组分中使用的能够存放分子筛材料的设备。本文使用同义词术语"吸附"和"进料(feed)"来指代将压縮气体送入分子筛室进行分离的过程。本文使用同义词术语"解吸"、"吹扫"和"再生"来指代从分子筛室中去除非产物气体的过程。本发明的变压吸附系统100提供能够生成氧气输出在0.5到5LPM范围内的重量轻、尺寸小、声级低、功率消耗低的氧气浓縮器。为了提供这些优势,变压吸附系统ioo依靠非常有效的体系结构和战略匹配的部件,这包括吸附性极强的分子筛和优化的压縮机。图1提供了根据本发明示范性实施例的这一非常有效的体系结构的图示。给变压吸附系统100的输入是周围空气"A"。该空气A最常见的ii是未经处理的大气。然而,本发明可预见到有其他输入气体源,例如存放在加压容器内的气体。变压吸附系统100包括在输入空气A中进行初始过滤的过滤器IIO。过滤器110可以是高效微粒吸附("HEPA")过滤器,其通常包含能对周围空气A中的污染物进行收集的一团随意排列的纤维。过滤器110能够过滤周围空气A中的绝大部分污染物,包括灰尘、花粉、霉菌、细菌和任何足够大的颗粒。过滤器110对输入周围空气A的过滤能够使清洁的周围空气输入到压縮机115中。本发明还预见到在变压吸附系统的外罩上设置柜式滤网(未示出)。送入压縮机115中的空气的未受污染性质有助于提高压縮机的效率,并帮助防止压縮机受被处理空气中的污染物所堵塞或腐蚀。压縮机115能够在变压吸附系统内提供加压,因而压縮机115是所述系统的核心部件。压縮机115接收经过滤的空气输入111,对所述空气进行压缩,并在变压吸附系统所要求的压力下提供空气输出116。在示范性实施例中,压縮机115是双头、无油设备。在替代实施例中,所述压縮机是单头设备。本发明预见到所述压縮机可以具有其他配置,只要它能实现适合于本发明系统中使用的操作和/或功能能力。压縮机115的示范性实施例提供了与变压吸附系统的各项参数和要求相匹配的设备。例如但并非限定,压縮机115的容量特别要与变压吸附系统的各筛室容量相匹配。提供与所述系统各项参数特别匹配的压縮机产生众多好处,并有助于提高变压吸附系统100克服常规系统各种缺陷的能力。将变压吸附系统100的各筛室设计成在预定气压下处理预定量的周围空气,并使从周围空气的氧气回收率维持在一定水平。在变压吸附系统的示范性实施例中,将各筛室设计成在20磅每立方英寸(psi)下处理70升的加压周围空气,同时保持至少30%的回收率。在该示范性实施例中,将变压吸附系统100特别设计成使得压縮机115与各筛床的容量规格相匹配,以便确保压縮机和整个变压吸附系统的效率。具体地,将压縮机115设计成产生与各筛室的参数相匹配的输出。在示范性实施例中,将压縮机115设计成在20psi下每分钟产生70升气体,从而与各筛室的容量相匹配。压縮机115与各筛室容量相匹配不但能够优化压縮机的效率,而且能够使压縮机的重量较轻,并能够使压縮机要求为满足所述系统需要所必需的功率量最少。在本发明的示范性实施例中,压縮机115的重量小于15lbs。在一些实施例中,压縮机的重量小于101bs。根据理想气体定律,PV=nRT(压力*体积=气体分子数*气体常数*温度),气压的增加导致压縮空气温度的增加。因此,压縮机115的输出116通常处于升高的温度。为了减轻这一热量,在一些实施例中输出116可与换热器117连接。可以将换热器117配置为提供压縮机115的输出116中所述空气的有效热量传递。换句话说,换热器117可以减少压縮机的输出116中所述空气的温度。在离开换热器117后,压縮输入空气可以传到主处理阀120。主处理阀120用于在整个变压吸附循环中传送气体流量。本领域的技术人员将会领会到可以用多种不同的设备来实现处理阀120。例如,美国专利No.6,062,260("专利'260")公开了一种适于实现为主处理阀120的SMC稳定循环阀(surecyclevalve)。在一些实施例中,主处理阀120可以由逻辑控制设备150进行控制。逻辑控制设备150可以包括能够对主处理阀120进行监测并给予指令的微处理器。在非限定性的示例中,主处理阀120可以由螺线管进行操作,而逻辑控制单元150能够控制这些螺线管。在一些实施例中,所述螺线管具有介于5到8psi的最小切换压力。与压縮机115一样,逻辑控制设备150可以根据在给定的LPM输出下变压吸附循环的一组预定参数,指导主处理阀120的操作。在示范性实施例中,主处理阀120包括四个端口,连接到排气设备125的第一端口(排气端口)121;连接到第一筛室130的第二端口122;连接到第二筛室135的第三端口123;以及连接到换热器117的第四端口(供应输入端口)124。端口121、122、123和124能够使主处理阀120根据变压吸附循环而连接很多不同的流路。连接到筛室的端口122和123打开和关闭,从而允许压縮空气在变压吸附循环操作期间进入相应的分子筛室。在非限定性示例配置中,可以将主处理阀120配置成来自换热器117的供应输入端口124打开,且到第一筛室130的第二端口122打开,从而向第一筛室130供应压縮空气。类似地,可以将主处理阀120配置成供应输入端口124打开,且到第二筛室135的第三端口123打开,从而向第二筛室135供应压縮空气。或者,可以将主处理阀120配置成第二端口122和第三端口123均打开,从而向第一筛室130和第二筛室135供应压縮空气。在变压吸附系统100循环的吸附阶段使用主处理阀120的这些配置。在吸附阶段,从压縮机115泵送周围空气,通过主处理阀120,进入第一筛室130和第二筛室135的任一个或者两者。第一筛室130和第二筛室135含有沸石材料或其他将空气分馏成氧气和包括氮气的废物的合适材料。沸石是包含[Si04]4—和[A104]5—四面体单元的高度结晶铝硅酸盐构架。T原子(Si,Al)通过氧桥结合。整个负表面电荷的引入要求反荷离子,例如Na+、K+和Ca2+。沸石晶体含有水,并且当通过加热赶走水时,没有可辨别出的构架结构倒塌。这得到内部结构易于被修整成吸附很多组分的高结晶微孔吸附剂。沸石具有有益的分子筛选特性。孔隙大小分布可以进行修改,使得沸石能够用作所谓的分子筛。排除太大以至于不能扩散到孔隙中的分子,而动力学直径小于孔隙大小的分子扩散到孔隙中,吸附并在一定条件下能够经历催化反应。这种情况的示例为对直链或支链碳氢化合物进行筛选以增加汽油的辛烷值。为了能够使本系统提供具有输出在5LPM范围内的、相对重量轻、尺寸小、声级低、功率消耗低的PSA氧气浓縮器,优选采用高吸附剂分子筛。SILIPORITE⑧分子筛是具有卓越的选择性吸附特性的矿物合成产物(沸石),并为适合供本系统使用将空气分馏成氧气和废物(例如氮气)的材料示例。ATOFINA化学公司分销SILIPORITE⑧分子筛并为其姊妹公司(法国巴黎的CECAS.A.)提供SILIPORITE⑧分子筛的技术服务。SILIPORITE⑧分子筛材料系列的Ni加xy51和Nitroxy51R以及来自伊利诺斯州德斯普雷恩的UOPLLC的MDX分子筛适合在本发明中使用。与常规分子筛相比,Nitroxy51、Nitroxy51R和MDX是氮气吸附容量增强且氧气对氮气选择性增加的分子筛。例如,常规分子筛(例如Nitroxy5)的氮气吸附容量为8Nl/kg且1^2/02选择性因子为3。相比之下,例如,Nitroxy51的最小氮气吸附容量为18Nl/kg且1^2/02选择性因子至少为6。总之,氮气吸附容量至少为18NI/kg且N2/02选择性因子至少为6(即,选择性为6或更大)的筛材料适合在本发明中使用。在所述循环的吸附或进料阶段,可以将周围空气A分离成主要是氧气和氩气的产物气体以及包括氮气、水蒸气和其他微量气体的废物气体。筛选室(例如室130和135)的沸石材料可以在所述筛室内生成恰当压力时,在所述材料表面的孔隙中收集废物产物气体。氧气作为未被附着的气体而仍留在所述筛室中。除了吸附阶段的配置外,可以针对各种吹扫或解吸阶段对主处理阀120进行配置。在一种欢扫配置中,到排气设备125的第一端口121打开,且到第一筛室130的第二端口122打开。主处理阀120的这种配置能够使第一筛室130进行吹扫。在示范性实施例中,变压吸附系统100包括能够抽出筛室130和135中所含的气体并经排气端口126放出所述气体的排气设备125。排气设备125可以是排气消声器或吹出(blowndown)设备或者其他能够将气体从所述筛室抽出的设备。氧气浓縮器的解吸阶段涉及从筛室130和135去除废物产物气体。以这种方式,可以消除筛室的筛孔内含有的废物产物气体分子并使之更新,15以便从下一次注入的周围空气中接受新的废物产物气体分子。因此,筛室130和135的容量直接取决于解吸阶段。同样将第一筛室130和第二筛室135连接至两个止回阀第一止回阀141;和第二止回阀142。将止回阀141和142连接至产物箱140,所述产物箱存放产物气体。止回阀141和142调整从筛室130和135进入产物箱140的产物气体流量。在一个实施例中,将止回阀141和142配置成当来自筛室130和135的产物气体压力大于产物箱的压力时使产物气体能够流入产物箱140。另外,可以将止回阀141和142配置成防止产物气体回流。吹扫控制设备190连接第一筛室130和第二筛室135的两个输出端。吹扫控制设备190在一些实施例中可以是具有固定直径约束的被动孔口。另外,吹扫控制设备190可以是能够由逻辑控制设备150控制的主动阀。在示范性实施例中,吹扫控制设备190由螺线管操作,而逻辑控制单元150能够控制这些螺线管。因此,主动吹扫控制设备190能够对第一筛室130和第二筛室15间之的气体通道进行控制。在图1描绘的示范性实施例中,吹扫控制设备190位于第一筛室130和第二筛室135的产物气体侧,使得从一个筛室通过吹扫控制设备流向另一筛室的气体是产物气体。吹扫控制设备190可以用在变压吸附循环的各个时期上。在示范性实施例中,吹扫控制设备190用于将产物气体从吸附筛室传递到解吸筛室,以帮助所述解吸过程。如图1所示,产物箱140可以包括压力调整器143。压力调整器143用于控制到输出的产物气体流量。在一些实施例中,例如图1所描绘的实施例,可以将产物箱140连接至压力传感器160。压力传感器160能够提供用于对变压吸附系统100的流率进行估计的信息。在示范性实施例中,压力传感器160能够进行通信并向逻辑控制设备150发送信息。在示范性实施例中,逻辑控制设备150根据从压力传感器160接收到的数据进行计算,以便估计变压吸附系统100的流率。常常需要根据从所述系统输出的氧气流率来优化PSA过程。通过按流量函数连续调整阀时序可以实现优化。由于真正的流量换能器太昂贵以至于不能增加到商业可行的系统中,因此本发明预见到间接经由对产物箱140中压力的变换,即由压力传感器160输出的压力信号来估计所述系统输出的氧气流率。图2示出了在典型PSA循环期间由压力传感器160提供的压力信号161。具体地,流量与压力信号的负斜率的量值成正比。因而,可以根据压力信号按如下等式计算任何时间系统输出的实际流率(FlowLPM):FlowLPM-kXABS(斜率)(1)其中,k是常数,而ABS(斜率)是压力信号斜率的绝对值。通过对来自压力传感器160的信号进行转换、对转换后的信号进行调节、对调节后的信号进行采样,然后在固定时间窗T上计算采样信号的每1/2循环的斜率量值,来完成对流量的计算。图3示出了这一"开窗"过程。使用递归平均过滤器,用先前的值对每个计算得到的斜率值取平均。由于压力传感器160通常是未校准的,因此所述平均过滤器的输出经由非易失性存储器中存储的两个(2)校准值进行縮放和标准化,从而产生从一台机器到另一台机器均一致的值。最后,从所述縮放/标准化过程得到的计算是对应于实际02流量的值。例如,如图4所示,所得结果是负斜率和氧气输出流率之间的线性关系163。使用关系163和/或等式(1),可以根据产物箱内的压力,特别是时间段T期间的压力信号的负斜率,而确定来自所述系统的氧气流量。逻辑控制设备150可以根据这一估计的流率对所述变压吸附系统中的其他设备进行控制。在示范性实施例中,所述逻辑控制设备可以根据估计流率改变吹扫控制设备190的操作。在另一实施例中,所述逻辑控制设备可以根据估计的流率修改变压吸附循环。在示范性实施例中,将压力调整器143连接到氧气传感器165。将氧气传感器165进一步连接至流量计170。流量计170可以用于给用户或变压吸附系统100的监测器提供有关所述系统输出率的视觉输出。将流量计170通过止回阀171连接至输出过滤器175。输出过滤器175帮助确保由变压吸附系统100提供给患者的产物气体的完整性。输出过滤器175可以是HEPA细菌过滤器或其他合适的过滤器。可以将输出过滤器175的输出端口装配到能够给患者输送产物气体或氧气的设备。在一些实施例中,将输出过滤器175连接至患者从其中接收氧气的DISS或软管倒钩配件。[71]图5A是根据本发明实施例的变压吸附系统100的一部分的透视图。图5A示出了变压吸附系统的各种部件的装配。在图5A所示的示范性实施例中,变压吸附系统的核心部分包括第一筛室130和第二筛室135。另外,变压吸附系统100的核心部分可以包括产物箱140。产物箱140能够容纳由变压吸附系统产生的主要是氧的产物气体。在示范性实施例中,产物箱140并不含有分子筛材料。第一筛室130、第二筛室135和产物箱140可以固定在安装杆205上。将顶盖组件210和端盖组件215设置成与第一筛室130、第二筛室135和产物箱140连通。顶盖组件210和端盖组件215可以设置有促进变压吸附系统100的功能和操作的各种部件。可以将顶盖组件210和端盖组件215附接至安装杆205。在示范性实施例中,安装杆205是重量轻且能够承受变压吸附系统100各部件载荷的刚性构件。通过使变压吸附系统的大多数部件能够经由一个安装杆205进行附接,可以通过免除对额外安装托架、螺栓和杆的需要,而减少系统的重量,从而增加系统的效率。例加,与用于大多数部件的分离螺栓、螺帽和垫圈相比,只需要安装杆205来固定变压吸附系统的大多数部件。如图5A所示,变压吸附系统100还提供排气设备125。排气设备125是排气系统中能够使经吹扫的非产物排出气体从变压吸附系统中排出的部件,例如"吹出"消声器。图5B是根据本发明实施例的变压吸附系统100的一部分的透视图。如图5B所示,第一筛室130和第二筛室135是圆柱形结构。筛室130和135能够存放分子筛材料,例如天然或人工沸石。在一个实施例中,将第一筛室130和第二筛室135两者配置成具有人工沸石,例如SILIPORITENitroxy51R珠。另外,产物箱140是圆柱形容器。在示范性实施例中,产物箱140简单地为中空圆柱体,用于存放由变压吸附系统100生成的产物气体。图6A是根据本发明实施例的变压吸附系统100中顶盖组件210的顶部透视图。顶盖组件210包括顶盖305。在示范性实施例中,顶盖305是由如图6A所示的桁架结构所定义的结构。顶盖305的复杂桁架结构增加了所述结构承载载荷力并均匀分布施加到顶盖305上的力的能力。因此,18顶盖305的桁架结构能够使所述顶盖由重量轻的材料,例如塑料或其他聚合物来构造。以这种方式,顶盖305进一步对变压吸附系统重量轻的特性做出贡献。如图6A所示,顶盖305包括阀安装表面310。顶盖305还包括第一筛室腔306和第二筛室腔307。置于第一筛室腔306内、与阀安装表面310对齐的点是第一筛室端口410(图7B),其将给第一筛室130提供气体流量。置于第二筛室腔307内、与阀安装表面310对齐的点是第二筛室端口415(图7B),其将给第二筛室135提供气体流量。顶盖305还包括排气出口320。该排气出口与排气设备125连通。此外,置于顶盖305内的是供应入口端口315,其连通来自压縮机115的压缩气体。在示范性实施例中,阀安装表面310可以位于顶盖305的主体内。阀安装表面310包括与顶盖305的前述各端口对应的各种端口。阀安装表面310具有与第一筛室130连通的阀安装表面第一筛室端口311和与第二筛室135连通的阀安装表面第二筛室端口312。阀安装表面310还具有与排气出口320连通的阀安装表面排气端口313和与入口端口315连通的阀安装表面入口端口314。如图6A所示,顶盖组件210提供通向产物箱140的产物箱端口340。产物箱端口340能够使配件330将所述产物箱连接至压力调整器335。在示范性实施例中,压力调整器335能够使变压吸附系统对产物箱140的输出进行控制,从而以预定的压力和流率提供产物气体。变压吸附系统100还包括由阀安装表面310携载的阀120,所述阀用于在整个变压吸附循环中传送气体流量。阀120可以是被动设备或者其可以是主动设备。在示范性实施例中,阀120能够由逻辑控制设备150进行控制。所述逻辑控制设备可以向阀120发送信号和/或指令,以控制阀各端口的打开和关闭以及其他操作。图6B是根据本发明示范性实施例的变压吸附系统100的顶盖组件210的底部透视图。在该附图中示出了将顶盖组件210与第一筛室130、第二筛室135和产物箱140进行连接的各部件。顶盖组件210包括密封圈351、352和353,所述密封圈能够使顶盖创建与第一筛室130、第二筛室135和产物箱140的密封连接。此外,弹簧361和362由该顶盖组件携载,用于使分子筛沸石材料维持在相应分子筛室内的适当位置。顶盖组件210包括弹簧支持薄片371和372,以便由弹簧361和362承载施加给筛室130和135的载荷。在示范性实施例中,顶盖组件210还提供被动过滤设备(例如381和382),以便对通过变压吸附系统100传送的气体中所含的任何大的污染物进行过滤。图7A是在根据本发明示范性实施例的变压吸附系统100中的图6A和6B的顶盖组件中使用的顶盖305的顶部透视图。如图所示,可以将顶盖305配置成包括阀安装表面310、供应入口端口315、排气出口320和产物箱端口340。如图7A所示,这些部件可以嵌入到顶盖305中。此外,顶盖305可以提供安装杆205从中经过的安装管道405,使顶盖能够附接至变压吸附系统的其他部件。图7B是根据本发明实施例的变压吸附系统100的顶盖305的底部透视图。图7B示出了顶盖305中允许气体流动的各管道。顶盖305中的第一筛室端口410与阀安装表面第一筛室端口311连通,以允许气体流量进入第一筛室130。顶盖305中的第二筛室端口415与阀安装表面第二筛室端口312连通,以允许气体流量进入第二筛室135。此外,产物箱端口340能够使产物气体从产物箱140经顶盖305流至压力调整器335。图8A是根据本发明实施例的变压吸附系统100的阀120的底部透视图。在图8A所示的底部透视图中示出了阀120的多种端口。阀120具有与阀安装表面310的那些端口相匹配的端口。阀120具有与第一筛室130连通的阀第一筛室端口505,以及与第二筛室135连通的阀第二筛室端口510。阀120具有与排气出口320连通的阀排气端口515,以及与供应入口端口315连通的阀入口端口520。将这些端口配置成与阀安装表面310的各端口对齐。图8B是根据本发明实施例的变压吸附系统100的阀120的顶部透视图。所述阀提供控制连接525和530。所述控制连接525和530接收信号以指引阀120的操作。在一个实施例中,逻辑控制单元150给阀120提供控制信号。例如,在控制连接525和530处接收信号以打开阀入口端口520和阀第一筛室505,并使其他所有端口保持关闭,因而能够使压缩空气进入第一筛室130。当然,本发明可预见到对筛床循环进行控制所需的阀操作的很多其他组合。图9是根据本发明实施例的变压吸附系统100的端盖组件215的底部透视图。端盖组件215包括端盖605,所述端盖在示范性实施例中是由复杂的桁架构造所定义的结构,图9示出了它的一个示例。每个支持桁架构件,例如605a、605b和605c帮助支持端盖605的硬度、持久性和强度。如图9所示,桁架构件(例如605a)产生三角形支持元件,并且端盖605的底部用作三角形的底,而端盖的中央点用作三角形的垂直构件。端盖605的桁架构件的三角形构造增加了所述结构承载载荷力并均匀分布施加给所述端盖的力的能力。与顶盖组件210相同,端盖组件215包括密封圈610、615和620,从而产生与第一筛室130、第二筛室135和产物箱140的密封连接。端盖组件215包括对施加到筛室130和135上的载荷进行承载的支持薄片631和632。此外,端盖组件215提供被动过滤设备(例如641和642)以便对通过变压吸附系统100传送的气体中所含的任何大的污染物进行过滤。图10是根据本发明实施例的变压吸附系统100中用于传送流体流量的端盖605的顶部透视图。端盖605在解吸循环期间控制相应筛室130和135之间的流量,并对产物气体从相应筛室130和135输送至产物箱140进行控制。图10所示的端盖组件215的透视示出了在端盖605内包含的管道。端盖605中的各管道消除了对要用于连接变压吸附系统100各个室的管路或其他设备的需要。结果,通过消除这些不必要的部件可以降低所述变压吸附系统的整体重量。在示范性实施例中,端盖605包括密封第一筛室130底部的第一筛室底部腔705,和密封第二筛室135底部的第二筛室底部腔710。此外,端盖605包括密封产物箱140底部的产物箱底部腔715。端盖605中的各管道能够使气体从筛室130和135流向产物箱140以及在筛室130和135之间流动。如图IO所示,产物气体排出端口706提供从第一筛室130到产物箱140的管道。类似的端口(图10中看不到)提供从第二筛室135到产物箱的管道。从相应筛室向产物箱140的气体输送受输送系统720的控制,所述输送系统包括来自两个筛室的产物气体排出端口。这些产物气体排出端口终止于产物箱底部腔715,并能够使浓縮氧气从相应筛室输送到产物箱。输送系统720还可以包括双止回阀725。该双止回阀725可以覆盖在产物箱底部腔715中的产物气体排出端口上。双止回阀725可以为从第一筛室130输送的产物气体提供止回阀141,并为从第二筛室135输送的产物气体提供止回阀142。双止回阀725可以维持气体排出端口上的压力,从而防止产物气体回流到相应的筛室。本领域的技术人员将领会到,在不减损本发明范围的情况下可以以多种方式改变和修改变压吸附系统100的各个实施例。在非限定示例中,变压吸附系统100可提供两个以上的筛室或者多个双向阀来代替多用途阀。下表2提供了变压吸附系统100两个示范性实施例的规格对照表表2规格国内实施例国际实施例升流量0.5-5LPM0.5-5LPM声音<45dBA<43dBA氧气纯度(5Lpm下)92%+/-4%92%+/-3%重量13-14kg(28.6-30.8Lbs)15-16kg(33-35Lbs)尺寸580mm(22.8〃)x380mm(15〃)x240mm(9.5〃)(hxwxd)580mm(22.8〃)x380mm(15〃)x240mm(9.5〃)(hxwxd)体积53升(1,88cu.ft.)53升(1.88cu.ft.)氧气警报水平氧气低82%氧气低82%氧气非常低70%氧气非常低70%氧气感测选项氧气传感器可选氧气传感器可选功率消耗360瓦280-295瓦22<table>tableseeoriginaldocumentpage23</column></row><table>上表中的规格示出了变压吸附系统100的整体重量轻、效率高、运行安静。例如但非限制,变压吸附系统100的国内实施例能够生成5LPM的90%或更纯的氧气,而仅消耗360瓦的功率并产生小于45dBA的噪声。在另外的非限定性示例中,变压吸附系统100的国际实施例能够生成5LPM的卯%或更纯的氧气,而仅消耗280-295瓦的功率并产生小于43dBA的噪如图10所示,吹扫控制设备190位于第一筛室底部腔705和第二筛室底部腔710的邻接表面之间。如前面所提供的,吹扫控制设备l卯可以是能够由逻辑控制设备150控制的被动孔口或主动阀。在其中吹扫控制设备l卯是被动孔口元件的其他实施例中,所述孔口通常是固定的机械孔口。该固定孔口可以用于在变压吸附循环的吸附步骤期间,控制产物气体从第一筛室130到第二筛室135的吹扫流量。在这些实施例中,可以使用来自一个筛室的减压气体来解吸分子筛材料中所含的残余氮气和其他非产物气体,并有助于变压吸附循环的抽真空阶段。以这种方式,使用一个筛室的吸附阶段以更有效地对另一筛室的分子筛材料进行吹扫。值得注意的是,变压吸附系统100的一些实施例具有主动吹扫控制设备190。在一些这样的实施例中,主动吹扫控制设备190可以是双向电磁阀,所述双向电磁阀是氧气相容的并具有介于10到30psi之间的操作压力范围。本领域的技术人员将领会到在不减损本发明范围的情况下,可以为特定系统或期望结果改变主动吹扫控制设备190的具体特征。可以将主动吹扫控制设备190配置成由逻辑控制设备150进行控制。如前面提到的,所述逻辑控制设备包括印刷电路板上的微处理器或其他合适的逻辑控制机构。主动吹扫控制设备190能够根据与变压吸附循环的各个阶段对应的预定参数而改变筛室之间的吹扫气体流量。因此,主动吹扫控制设备190能够对加压气体从一个筛室到另一个筛室的传递进行可控操纵。图11是端盖605的透视图,其包括根据本发明实施例的变压吸附系统100中用于传送流体流量的主动吹扫控制设备190。在图11所描绘的示范性实施例中,主动吹扫控制设备190是连接到端盖605的2路阀。端盖605包含第一吹扫端口805和第二吹扫端口810。将吹扫端口805和810连接到所述筛室底部腔内所包含的管道。如图11所示,第一筛室管道815位于第一筛室底部腔705内。第一筛室管道815能够使气体从第一筛室130流入第一吹扫端口805。类似的,第二筛室管道820位于第二筛室底部腔710内,并连接到第二吹扫端口810。因此,在示范性实施例中,允许气体通过吹扫控制设备190在第一筛室130和第二筛室15之间流动。如图11所描绘的示范性实施例中所示,吹扫控制设备190可以位于筛室130和135的底部,使得在筛室130和135之间流动的气体是产物气体。在图11所描绘的示范性实施例中,将主动吹扫控制设备190连接到逻辑控制设备150。在非限定性示例中,主动吹扫控制设备190包括由逻辑控制设备150驱动的螺线管。在该实施例中,逻辑控制设备150能够控制气体从第一筛室130到第二筛室135的流动。在示范性实施例中,逻辑控制设备150可以根据预定的变压吸附循环来控制吹扫控制设备190的操作。因此,所述逻辑控制设备能够根据由逻辑控制设备所计算的变压吸附系统的流率变化来改变所述吹扫控制设备的操作。对主动吹扫控制设备190的可控管理克服了很多常规系统中的缺点,因为它对变压吸附系统100的操作特征和输出有很多非常期望的效果。在示范性实施例中,主动吹扫控制设备190能够操作在氧气增加模式中,所述氧气增加模式增加由变压吸附系统产生的氧气纯度。在替代的实施例中,主动吹扫控制设备可以操作在功率节省模式中,所述功率节省模式降低变压吸附系统损耗的功率。在又一实施例中,主动吹扫控制设备可以操作在声音降低模式下。下面讨论操作主动吹扫控制设备的这些操作模式及在这些不同模式间进行切换的技术。A.氧气增加模式吹扫控制设备190的可控操作能够增加由变压吸附系统IOO产生的产物气休的氧气浓度。现存设备简单地使用固定机械孔口来控制变压吸附循环的进料步骤中氧气从一个筛室到另一筛室的吹扫流量。常规地,氧气浓縮器试图通过增加压缩机的冲程和/或内径来增加变压吸附系统的氧气浓度。增加系统中压縮机的冲程和/或内径增加了系统的压力,这会或者不会增加产物气体的氧气浓度。这种方法不但效率极低,而且它要求更高的功率并使变压吸附系统的操作参数退化,从而减少了系统的寿命。增加压縮机的需求增加了系统生成的噪声量、系统生成的热量和系统消耗的功率量。所有这些因素减少了系统的整体有效寿命。然而,使用主动吹扫控制设备190并不要求增加压縮机的冲程和/或内径来增加筛室内的压力和产物气体的氧气浓度。与现有技术设备相比,主动吹扫控制设备190通过帮助从正被吹扫的筛室中解吸非产物气体,和通过帮助对提供增加的整体压力水平而进行进料的筛室进行吸附,来增加较低流率下的输出氧气浓度。在变压吸附系统100于低流率下操作的非限定性示例中,第一筛室130经历变压吸附循环的进料步骤,并且主动吹扫控制设备190至少在进料步骤的大部分时间内是打开的,将压縮气体传递到第二筛室135,所述第二筛室经历吹扫步骤。通过打开的主动吹扫控制设备传递过量的压縮气体帮助从第二筛室135中解吸非产物气体(例如氮气)。这能够使第二筛室从在第二筛室135的下一进料阶段所输入的压縮周围空气中更有效地分离出非产物气体。在另一非限定性示例中,在开始吹扫步骤之前插入延迟,这能够增加吸附阶段的峰值压力。在该示例中,在闭合位置上用吹扫设备190快速对进料的筛室进行加压。因此,在吸附阶段期间,筛室内很快达到更大的压力并维持更长的时间。一旦主动吹扫延迟期终止,可以打开吹扫设备190并可以将浓縮的产物气体传递到被吹扫的筛室内以再生该筛室。因而可以领会到,主动吹扫控制设备190通过在变压吸附循环的吹扫步骤开始时插入延迟,并通过在解吸阶段将产物气体传递给筛室而增加氧气浓度。吹扫步骤开始时的延迟导致常规变压吸附循环的变化。常规地,将变压吸附循环的进料步骤和吹扫步骤合并。根据本发明示范性实施例,主动吹扫控制设备190允许单纯的进料步骤,其中在由于吹扫而没有放松任何压力的情况下,将压縮的周围空气引入筛室。因此,在一些实施例中,根据变压吸附系统的期望输出流率,可以使用主动吹扫控制设备将延迟插入吹扫步骤中。在示范性实施例中,与变压吸附系统的输出流率的增加成比例地增加延迟量。在变压吸附循环中,这一单纯的进料步骤之后可紧随进料加吹扫步骤。可以将主动吹扫控制设备190的一些实施例配置成比常规固定孔口更大的孔口。在示范性实施例中,主动吹扫控制设备190具有比典型的固定孔口吹扫设备大30%到50%的孔口。在一个实施例中,主动吹扫控制设备190的氧气体积流率目标是15psi下18LPM、20psi下21LPM以及25psi下24LPM。更大的孔口能够使变压吸附系统100补偿吹扫步骤减少的时间。更具体地,具有更大孔口的主动吹扫控制设备190允许更大体积的压縮浓縮产物气体离开被进料的筛室并进入再生的筛室。图12是变压吸附循环某些阶段的持续时间与变压吸附系统100实施例的流率关系的图表。图12示出了其中实现为固定孔口吹扫控制设备190的变压吸附系统100的实施例以及其中实现为主动吹扫控制设备190的单独实施例的阶段持续时间。如图12所示,"主动吹扫延迟"的数据标绘线905随变压吸附系统的流率或LPM的增加而增加。如图所示,在0.5LPM下,"主动吹扫延迟"是零秒,而在5LPM下,"主动吹扫延迟"是3秒。因此,吹扫延迟随流率的增加而增加。根据流率改变"主动吹扫延迟"增加了产物气体中的氧气浓度。图13是变压吸附系统100实施例的产物气体的氧气浓度的图表。该图表示出了由其中吹扫控制设备190是固定孔口的变压吸附系统实施例和其中吹扫控制设备是主动的实施例所生成的产物气体的氧气浓度。如图所示,"固定孔口"实施例展示出氧气浓度在低流率和高流率处都降低。例如,"固定孔口"实施例的氧气浓度在0.5LPM下降低至近似92.4X,并类似地在5LPM下降低至近似94.4X。在"主动吹扫阀"实施例中对"固定孔口"实施例的钟形特性的数据标绘线1005进行校正。如图13所示,"主动吹扫阀"实施例的数据标绘线IOIO基本上是一条缓慢下降的线。主动吹扫控制设备190允许其中产生更高氧气浓度的更有效变压吸附循环。例如,在0.5LPM下"主动吹扫阀"实施例的氧气浓度近似为96.4。%。,[107]值得注意的是,本领域技术人员将领会到,变压吸附系统在氧气增加模式中的示范性实施例的实现能够产生氧气浓度在传统最大阀处或之上的氧气。常规设备已经得到的最大氧气浓度为95.6%。如图13中提供的数据所示,变压吸附系统在氧气增加模式中的示范性实施例能够远远超过这一以前的最大氧气浓度而达到96%甚至更高。现有技术的变压吸附设备在操作模式中不能提供浓度水平高于95.6%的氧气。因而,变压吸附系统100克服现有技术的缺陷并使变压吸附系统有可能生成非常纯的氧气。如图13所示的"主动吹扫阀"实施例的数据标绘线1010所示出的,氧气浓度随流率的增加仅轻微地降低。对于图13描绘的示范性实施例而言,在5LPM的高流率下氧气浓度近似为95X。主动吹扫控制设备的实现能够整体增加变压吸附系统所产生的氧气纯度。图14A提供了变压吸附系统IOO的固定吹扫设备实施例的压力值与时间关系的图表。图14B提供了变压吸附系统的主动吹扫设备实施例的压力值与时间关系的图表。如图表所示,对于用主动吹扫控制设备的变压吸附系统实施例的压力值迹线(图14B)比对于用被动吹扫控制设备的变压吸附系统实施例的迹线更均匀(方形)。图14A示出了沿着从近似12psi到近似20psi的较缓斜率被动吹扫控制设备对筛室有多大的加压。与之相比,主动吹扫控制设备对筛室的加压(其中在变压吸附循环中执行吹扫延迟)非常迅速并基本恒定地保持在近似21psi。因而,在吸附期间很快达到更高的压力并保持更长的时期。更高的氧气浓度源自实现为主动吹扫控制设备的实施例的压力迹线的更均匀特性。在非限定性示例中,与被动控制设备实施例在5LPM下94.42%的氧气相比,主动吹扫控制设备实施例的氧气纯度在5LPM下是95.03%的氧气。由主动吹扫控制设备提供的另一优势在于,能够延长在更低流率下的操作循环时间。变压吸附系统的用户非常希望增加更低流率下的循环时间,因为当循环时间增加时机器听起来似乎运行的更平稳。与更平稳运行的机器相关的是由于低频率的排气或解吸阶段。当变压吸附系统正以快速循环时间操作时,排气设备更频繁地处于操作中,并且排气设备的噪声(有时称之为"吹出"消声器)与装备的快速工作件反向相关。高频率的排气脉冲对感知设备的操作是有害的。另外,高频率的排气脉冲对系统的各部件施加有影响的应力并使其磨损,从而降低系统的可操作寿命。翻回到图12,所述图表为使用被动设备的变压吸附系统和主动吹扫设备的变压吸附系统两者提供了变压吸附循环多个阶段的数据标绘线。如图所示,"主动吹扫循环"的数据标绘线910在较低流率处增长,而"固定孔口循环"的数据标绘线915在较低流率处下降。在非限定性示例中,如图9中的图表数据所示,"主动吹扫循环"时间在0.5LPM下近似为18秒,而"固定孔口循环"在0.5LPM下近似为5.5秒。因此,主动吹扫设备190允许更长的循环时间和更平稳地感知操作并增加设备寿命。B.功率节省模式除了能够进行增加氧气浓度模式外,吹扫控制设备190的可控操作能够降低变压吸附系统100消耗的功率。在功率节省模式下操作的变压吸附系统的实施例通过实现主动吹扫控制设备的流率算法,使所述系统的功率消耗最小。用于变压吸附系统的功率节省模式的流率算法根据所执行的算法改变主动吹扫控制设备的时序,以实现最大的氧气浓度。图15为在功率节省模式下操作的变压吸附系统100的实施例提供了变压吸附循环不同阶段的时间值图表。图12中所示的时间值对应于功率节省模式下变压吸附系统100的示范性实施例的流率算法。对于图15所示的变压吸附系统的示范性实施例而言,流率算法使进料时间线性增加到4.5LPM处的最大值5秒。平衡时间(或各筛室的均衡)线性降低到4.5LPM处的最小值0.8秒。主动吹扫控制设备的吹扫延迟对于2.5LPM或以下的流率保持为零,而对于2.5LPM和4.5LPM之间的流率线性增加。执行与图12中提供的数据对应的流率算法导致变压吸附系统有更低的功率消耗。图16提供了在功率节省模式下操作的变压吸附系统100的实施例的功率消耗图表。如图所示,主动吹扫控制设备190执行功率节省流率算法显著降低了所述设备消耗的功率。在非限定性示例中,功率节省模式下1LPM的变压吸附系统示范性实施例所消耗的功率近似为30瓦,小于氧气增加模式下1LPM的变压吸附系统实施例所消耗的功率。除了对变压吸附系统的功率消耗节约之外,主动吹扫控制设备的智能管理所带来的功率消耗降低提供了很多有意义的优势。功率的降低还导致在变压吸附循环期间变压吸附系统中所维持压力的降低。这一压力降低减少了通过操作施加于所述系统的应力。此外,根据理想气体定律,减少的压力导致操作温度的下降。这一温度降低帮助进一步减轻通过操作施加于所述系统的应力。值得注意的是,功率、压力和温度的降低导致变压吸附系统可更长的操作。图17是在各种模式下操作的变压吸附系统100实施例的产物气体28的氧气浓度和功率消耗的图表。根据本发明的示范性实施例,通过改变主动吹扫控制设备190的操作,同一变压吸附系统可以在氧气增加模式下或功率节省模式下进行操作。更具体地,通过使用主动吹扫控制设备改变变压吸附循环能够使同一系统在氧气增加模式下或功率节省模式下操作。在示范性实施例中,可以通过逻辑控制设备150将变压吸附系统从氧气增加模式切换到功率节省模式。在示范性实施例中,可以向逻辑控制设备发送指令以便根据氧气增加模式操作或功率节省模式操作来改变主动吹扫控制设备的操作。在示范性实施例中,用户可访问变压吸附系统上的用户界面,以便指导逻辑控制设备在期望的模式下进行操作。在替代实施例中,通过拨动变压吸附系统上的开关,使得向逻辑控制设备发送指令。本领域技术人员将领会到,在不减损本发明范围的情况下,可以对将变压吸附系统从一种模式切换到另一模式的方法进行改变。如图17中的数据标绘线1405所示,对于从0.5LPM到5LPM的整个流率范围在氧气增加模式下变压吸附系统100的操作得到比一般更高的氧气浓度输出。虽然在氧气增加模式下提高了氧气浓度,但是变压吸附系统100的功率消耗(如数据标绘线1410所示)与常规设备是相当的。当氧气浓度最重要时,变压吸附系统100可以操作在氧气增加模式下。另一方面,当功率消耗最重要时,可以将同一变压吸附系统切换到功率节省模式下操作。如图17中的数据标绘线1420所示,当在功率节省模式下操作时,变压吸附系统消耗的功率最小。然而,在功率节省模式期间产生的氧气浓度与常规系统的更加相当,如图17中的数据标绘线1415的钟形弯曲特性所示。因此,变压吸附系统可以根据患者的需求进行操作。C.声音降低模式除了能够进行氧气增加浓度模式和功率节省模式外,本发明还预见对吹扫控制设备190的操作进行控制,使得变压吸附系统100在声音降低模式下进行操作。在声音降低模式下操作的变压吸附系统的实施例通过执行主动吹扫控制设备的流率算法,使系统的声音最小。用于变压吸附系统的声音降低模式的流率算法根据所执行的算法改变主动吹扫控制设备的时序,以实现最大氧气浓度或最小功率消耗。氧气浓縮器的声级包括具有恒定性质和循环性质两者的声音。恒定声音的示例是来自压縮机115和冷却扇(未示出)的噪声。这些部件在系统操作期间运行并产生基本恒定的噪声。循环声音出现在恒定噪声的顶部或之外。这些循环声音包括处于切换状态的阀120和190的噪声,以及废气从排气消声器125中排出的噪声。与处于切换状态的阀120和190相关的声音以及从排气消声器125发出的声音就是声音降低模式打算降到最小的声音。这首先通过检查吹扫阀设备190何时需要从关循环到开,并且此时其只有一种状态(开或打开)从而不产生由于从关到开并再次反复地改变状态而导致的噪声来实现。由此在氧气增加模式中,吹扫阀设备主动地改变状态,因而在所有的氧气输出流率下都产成噪声。另一方面,在声音降低模式中,吹扫阀设备190仅在高于3LPM的流率中循环。低于3LPM,所述阀在整个PSA循环中保持打开,从而有效地产生持久较大的孔口,对于那些流率(即,速率〈LPM)而言,氧气吹扫气体可有效地通过该孔口。高于3LPM,吹扫阀在氧气增加模式中按如上所述的那样操作,由此所述阀保持关闭一简短时期,以便快速建立筛床中的压力,然后打开以开始吹扫步骤。同时,阀120以一种在所有氧输出流率下其都具有基本相同的开/关时序的方式进行操作。这与阀120随流率下降以逐渐变快的速率进行循环的功率节省模式相反。虽然氧气增加模式甚至比声音降低模式进一步扩展了阀120的循环频率,但是氧气增加模式产生更高的压力,这反过来导致来自消声器125的排气"吹出"噪声更高。图18描述使用根据本发明原理的变压吸附系统100用来实现声音降低模式的特定阀时序的示例。由于排出气体经过排气消声器125所造成的声级直接与阀120切换并通过排气消声器125排空吹扫床压之前所述消声器的系统压力逆流有关。循环中这一点的系统压力称之为"平衡压力",因为阀120允许在两个筛床与压縮机之间连通正好足够长的时间以使各筛床处于相同的压力点。所述平衡压力在氧气增加模式中更高而在声音降低模式中更低。结果,在声音降低模式中由消声器造成的峰值消声器压力和峰值声级更低。图19示出了声音降低模式的典型产物箱压力600a、系统平衡压力601a和排气消声器峰值压力602a,而图20示出了氧气增加模式的典型产物箱压力600b、系统平衡压力601b和排气消声器峰值压力602b。从图19和20的比较中可以领会到,这两种模式之间的差别基本出现在1-3LPM流率下,这些流率是最大流率为5LPM的氧浓度系统中使用的最常见流率。[124]通过在氧气增加模式和声音降低模式下进行操作时测量系统的最大声级,可以展示更低峰值消声器压力的好处。3LPM下,声音降低模式中操作的典型系统的峰值声级记录为45.7dBA,而在相同的测试条件下,氧气增加模式中操作的同一系统记录为47.3的峰值噪声水平。D.各模式间的切换本发明预见到可以手动或自动选择压力支持系统的操作模式。对于手动选择操作模式而言,设置与逻辑控制设备150通信的输入/输出设备180。用户可以使用输入/输出设备180手动选择操作模式,例如氧气增加模式、功率节省模式、声音降低模式。本发明预见到输入/输出设备180是适于进行这一功能的任何设备,例如开关、旋钮、按钮、键盘、触摸屏显示器以及声音致动或语言识别设备。这给用户提供了选择如何根据用户的当前需要最佳地操作PSA系统的宽泛的自由度。如上所提到的,本发明还预见自动使系统在模式间进行切换。在示范性实施例中,所述系统一般操作在作为默认模式的功率节省模式下。然而,如果氧气传感器165检测到系统性能在氧气输出的纯度方面己经变坏达一定程度或已经降到阈值以下,则所述系统能自动从当前的操作模式(功率消耗模式或噪声降低模式)切换到氧气增加模式。类似地,本发明预见对系统的功率消耗和/或周围环境的声音进行监测,并根据这种监测的结果切换为功率消耗模式和/或噪声降低模式。本发明进一步预见对系统的氧气浓度进行监测,并且只要氧气浓度处于阈值极限(例如90%)之上就逐渐且自动地朝功率节省模式或声音降低模式移动。E.延长的平衡通常变压吸附循环集成有平衡阶段。在该平衡阶段中,可以将变压吸附系统的各筛室进行均衡。依靠所述平衡阶段以利用一个筛室的加压来帮助对另一筛室进行加压,从而减少对于压縮机提出的需求。在筛室完成吹扫阶段后,清空筛室内的压力。为了使后继进料阶段有效,必须给筛室再次加压。在具有一个以上筛室的变压吸附系统中,可以使吹扫阶段和进料阶段同步,使得当一个筛室处于吹扫阶段时,其配对的另一筛室处于进料阶段。这样,所述正被吹扫的室可以用来帮助对正被进料的室进行加压。所述平衡阶段发生在进料阶段和吹扫阶段之间。常规地,如美国专利No.5,183,483所描述的那样,所述平衡阶段涉及打开两个筛室端口和供应输入端口,使得压縮空气可以从压縮机和加压的筛室流入待加压的筛室中。在示范性实施例中,所用的阀是具有能够在最小压力下进行切换的先导型螺线管设备的SMC阀。典型地,一旦各筛室间的压力达到均衡,则关闭所述筛室端口。在变压吸附系统100的示范性实施例中,与常规设备所用的技术相反,变压吸附循环的平衡阶段延长超过各筛室达到均等压力的时间。在一个实施例中,一旦第一筛室130和第二筛室135达到均等压力,各筛室的端口122和123都可以对来自压縮机115的供应输入端口142保持打开,从而增加两个筛室130和135内的压力。变压吸附循环中执行延长的平衡阶段具有很多有意义的优势。增加所述平衡时间能够增加变压吸附循环的循环时间。这种循环时间的增加降低了变压吸附系统100操作之间的脉冲频率。值得一提的是,加长的循环时间降低了排气设备125的操作频率,从而降低了所述设备随时间所生成的噪声。另外,延长的平衡阶段抬升了所述系统内的阀切换压力。在非限定性示例中,切换压力的最小规格的阈值可以是7psi,而在现有技术的机器中,切换通常发生在或稍高于该阈值。在变压吸附系统100的示范性实施例中的延长平衡阶段增加了整体压力,使得平均切换压力优选在10到13psi范围内。因此,所述延长的平衡可以用于将来自压縮机115的压縮气体输入在两个筛室130和135之中进行划分。对压縮气体输入进行分割导致输入到正经历变压吸附循环的吸附阶段的筛室中的压縮气体总量减少。以这种方式,所述延长的平衡阶段能在低流率时增加氧气浓度水平。图21提供了示出关于延长的平衡模式下操作变压吸附系统100的氧气浓度的效果的图表。图15的图表提供了系统在传统变压吸附循环下操作所生成的氧气浓度,以及系统在根据本发明实施例的变压吸附循环的延长的平衡模式下操作所生成的氧气浓度。如图21所示,调整变压吸附系统的变压吸附循环以便在延长的平衡模式下进行操作,极大地增加所产生的产物气体的氧气浓度。在非限定性示例中,传统模式中的系统在0.5LPM下生成90.1%的氧气,而在延长的平衡模式中的系统在0.5LPM下生成92.6Q"的氧气。此外,对于从0.5LPM到3LPM的流率范围,延长的平衡模式下系统产生的氧气浓度大于传统模式下操作的系统。实施例调整变压吸附系统100的变压吸附循环以便在根据本发明的延长的平衡模式下进行操作,克服了很多现有技术的缺陷。提升氧气浓度的传统方法要求使循环时间固定而增加进料时间或吸附阶段。传统方法可以或不能顺利地稍微增加产物气体的氧气浓度。然而,对所述系统操作的减损是十分显著的。增加进料时间,增加了所述系统内的整体压力。整体压力的增加,增加了压縮机的载荷从而增加了系统所消耗的功率。不仅所消耗的功率更多,而且系统内压力的增加给系统施加更大的应力,并减少了系统的可操作寿命。在延长的平衡模式下变压吸附系统100的操作实际增加了氧气浓度,同时还增加了循环时间。因而,减少了系统上的应力并加长了系统100的可操作寿命。图22提供了示出变压吸附系统100实施例的平衡时间与切换压力及氧气输出浓度的关系的图表。如图22中描绘的数据所示出的那样,平衡时间的延长增加了变压吸附系统实施例输出的氧气浓度和所述系统的切换压力。例如但非限定性,2秒的延长平衡时间导致14psi的切换压力和93.73.%的氧气浓度。这是对常规的0.8秒平衡持续时间(其导致8.8psi的切换压力和93.60%的氧气浓度)的改进。所述变压吸附系统的操作大大优于常规系统的操作。所述系统的成套部件的设计、体系结构和特征能够使重量轻的系统操作更有效并产生更高质量的输出。例如但非限制,将压縮机的设计与各筛室的容量匹配能够使变压吸附系统的两个重要部件进行非常好地优化配合(paring)。因此,所述系统能够在重量轻的设备中提供更好的产物气体生成。与常规设备相比,本发明的变压吸附系统更安静,并且它不像通常那样进行循环。此外本发明的变压吸附系统给用户提供更多的控制和灵活性。在示范性实施例中,变压吸附系统100可在氧气增加模式下操作,这能够使系统生成的氧气在纯度级别上超过现有技术的任何设备、甚至超33过本领域技术人员能够认识到的实际最大值。对于所述方法,本领域技术人员的惯性思维是所述设备应该在更低的流率下效率更低地浓縮氧气。然而,变压吸附系统100的示范性实施例违反了这一常规逻辑,并依赖更长的循环和对吹扫设备的精确控制,以便在更低的流率下实现最大氧气生成纯度。此外,可以操作变压吸附系统100的示范性实施例以消耗最少的功率。因此,所述变压吸附系统可以在常规氧气纯度水平下进行操作并与现有技术的设备相比消耗显著更少的功率。在又一模式中,变压吸附系统100可以在声音降低模式中进行操作以使所述系统发射到周围环境的声音量最小。用户可以经由手动致动的输入在各模式间进行手动切换,或者所述系统根据系统的的操作特征自动选择模式。本发明预见到变压吸附系统100可以包括在氧气生成和输送系统中能够典型找到的附加特征。例如,本发明预见在给用户输送的气流中设置氧气节省设备(OCD)190。在图l所示的实施例中,OCD190设置在过滤器175的上游。当然,本发明预见将其设置在其他的合适位置上。OCD190可以是电子或充气的氧气节省器。氧气浓縮系统(例如系统100)中OCD的主要优势在于,延长有效最大流率以超过持续最大额定值。例如,筛床和压縮机系统的尺寸适于1LPM的持续最大流率的系统在耦接有3:1的OCD.时,可有效划归为3LPM系统。这是因为OCD控制给患者的氧气流量,仅在呼吸循环的吸气阶段期间,在特定时间段上输送特定体积的氧气。与制造更大的连续流量系统所需的附加重量、费用和功率相比,OCD的附加重量、费用和功率消耗少。本发明进一步预见变压吸附系统100可以用在更大的氧气生成和输送和/或存储系统的一部分中。例如,PSA系统输出的气体流量可以用作其他系统(例如灌气系统或液化系统)的气源。在灌气系统中,将来自所述气源的气体(其典型地在5-40psi的压力下)提供给升压器或增压器系统。增压器系统将所述气体的压力增加到2000-3000psi。将这么高压力的气体提供给便携式容器中供患者使用。美国专利nos.5,071,453、5,858,062、5,988,165、6,342,090、6,446,630、6,889,726和6,904,913中公开了适于和PSA系统100结合使用的灌气系统的示例,这些专利文献中的每一篇的内容以引用方式并入本文中。[139]在一个实施例中,将PSA系统产生的富氧气体作为低压富氧气流提供给用户和增压系统。用户可以在所述系统上吸入低压富氧气流,同时所述系统填充便携式容器或增加该低压气流的压力。例如,美国专利no.5,858,062中公开了这种系统。在另一实施例中,将低压富氧气流的所有气体提供给增压组件。用户可以经由压力调整器和任选的氧气节省器呼吸高压气流,甚至同时将高压气流提供给存储器。例如美国专利no.6,904,913中公开了这种系统。在又一实施例中,将低压富氧气体提供给开关,使得将该气流提供给用户或增压系统。例如,美国专利no.6,446,630中公开了这种系统。在液化系统中,将来自所述气源的气体提供给液化系统,所述液化系统将富氧气流液化成液态氧(LOX)。将LOX存储或提供给便携式容器以供用户使用。美国专利nos.5,892,275、5,979,440、6,212,904、6,651,653、6,681,764和6,989,423;以及在美国专利申请nos.11/131,071(公开号为no.US2006/0086099)和11/130,646(公开号为no.US2006/0086102)中公开了适于和PSA系统100结合使用的液化系统的示例,这些专利文献中的每一篇的内容以引用方式并入本文中。与所述灌气系统相同,在一个实施例中,所述液化系统能够使用户呼吸提供给液化器的低压富氧气体。在另一实施例中,用户可以从LOX生成系统的储存器中或从LOX系统填充的便携式容器中呼吸液体氧供应。虽然为说明目的已经基于当前认为是最实际和优选的实施例而详细描述了本发明,但是应当理解的是,这种细节仅是出于说明目的,并且本发明不限制于所公开的实施例,相反,本发明应当覆盖落在权利要求书的精神和范围内的修改及等效布置。例如,应当理解的是,本发明预见到以可能的程度,使任意实施例的一个或多个特征可以与任意其他实施例的一个或多个特征进行组合。权利要求1、一种用于将空气分离成浓缩气体组分的方法,所述方法包括如下步骤通过吸附系统的操作生成最大量的所述浓缩气体组分;输送由所述吸附系统生成的、输出量的所述浓缩气体;将吹扫量的所述浓缩气体分配到正经历解吸循环的所述吸附系统的筛室中,其中,所述吹扫量的值小于或等于所述最大量与所述输出量之间的差;以及根据所述输出量对所述吹扫量进行控制。2、如权利要求l所述的方法,其中,所述吹扫量随所述输出量的减少而增加。3、如权利要求1所述的方法,其中,所述吸附系统包括变压吸附系统。4、如权利要求l所述的方法,其中,所述浓縮气体组分是氧气。5、一种将空气分离成浓縮气体组分的吸附系统(100),所述系统包括压縮机(115),其用于接收并压縮来自空气供应的空气,从而提供压縮空气供应;-分子筛材料,其用于将所述压縮空气供应分离成浓縮气体组分;第一分子筛室(130),其用于容纳所述分子筛材料;第二分子筛室(135),其用于容纳所述分子筛材料;供应室,其用于接收所述压縮空气供应,并用于将所述压縮空气供应传送至所述第一和第二分子筛室;出口,其用于输送来自所述分子筛材料的所述浓縮气体组分;吹扫设备(190),其用于在所述第一分子筛室和所述第二分子筛室之间传送所述浓縮气体组分,并且其中,所述吹扫设备的通过率是可修改的。6、如权利要求5所述的系统,其中,所述吹扫设备的所述通过率可以由逻辑控制单元(150)进行修改。7、如权利要求6所述的系统,其中,所述逻辑控制单元执行算法,其中,所述算法根据期望的流率输出,为所述第一分子筛室或所述第二分子筛室开始吹扫步骤的延迟提供不同的值。8、如权利要求5所述的系统,其中,所述吹扫设备的所述通过率可以被修改为零值。9、一种操作吸附系统以将空气分离成浓縮气体组分的方法,所述方法包括如下步骤用压縮空气供应对第一分子筛室进行加压;从所述第一分子筛室中输出产物气体;将所述第一分子筛室吹扫到第二分子筛室;以及相对于所述加压步骤改变所述吹扫步骤的启动。10、如权利要求9所述的方法,其中,所述吹扫步骤与所述加压步骤同时启动。11、如权利要求9所述的方法,其中,在所述加压步骤启动之后的预定延迟时启动所述吹扫步骤。12、如权利要求ll所述的方法,其中,所述预定延迟是取决于所述吸附系统的输出流率的动态值。13、一种操作吸附系统以将空气分离成浓縮气体组分的方法,所述方法包括如下步骤用压縮空气供应对第一分子筛室进行加压;从所述第一分子筛室中输出产物气体;将所述第一分子筛室中的压力水平与第二分子筛室中的压力水平进行平衡以达到均衡压力;以及同时增加所述第一分子筛室和所述第二分子筛室中的所述压力水平以达到高于所述均衡压力的压力水平。14、如权利要求13所述的方法,其中,所述浓縮气体组分是氧气。15、如权利要求13所述的方法,其中,所述吸附系统包括变压吸附系统。16、一种将空气分离成浓縮气体组分的吸附系统(100),所述系统包括压缩机(115),其用于接收并压縮来自空气供应的空气,从而提供压縮空气供应;分子筛材料,其用于将所述压縮空气供应分离成浓縮气体组分;第一分子筛室(B0),其用于容纳所述分子筛材料;第二分子筛室(135),其用于容纳所述分子筛材料;吹扫设备(190),其用于在所述第一分子筛室和所述第二分子筛室之间传送所述浓縮气体组分,并且其中,所述吹扫设备的通过率是可修改的;以及控制器(150),其用于控制所述吹扫设备,其中,所述控制器适于在多种操作模式下操作所述吹扫设备。17、如权利要求16所述的系统,其中,所述多种操作模式包括下列模式中的至少两种氧气增加模式、功率消耗模式和声音降低模式。18、如权利要求16所述的系统,还包括适于使用户能够手动选择所述多种操作模式之一的输入设备,并且其中,所述控制器根据使用所述输入设备所选择的模式对所述吹扫设备进行控制。19、如权利要求16所述的系统,还包括监测设备(160、165、170),其中,根据所述监测设备的输出,自动改变用于控制所述吹扫设备的操作模式。20、如权利要求19所述的系统,其中,所述监测设备是氧气传感器(165)。21、如权利要求20所述的系统,其中,所述氧气传感器位于所述第一和第二分子筛的下游,以检测所述浓縮气体组分中的氧气浓度,并且其中,所述控制器响应于所述氧气浓度降到阈值水平以下,而自动将用于操作所述吹扫设备的所述操作模式改变为氧气增加模式。22、一种操作吸附系统以将空气分离成浓缩气体组分的方法,所述方法包括如下步骤用压縮空气供应对第一分子筛室进行加压;从所述第一分子筛室中输出产物气体;将所述第一分子筛室吹扫到第二分子筛室;控制所述吹扫步骤,使得在多种操作模式下进行操作。23、如权利要求22所述的方法,其中,所述多种操作模式包括下列模式中的至少两种氧气增加模式、功率消耗模式和声音降低模式。24、如权利要求22所述的系统,还包括使用输入设备手动选择所述多种操作模式之一。25、如权利要求22所述的方法,还包括监测所述产物气体的参数;以及根据所述监测步骤的结果,自动改变所述吹扫的操作模式。26、如权利要求25所述的系统,其中,所述参数是氧气。全文摘要本系统是一种用于将空气分离成浓缩气体组分的吸附系统(100),其具有空气供应,用来接收并压缩气体供应、进而提供压缩空气供应的压缩机(115),以及用来将压缩空气供应分离成浓缩气体组分的分子筛材料。所述吸附系统以至少5升每分钟(LPM)输送来自所述分子筛材料的浓缩气体组分,其中所述系统具有<9lbs/LPM的每LPM总比重。另外,由所述吸附系统输送输出量的所述浓缩气体,并将吹扫量的所述浓缩气体分配到正经历吹扫循环的所述吸附系统的筛室中。所述吹扫量的值等于或小于最大量与所述输出量之间的差,并且基于所述输出量对所述吹扫量进行控制。文档编号B01D53/02GK101534926SQ200780031942公开日2009年9月16日申请日期2007年8月15日优先权日2006年8月28日发明者J·T·多伦斯基申请人:Ric投资有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1