用于从携带固体的钻井流体分离固体的设备的制作方法

文档序号:5085303阅读:218来源:国知局
专利名称:用于从携带固体的钻井流体分离固体的设备的制作方法
技术领域
本发明涉及用于从携带固体 的钻井流体分离固体的设备和方法,更具体地,但不是排他地,涉及用于从携带固体的钻井泥浆分离固体的设备和方法。本发明还涉及用于其的振动筛和筛组件。
背景技术
在油或气井建设中钻井筒时,钻头布置在钻柱端部,所述钻柱旋转来穿过地层钻出井筒。被称为“钻井泥浆”的钻井流体被泵送通过钻柱到达钻头,以润滑钻头。钻井泥浆还用于将由钻头产生的切屑和其他固体通过形成在钻柱和井筒之间的环形空间运送到地面。严格控制钻井泥浆的密度来阻止井筒坍塌,并且确保钻井最佳地进行。钻井泥浆的密度影响钻头的钻进速度。通过调整钻井泥浆的密度,在可能出现井筒坍塌的损害时改变钻进速度。钻井泥浆也可运送堵漏材料来堵塞井筒的有孔部分。也可根据正在穿过的地层情况的类型来调整钻井泥浆的酸度。钻井泥浆中尤其是包含昂贵的合成的油基润滑剂,并且因此通常将回收和再利用用过的钻井泥浆,但是这需要特别是将固体从钻井泥浆去除。这通过处理钻井泥浆实现。所述处理的第一部分是将固体从携带固体的钻井泥浆分离。这至少部分通过振动分离器,例如US 5, 265, 730, WO 96/33792和WO 98/16328中公开的振动筛实现。可使用其他处理设备,例如离心机和水力旋流器来进一步清洁固体泥浆。固体被覆盖于污物和残渣中。井筒中具有30到100m3的循环钻井泥浆并非罕见。所得的固体,本文称为“钻井切屑”经处理来基本上从所述固体去除全部残渣和污染物。然后可将固体在垃圾填埋点处置或在固体材料来自的环境中通过倾倒在海里来处置。或者,固体可用作建筑行业中的材料或具有其他工业用途。振动筛通常包括开放底部的篮,所述篮具有一个开放排放端和一个具有实心壁的进料端。多个矩形筛布置在所述篮的开放底部上方。所述筛可基本上为平面,或具有略微的拱顶。篮布置在用于接收回收钻井泥浆的容器上方的弹簧上。吊斗或通道设置在篮的开放排放端下方。马达固定到篮,所述马达具有设置有偏置配重块的驱动转子。使用中,马达使所述转子和偏置配重块旋转,这引起所述篮和固定到其的筛振动。携带固体的泥浆在篮的进料端处引入到筛上。振动运动引起钻井泥浆与固体分离,钻井泥浆通过筛,固体留在筛上方。振动运动还引起固体沿筛朝向开放的排放端移动。回收的钻井泥浆接收在容器内,以进一步处理,固体经过篮排放端通入通道或吊斗。矩形筛可相对于水平面成某个角度布置,例如从振动筛的进料端到排放端倾斜七度。该角度可以是可调节的。筛通常固定在篮中,篮可调节,以相对于水平面调节筛的角度。携带固体的钻井流体流可在倾斜的筛上形成池。振动机构的作用引起固体攀爬倾斜的筛到达振动筛的排放端,并且通入通道或吊斗。通常,引起圆形振动的振动机构将倾向于将固体从筛沿随机方向抛向空中。引起椭圆形运动的振动机构将引起固体沿椭圆最长弦方向移动。具有引起非常窄的椭圆的振动机构的振动筛称为线性振动筛,并且引起固体沿筛快速移动,但是筛往往由于固体在其与筛相遇时突然减速而遭受快速劣化。筛通常为一种或两种类型钩边式;和预张紧式。钩边式筛包括夹层结构形式的几层矩形网层,所述夹层结构通常包括一层或两层细级别网和具有更大网孔和更粗标号的金属丝的支撑网。所述网层在每一侧边缘通过细长钩形式的边连接。使用中,细长钩钩在沿振动筛每一侧布置的张紧装置上。振动筛还包括一组平头支撑构件,其沿振动筛的篮长度延伸,所述网层通过其张紧。该类型的筛的示例公开在GB-A-1,526,663中。支撑网可设置有其中具有孔的面板,或由其中具有孔的面板代替。预张紧式筛包括几层矩形网层,所述网层通常包括一层或两层细级别网和具有更大网孔及更粗标号金属丝的支撑网。所述网层预张紧在包括矩形角铁框架的刚性支架上,并且附着到其上。然后将筛插入布置在振动筛的篮中的C型槽型导轨中。该类型的筛的示例公开在GB-A-1,578,948中,适用于接纳预张紧式筛的振动筛的示例公开在GB-A-2, 176,424 中。 与振动筛相关的一个问题是,用于其中的筛易于堵塞,特别是当固体为粘性的时,例如粘土,或具有与筛网尺寸接近的尺寸时。后一堵塞类型被称为难粒堵塞。已经提出多个技术方案来解决该问题,例如GB-A-1,526,663中公开的,其中筛组件以夹层结构形式使用两层筛材料,并且允许筛材料层独立运动来移走塞入筛之一中的任何难粒。在过滤装置不被小颗粒堵塞的情况下,使用细网筛来过滤非常小的颗粒是有利的,例如尺寸在50-200 μ或更大范围内的颗粒。但是,细网过滤装置特别易于发生这样的不期望的堵塞。还有利的是,具有简单可靠的分离器来防止停工进行维护和修理。在一些情况下,优选通过筛来保留例如尺寸在50-60 μ或更大范围内的颗粒。US-A-4, 446,022和US-A-4,306, 974公开了一种用于将固体从携带固体的钻井泥浆分离的振动筛,其具有用于盛装携带固体的钻井泥浆的高架罐,所述高架罐具有堰,携带固体的钻井泥浆越过其流到第一筛上,固体经过所述第一筛的前端,钻井泥浆流动通过第一筛到达盘上,并且转移到收集池中。过多的钻井泥浆流过设置在第一筛后部处的堰,到达第二筛上。固体经过第二筛的前端,钻井泥浆流动通过第二筛到达盘上,并且转移到收集池中。过多的钻井泥浆流过设置在第二筛后部处的堰,到达第三筛上。固体经过第三筛的前端,并且钻井泥浆流动通过第三筛,直接落入收集池中。WO 2004/110589和Axiom AX-1振动筛手册公开了一种用于将固体从携带固体的泥浆分离的振动分离器,所述振动分离器具有第一筛板,其用于将大固体从携带固体的钻井流体粗筛出;和第一筛板及第二筛板,所述第一筛板和第二筛板通过流动通道连接,以使第一筛板设置有具有细筛材料的筛,并且由分流器设备供给一半粗筛过的携带固体的钻井泥浆,所述第二筛板设置有也具有细筛材料的筛,并且由分流器设备供给另一半粗筛过的携带固体的钻井泥浆,从而以并联模式进行。来自第一和第二筛板的筛过的钻井泥浆传送到收集池中。振动分离器也可设置用于以串联模式运行,其中,大固体由阻筛用筛粗筛出,全部携带固体的钻井泥浆经过设置有细筛材料的第一筛板,以筛除细固体,然后全部携带固体的钻井泥浆经过设置有更细筛材料的第二筛板,以筛除更细的固体,钻井泥浆从其通过进入收集池中。US 2010/0089802公开了一种用于将固体从携带固体的钻井流体分离的振动筛,所述钻井流体具有夹带于其中的堵漏材料(LCM)。所述振动筛包括叠堆形式的四个筛板。最顶部筛板包括粗筛筛,用于去除大固体。第二筛板包括中粒网,用于去除LCM和中等尺寸的固体,LCM和中等尺寸的固体在第二筛板上方经过,并且传送用于进一步处理或存储。下漏流继续前进到具有细网和堰的第三筛板。来自堰的溢流落到具有细网筛的第四筛板。来自第三筛板的下漏流经过收集池中的斜槽,来自第四筛板的下漏流直接落入收集池中。在一方面,斜槽、分流器和通道是可互换的,以便于串联或并联流从一个或多个所选的筛板流出或流入。 在油气井钻井过程中,井筒壁中可能存在裂纹。这样的裂纹可能传播,这可能在井筒壁中造成结构问题和/或使钻井流体通过其漏出到地层中。而且,如果大量的钻井流体流失,井筒中钻井流体的压力可能下降,这可能造成井筒坍塌。因此,也可将井筒增强材料添加到循环的钻井流体中。井筒增强材料包括钻井切屑的尺寸相当的颗粒。当钻井流体在其中具有裂纹的井筒壁周围循环时,尺寸相当的颗粒将其自身嵌入裂纹中,这降低裂纹传播的可能性。回收这些尺寸的颗粒并且将其再利用于循环的钻井泥浆中是有利的。振动筛因而已经改进来适应携带固体的钻井流体中的固体的尺寸。这样的振动筛公开在USSN12/490, 492中。可使用这样的振动筛来提取一定尺寸范围的固体,并且该一定尺寸范围的固体作为新钻井流体中的井筒增强材料再循环。期望保留一些小颗粒,例如通常存在于钻井泥浆中的重晶石,并且因而细筛优选不要太细,以至于将重晶石从钻井泥浆筛除。过去,通常振动筛中使用处于多个高度的多个筛来处理钻井流体,例如,处于一个、两个或三个高度的筛。在钻井筒过程中,当钻井流体流到钻头和然后从钻头离开的循环由于钻出井筒所穿过的地层的孔隙和/或由于地层的断裂而停止时,发生钻井流体的“漏失”。当漏失发生时,钻井流体泵送到断裂的地层中,而不是返回到地面。通常,在某些特定深度处发生漏失,在所述特定深度处,地层“较弱”,并且裂纹从井筒水平地延伸远离。用于描述易于发生漏失反流的岩石的表述方式包括类似于多孔石灰石、疏松砂岩、“腐化”页岩等术语。多种“堵漏材料”(“LCM”)被泵送到井筒中用于填充或封闭多孔地层或用于填充或封闭井筒裂纹,以重新建立用于钻井流体循环的适当路径。通常,堵漏材料大体分为纤维、岩石页片、颗粒和混合物。通常还期望在连续循环过程中在钻井泥浆系统中回收和保留堵漏材料。将钻井泥浆过筛来去除不期望的颗粒物质还可导致堵漏材料的去除,并且因此需要将新的堵漏材料持续引入到泥浆过筛操作下游的钻井泥浆中。堵漏材料的添加带来分离问题,因为其和钻井流体一样,优选被清洁并且再循环。离开井的是小尺寸的钻井流体、大尺寸的堵漏材料和尺寸在其之间的不期望的材料,最大和最小的材料和/或大于堵漏材料的材料将被再循环。已知如US专利No. 4,116,288中所述的传统的两步筛分工艺。流出的钻井流体、堵漏材料和不期望的材料的混合物首先经受粗筛,以将堵漏材料从钻井流体和不期望的材料分离,所述钻井流体和不期望的材料落到其下面的第二更细筛,以将钻井流体与不期望的材料分离。钻井流体和堵漏材料然后重新汇集来再循环到井筒中。该系统易出现高度限制和细筛问题。堵漏材料可能由不期望材料包覆,不期望材料将不通过第一筛,在第一筛上移动,并且从其顶侧离开,并且再循环回到井筒中。存在多种已知的钻井流体处理系统、振动筛和用于回收堵漏材料的方法;包括但不限于美国专利 6,868,972 ;6,669,027 ;6,662,952 ;6,352,159 ;6,510,947 ;5,861,362 ;5,392,925 ;5,229,018 ;4,696,353 ;4,459,207 ;4,495,065 ;4,446,022 ;4,306,974 ;4,319,991 ;和4,116,288 (全部所述专利出于全部目的以引用的方式并入本文中)。在一些现有系统中,所述系统已经遇到筛出堵漏材料同时相同尺寸的不期望的材料也筛出的问题
发明内容
根据本发明,提供一种用于将固体从携带固体的钻井流体分离并且将所述固体筛分的设备,所述设备包括篮,振动机构,第一筛板及安装在所述第一筛板下方的第二筛板,和导向装置,其用于选择并联或串联操作模式,其中,携带固体的钻井流体流被分开,在所述第一筛板和所述第二筛板之间分流,以及串联操作模式,在串联操作模式中,全部或大部分携带钻井流体的固体被导向到所述第一筛板上,然后由其筛过的钻井流体被导向到所述第二筛板上,其中,所述设备还包括可动分流器盘,用于选择并联或串联操作模式。串联模式中,离开第一筛板的固体可收集并且再利用,例如与堵漏材料一起使用,所述堵漏材料可被添加回收集池或泥浆池中的筛过的钻井流体中。优选地,所述可动分流器盘可滑动地布置在导轨中,例如轨道或C型槽中。有利地,导轨包括可膨胀元件,用于选择地将所述可动分流器盘固定在所述导轨中。优选地,所述可动分流器盘布置在所述第一筛板和所述第二筛板之间。有利地,流盘布置在所述第一筛板和所述第二筛板之间,并且所述可动分流器盘形成流盘的一部分。所述分流器盘在闭合时用作流盘,但是当打开时,允许携带固体的钻井流体从其流动通过。优选地,所述第一筛板从所述篮的进料端到排放端以上升角布置,所述第一筛板包括堰,以在池形成在所述第一筛板上并且达到预定深度时,携带固体的钻井流体可越过所述堰排出。有利地,所述设备还包括通道,用于将来自所述堰的携带固体的钻井流体流导向到所述第二筛板。优选地,所述通道布置在所述篮中。有利地,所述堰设置有凸缘,用于阻止固体从其越过。可防止从其越过的固体类型为比钻井泥浆更重的固体,但是也可辅助防止其他固体从其越过。有利地,所述设备还包括粗筛筛板。优选地,所述粗筛筛板包括用于筛出大块固体的筛材料。优选地,还包括流盘,用于将粗筛过的携带固体的钻井流体导向到所述第一筛板的进料端。优选地,所述分流器盘在其下面具有管道,用于将筛过的携带固体的钻井流体导向到所述第二筛板上,以当所述分流器盘缩回时,筛过的携带流体的钻井流体流通过所述管道流到所述第二筛板(318c)上。有利地,所述分流器盘在其下面具有管道,用于将筛过的携带固体的钻井流体导向到收集池,以当所述分流器盘缩回时,筛过的携带固体的钻井流体流动通过所述管道进入所述收集池中。本发明还提供一种用于将固体从携带固体的钻井流体分离并且将所述固体筛分的设备,所述设备包括篮,振动机构,第一筛板及安装在所述第一筛板下方的第二筛板,和导向装置,其用于选择并联或串联操作模式,其中,携带固体的钻井流体流在所述第一筛板和所述第二筛板之间分开,以及串联操作模式,在串联操作模式中,携带固体的钻井流体被导向到所述第一筛板上,然后由其筛过的钻井流体被导向到所述第二筛板上,其中,所述设备还包括可动板或管道,其用于选择并联或串联操作模式。优选地,所述板是实心的、无孔的并且不通的。有利地,所述板在其中具有至少一个孔。所述板可从实心切换到孔,以在串联模式和并联模式之间选择,实心用于串联模式,孔用于并联模式,或实心用于并联模式,孔用于串联模式。优选地,所述管道包括在其中具有孔的板。所述板可形成所述管道的端部。优选地,所述第一和第二筛板包括具有相同筛网尺寸的筛。有利地,所述第一和第二筛板包括具有不同筛网尺寸的筛。优选地,用于以串联模式运转。有利地,第二筛板上的筛中的筛网尺寸具有比第一筛板上的筛中的筛网尺寸更小的尺寸。 优选地,所述篮安装在有弹性装置上,例如弹簧或橡胶衬套上。有利地,有弹性装置安装在底部上。优选地,收集池布置在所述篮下方。有利地,流盘布置在所述第二筛板下方,以将筛过的钻井流体导向到收集池中。本发明还提供一种用于将固体从携带固体的钻井流体分离并且选择地将所述固体筛分的方法,所述设备包括篮,振动机构,第一筛板及安装在所述第一筛板下方的第二筛板,和导向装置,其用于选择并联或串联操作模式,其中,携带固体的钻井流体流在所述第一筛板和所述第二筛板之间分开,以及串联操作模式,在串联操作模式中,携带固体的钻井流体被导向到所述第一筛板上,然后由其筛过的钻井流体被导向到所述第二筛板上,其中,所述方法还包括移动可移动分流器盘的步骤,以选择并联或串联操作模式。本发明还提供一种用于将固体从携带固体的钻井流体分离并且选择地将所述固体筛分的方法,所述设备包括篮,振动机构,第一筛板及安装在所述第一筛板下方的第二筛板,和导向装置,其用于选择并联或串联操作模式,其中,携带固体的钻井流体流在所述第一筛板和所述第二筛板之间分开,以及串联操作模式,在串联操作模式中,携带固体的钻井流体被导向到所述第一筛板上,然后由其筛过的钻井流体被导向到所述第二筛板上,其中,所述方法还包括移动可移动板或管道的步骤,用于选择并联或串联操作模式。因而,本发明提供具有用于将振动筛流体流动路径从串联转换到并联,以及从并联转换到串联的结构的振动筛。本发明在一些方面公开了用于处理钻井流体来回收其组分的方法和系统,在一个特定方面到多个方面,提供一种振动筛,其中,流体流动路径可选择地从串联改变到并联,以及从并联转换到串联。在一些特定方面中,这样的方法和系统采用根据本发明的新颖的振动筛,所述振动筛具有筛设备,所述筛设备包括多个筛和转换设备,所述转换设备用于将从一个筛到另一个筛以串联模式流动的材料的第一分离模式改变到其中流体以并联模式流到多个筛的第二分离模式。本发明在一些方面公开了用于处理钻井流体和固体材料的混合物的系统,以将所述混合物中的至少一种组分按照尺寸从所述混合物分离,所述系统包括可振动篮,其用于接收其中具有固体的钻井流体的输入流;多个间隔开的筛组件,其包括第一筛组件和设置在所述第一筛组件下方的第二筛组件;所述筛组件安装在所述可振动篮中,并且可随其一起振动;转换设备,其与所述筛组件结合,用于选择地控制输入流来选择到所述筛组件的串联流和并联流中的一种;可流动通过所述第一筛组件的钻井流体;和可流动通过所述第二筛组件并且可从其向下流动的钻井流体。根据本发明的一个实施例中的振动分离器或振动筛具有如本文所述的根据本发明的一个筛或在分开的高度的多个筛。在一个特定方面,两个最下面的筛接收来自较高筛的来流。转换设备允许该来流选择地从并联模式改变为串联模式,或者从并联转换到串联。本发明在一些实施例中包括具有底部或框架的振动分离器或振动筛;在底部或框架上或其中的篮或筛安装设备;在不同的间隔开的不同高度处的根据本发明的多个筛;振动设备;模式转换设备;和收集罐或容器。这样的振动筛可处理其中具有固体,例如切屑、碎屑等的钻井流体;和其中具有堵漏材料的钻井流体。本发明在一些方面公开了在用于处理钻井流体和固体材料混合物来将所述混合物的至少一种组分从所述混合物分离的系统中使用的转换设备,所述系统包括可振动篮,其用于接收其中具有固体的钻井流体的输入流;多个间隔开的筛组件,其包括第一筛组件和设置在所述第一筛组件下方的第二筛组件;所述筛组件安装在所述可振动篮中,并且可随其一起振动;可通过所述第一筛组件和所述第二筛组件从其向下流动的钻井流体;转换设备,其与所述筛组件结合,用于选择地控制输入流来选择到所述筛组件的串联流动和并联流动中的一种,所述转换设备包括主体,贯穿所述主体的第一流动通道,其用于实现到所述筛组件的系统并联流动,和贯穿所述主体的第二流体通道,其用于实现到所述筛组件的系统串联流动。在一些特定方面,筛之间的插入件是位于所述筛之间的可动门结构,提供模式转换特征。在其他方面,与筛相邻的插入件、适当的流动通道和适当设置的流回屏障件提供该模式转换特征。本发明在一些方面公开了用于处理具有固体的钻井流体流的方法,所述方法包括将具有固体的钻井流体流引入到用于将至少一种组分与所述流分离的系统中,所述系统为本文公开的根据本发明的任一种;所述方法还包括使用转换设备选择到所述系统的筛组件的系统串联流动和到所述筛组件的系统并联流动中的一种;使具有固体的钻井流体流到所述筛组件;和使所述来流由每一个筛组件过筛。本发明在一些方面公开了用于处理钻井流体来回收其组分的方法和系统,并且在一个特定方面,提供用于将堵漏材料(或堵漏材料和具有相同尺寸的固体)从用过的钻井流体分离的方法和系统。在一些方面,回收和使用分离的堵漏材料。在一些特定方面,这样的方法和系统采用根据本发明的新颖的振动筛,筛设备位于初始的粗筛筛设备下方,用于将堵漏材料(和/或具有相同尺寸的材料)从用过的钻井流体分离。在根据本发明的一个实施例中,一种振动分离器或振动筛具有根据本发明的如本文公开的处于分开的高度下的一个或多个筛。在一个特定方面,两个最下面的筛可以并列或串联模式接收来自较高筛的来流。本发明在一些实施例中包括具有底部或框架的振动分离器或振动筛;在所述底部或框架上或其中的篮或筛安装设备;处于间隔开的三个或四个不同高度下的根据本发明的筛;振动设备;和收集罐或容器。这样的振动筛可处理由固体,例如切屑、碎屑等污染的钻井流体;和其中具有堵漏材料(和/或具有相似尺寸的材料)的钻井流体。这样的振动筛,在一些方面,提供来自第二筛高度的分离的流出流,其主要为堵漏材料(和/或具有相似尺寸的材料)。



为了更好地理解本发明,现在将以举例方式参照附图,附图中图I是携带固体的钻井泥浆的处理系统的示意性视图;图2A是根据本发明的振动筛的侧剖视图;图2B是图2A中所示的振动筛的侧剖视图;图2C是根据本发明的振动筛的侧剖视图;图2D是图2C中所示的振动筛的侧剖视图;图2E是本发明的分流器的立体视图;图2F是图2A中所示的振动筛的前视图;图2G是图2A中所示的振动筛中的图6E中所示的分流器的剖视图;图3A是根据本发明的振动筛的侧剖视图;图3B是根据本发明的振动筛的侧剖视图;图3C是根据本发明的振动筛中使用的流动隔板的立体视图;图3D是根据本发明的振动筛中使用的流动隔板的立体视图;图4A是根据本发明的振动筛的侧剖视图;图4B是根据本发明的振动筛的侧剖视图;图4C是根据本发明的振动筛中使用的插入件的立体视图;图4D是根据本发明的振动筛中使用的通道设备的立体视图;图4E是根据本发明的振动筛中使用的插入件的立体视图;图5A是根据本发明的振动筛的侧剖视图;图5B是图5A中所示的振动筛的侧剖视图;图5C是根据本发明的振动筛的侧剖视图;图是图5C的振动筛的侧剖视图;图5E是根据本发明的振动筛的插入件的立体视图;图5F是图5E中所示的插入件的俯视图;图6A是根据本发明的振动筛的侧剖视图;图6B是根据本发明的振动筛的侧剖视图;图6C是根据本发明的振动筛的插入件的立体视图;图6D是图6C中所示的插入件的俯视图;图6E是根据本发明的振动筛的通道设备的立体视图;图6F是根据本发明的振动筛的插入件的立体视图;图6G是根据本发明的振动筛的插入件的立体视图;图7A是具有处于打开位置中的分流器的根据本发明的振动筛的侧剖视图;图7B是分流器处于闭合位置中的图7A中所示的振动筛的侧剖视图;图7C是根据本发明的振动筛的插入件的俯视图;图7D是根据本发明的振动筛的插入件的俯视图7E是根据本发明的振动筛的插入件的俯视图;图8A是根据本发明的振动筛的侧剖视图,显示出一些管道和流动通道;图SB是图8A中所示的振动筛的侧剖视图,显示出一些其他管道和流动通道;图SC是根据本发明的振动筛的侧剖视图,显示 出一些管道和流动通道;图8D是图SC中所示的振动筛的侧剖视图,显示出一些其他管道和流动通道;图8E是根据本发明的振动筛的插入件的立体视图;图8F是图8E中所示的插入件的俯视图;图9A是根据本发明的振动筛的侧剖视图,显示出一些管道和流动通道;图9B是图9A中所示的振动筛的侧剖视图,显示出一些其他管道和流动通道;图9C是根据本发明的振动筛的侧剖视图;图9D是图9C的振动筛的侧剖视图;图9E是根据本发明的插入件的立体视图。
具体实施例方式图I示出根据本发明的系统S,其包括在井筒2上方竖直延伸的井架I。管状工作钻柱3延伸到井筒2中,并且从地面延伸到井筒中期望深度。流动管线4a连接到管状工作钻柱3。流动管线4b连接到形成在管状工作钻柱3的外表面和井筒2的内表面之间的环形空间5。用于泥浆池6中的系统的钻井流体(或泥浆)借助于泥浆泵7通过整个泥浆系统中循环。在通常的钻井操作过程中,流体由泥浆泵7通过流动管线4a泵送到管状工作钻柱3中,循环出管状工作钻柱3的底端3a(例如,但不限于从钻头9循环出),从井筒2的环形空间5向上循环,并且通过流动管线4b从环形空间5循环出。通过流动管线4b流出井筒环形空间5的已用(或用过)的流体泥浆包括钻井流体、钻井切屑、堵漏材料(和/或类似尺寸的材料)和井筒2中遇到的其他碎屑。因此,离开钻井的已用的钻井切屑混合物被导向到分离装置,例如根据本发明的一个或多个振动筛8。钻井流体、添加材料(例如固体和/或堵漏材料等)、碎屑和钻井切屑组合混合物被导向到振动筛8。液体钻井流体通过振动筛的处于相同或不同高度的筛,例如筛8a、8b、8c、8d,其处于振动筛8的四个不同高度,并且液体钻井流体被导向到泥浆池6中(或者,两个最下部的筛处于相同高度,每一个接收来自筛8b的一部分来流)。钻井切屑和其他固体在振动筛8的筛8a-8d上方经过,并且被排出(箭头8e、8f、8g、8h)。通过适当选择用于筛8b的筛网,分离堵漏材料(和具有类似尺寸的一些材料,如果存在),并且从筛Sb顶部排出(参见箭头8f)。回收的堵漏材料(和/或具有类似尺寸的材料)流到和/或泵送到泥浆池、储池或其他处理设备8k。可任选地,振动筛8类似于本文公开的根据本发明的任何其他振动筛。一个、两个或多个串联振动筛可分离所选材料(例如但不限于,堵漏材料(LCM),如井筒增强材料(WSM)),其流到和/或泵送到储池或其他处理设备8k。图2A到2D显示了根据本发明的振动筛310,其具有由振动设备314振动的篮312,和下部收集池316,所述下部收集池316接收经过以不同高度安装到篮312的三个筛318a、318b,318c的流体(或流体和一些固体)。
流体流动通过筛318a(其可以是粗筛筛),向下流到流回屏障件317a,通过开口328,然后流到筛318b上。在该流体在筛318b上积聚成池315a时,其升高到等于然后高于堰313的顶部313a的高度。然后流体流动越过堰313的顶部313a,通过通道311到达下部筛318c。开口 328由堰313和流回屏障件317a的一端限定。流体流动通过下部筛318c流到流回屏障件317c上,流回屏障件317c将流体导向到收集池316中。流动通过筛318b的流体顺着流回屏障件317b流动,越过分流器320的一端,并且通过通道316a向下流到收集池316。分流器320选择地在保持结构320a中可动,并且如图2A中所示,阻挡由间隔开的构件325、326形成的通道324的开口 322。如图2B中所示,分流器320防止从筛318b底部流出的流体流到筛318c上。该流 体流动通过开口 322进入通道316a中。图2A和2B示出并联的流体流动路径。如图2C和2D中所示,分流器320已经移动,以使已经通过筛318b底部流出的流体可向下流到筛318c上。这是用于流体向下流到收集池316的“串联”流动路径,从筛318a到筛318b到筛318c。在串联模式中,筛318c通常为比筛318b的网更细的网,并且筛318a通常为粗筛筛。因而,离开筛318b的固体将分级,可能再利用。分流器320可被操纵并且移动通过篮312的开放端进入区域329 (图2F)。如图2E中所示,分流器320具有便于流体流动的实心斜槽部分320a,和从所述斜槽部分320a伸出的两个手柄320b。筛318b相对于水平方向的角度与堰313的高度结合确定筛318b上的池315a和滩面区域318f的下边缘318e的深度(例如参见图2C)。流动通过筛318c的流体顺着流回屏障件317c流入收集池316中。固体(湿润到一定程度)流动离开筛的端部,如由箭头W标不O分流器320安装在保持结构320a的导轨321 (参见图2G)之间,夹持设备320p、320s用于将分流器320保持在位。可使用任何适当的夹持设备,包括但不限于,PNEUM0SEAL 设备,其包括空气压力软管,所述空气压力软管在膨胀时,将分流器320保持在C型导轨中。夹持设备310p和320s将筛保持在位。筛318A中的网优选尺寸制成使1/8”和1/64”的固体粗筛出。一方面,筛318A具有使大于1/16”的固体去除(并且尤其是,最大直径为1/16”或更小的固体和/或堵漏材料碎片等通过筛318A(例如,但不限于最大直径为1/16”或略微更小的石墨球堵漏材料))的网。筛318B具有的网尺寸选择用于去除具有特定最大尺寸或更大最大尺寸的材料,包括但不限于固体、碎屑、钻井切屑、期望添加剂和/或堵漏材料,例如井筒增强材料。在一方面,该网尺寸选择成与筛318A的网尺寸配合使得筛318B去除堵漏材料(和具有相似尺寸的固体或片),并且在一个特定方面,网尺寸选择成使得最大尺寸为1/16”或更大的堵漏材料不通过筛318B,并且从其顶部流动。在一方面,这样的堵漏材料为石墨球。来自筛318B的流出流,在特定方面,具有至少50%体积百分比的湿堵漏材料(或湿堵漏材料和具有类似尺寸的固体);并且在一个特定方面,具有至少75%体积百分比的堵漏材料(在一个示例中,输出为50%堵漏材料和50%类似尺寸的固体)。在一些方面,网尺寸选择成使较大百分比的从筛顶部离开的流为堵漏材料,例如,以体积计,高达50%、75%或高达90%。图3A和3B显示了根据本发明的振动筛340,具有由振动设备344振动的篮342。筛346、347、348安装在所述篮中,流回屏障件345位于筛346下方,流回屏障件343位于筛347下方。 具有顶端341a的堰341 (与篮342的端部342a —起)限定用于从筛347上的流体池351流动越过堰341的顶部341a的流体的流动通道349。在通道349中向下流动的流体流到最下面的筛348。流动通过筛348的流体流入收集池356中。筛347具有流动阻板352 (参见图3C),所述流动隔板352在其下面与端部353连接,端部353在图3A中所示的位置中阻挡开口 354,以使通道349中流动的流体不能流入通道359中。而且,在开口 354被阻挡的情况下,向下流动通过筛347的流体沿流回屏障件343流到开口 354,进入通道359中,然后进入收集池356中。因而,用于筛347和348的如图3A中所示的流动模式为并联模式,其中流动通过筛347的流体不流到筛348。流动通过筛346并且从堰341溢出的流体流动通过通道349到达筛348上。流体流动通过筛348流入收集池356中。固体在筛346、347和348上方经过以扔掉或进一步处理。如图3B中所示,筛347下面没有流体,并且通道359通过流动隔板357相对于流体流封闭。通过将通道359由流动阻板357封闭,并且将端部353从开口 354去除,流动通过筛347的流体流到筛348上,并且因而如图3B中所示的流动模式对于筛347和筛348是串联的。如图3C中所示,对于并联流动,流动隔板352具有主体354,其具有穿过其的流动通道355 ;实心部分356 ;和用于连接到筛347的端部闩锁件357。如图3D中所示,流动隔板357具有主体358和闩锁件361,所述主体358具有贯穿其的流动通道359。图3D示出用于串联流动的流动路径。图4A和4B显示了根据本发明的振动筛370,其具有由振动设备374振动的篮372。筛376、377、378安装在篮中,流回屏障件375位于筛376下方,流回屏障件373位于筛377下方。具有顶端371a的堰371 (与篮372的端部372a —起)限定用于从筛377上的流体池381越过堰371的顶部371a的流体的流动通道379。通道379中向下流动的流体(图8A)流到最下面的筛378。流动通过筛378的流体沿流回屏障件391流入收集池386中。筛377在端部377a处具有插入件390,其位于图4A中所示的位置中。流动通过筛377的流体流入通道设备391 (参见图8D)的流体通道393中,然后流入收集池386中。PNEUM0SEAL 设备389p、389s便于将筛夹持在位,并且将筛保持在期望位置中。来自池381的流动越过堰371的顶部371a的流体在通道379中向下流动到筛378。流动通过筛378的流体流入收集池386中。因而,从筛376流到并且通过筛377、378的流动是并联流动模式。如图4B中所示,插入件390和通道设备391已经去除。流动通过筛376的流体向下流到筛377。然后,流动通过筛377的流体通过开口 374向下流到筛378。图4E,插入件392阻挡通过开口 397的流动。其中具有一些小的和/或漂浮的固体的一些流体也可流动越过堰371,通过通道379,到达下部筛378上。
图5A到显示了振动筛400,其具有收集池416p,和由振动设备404振动的篮402。筛411、412和413安装在篮402中。流回屏障件401位于筛411下面,流回屏障件414位于筛412下面,流回屏障件415位于筛413下面。具有顶端405a的堰405与篮402的端部部分402a —起限定通道409,来自筛412上的流体池406的越过堰405的顶端405a的流体流动通过所述通道409。流体顺着通道409流动并且流出通道409,以接触并且流动通过设置在筛412端部处的插入件417。流体流动通过插入件417中的通路418 (参见图5E到5F)到达通道419,并且向下流到筛413。因而,流体以并联流动模式从筛411流到筛412和413。流动通过筛412的流体流到并且通过插入件417中的通路417a、417b,从那里流入通道419中,并且向下流到收集池416。图5C和显示了串联流动模式的振动筛400。来流通过插入件417的流动通路417a、417b,然后向下经由通道419到达筛413上。PNEUM0SEAL 设备400p、400s将筛保持在位(没有来流通过通路418)。图6A和6B显示了振动筛430,图6A中为并联流动模式,图6B中为串联流动模式。振动筛430具有由振动设备434振动的篮435。流回屏障件437位于筛431下方;流回屏障件435位于筛432下方;流回屏障件436位于筛433下方。流回屏障件435在端部435b中具有通道435a。Pneumoseal设备430p、430s将筛保持在位。流动通过筛431的流体流到筛432,并且从筛432上的池429越过堰444,通过通道427,并且通过安装座439b中的插入件439 (参见图6C、6D)内的开口 439a流到筛433。流动通过筛432的流体流到通道设备442的通道441 (参见图6E),然后流到收集池446。流动通过筛233的流体向下流到收集池446中。如图6B中所示,插入件448(参见图6F)阻挡流体通过通道427,并且插入件449 (参见图6G)阻挡流体通过开口 449a,以使从筛431流动的全部流体流到筛432。通过开口 435a,从筛432流动的全部流体流到筛433。图7A和7B显示了振动筛450,其具有由振动设备454振动的篮452。流回屏障件457位于筛461下面,并且流回屏障件488位于筛462下面。流动通过筛463的流体流入收集池456中。PNEUM0SEAL 设备450p、450s将筛保持在位。来自筛462上的池459的流体溢出堰464的顶端464a,通过通道465,到达筛463上(如图7A中所示)。流动通过筛462的流体流动通过插入件451 (参见图7D)中的通道453,然后进入收集池456中(没有到筛463上)。插入件451安装在安装座467中,并且通道453与流动通道471流体连通,允许流动通过筛462的流体流入通道133中。因而,流动通过筛461,并且然后从筛461向下流动的流体流到筛462,并且(越过堰464)流到筛463,即以并联流动模式流动。筛462端部处的插入件474 (参见图7C)将筛462保持在使池459的高度可能使流体流越过堰464的位置,以可实现串联或并联流动。应注意的是,将分流器(插入件)451向后拉(朝向前方,振动筛的固体排出端)到打开位置,用于并联模式操作,并且向前拉到封闭位置,用于串联模式操作。还应注意的是,在并联操作中,携带固体的钻井流体可仍流动越过堰464,但是仅小固体和轻固体可能与流体一起越过堰464。
图7B示出振动筛450的串联流动模式。插入件472阻挡通到通道471的开口,以使流动通过筛462的流体向下流到筛463上(不直接通过通道471流入收集池456中)。如果存在,来自筛462上的池的溢流可流动越过堰464,向下流到筛463。可任选地,插入件472的挖切部分472a提供手柄(参见图11E)。图8A和8B显示了振动筛480,其具有由振动设备484振动的篮482。流动通过最底部筛493的流体流入收集池496中。流回屏障件481位于顶部筛491下方,而流回屏障件483位于中间筛492下方。流回屏障件485位于筛493下方。Pneumoseal设备480p 、480s将筛保持在位。在如图12A,12B中的并联流动模式中,流动通过筛491的流体流到筛492,并且从筛492上的池489越过堰487的顶端487a,经由流动通道488向下流到筛493。应注意的是,堰487设置有凸缘487a,所述凸缘487a悬挂在池489上方,所述凸缘487a辅助阻止固体越过其流动,大部分被阻止的固体将最终下沉,并且顺其自然从池489出来,沿着筛492到达由虚线箭头标示的固体排放端。安装座497中的插入件498(参见图12E、12F)具有开口 498a,流体穿过所述开口 498a从通道488流到筛493。同时,来自筛492的流体流动通过开口 498b,到达通道485,并且到达收集池496。图8C和8D显示了串联流动模式的振动筛480。如图8C中所示,流体已经流动通过筛491,向下到达筛492。流动通过筛492的流体流到插入件498中的开口 498a,然后向下流到筛493。插入件498 (参见图12E、12F)可阻挡流体流动通过通道485。插入件498具有用于流体流的开口 498a和用于流体流的开口 498b。图9A和9B显示了并联流动模式的振动筛500。振动筛500具有由振动设备504振动的篮505和筛501到503。流回屏障件511到513分别设置在筛501到503下方。安装座540中的插入件530用于将操作模式从串联改变到并联,反之亦然。PNEUM0SEAL 设备500p、500s将筛保持在位。如图9A中所示,来自筛501的流体流到筛502,并且流到筛503 (从筛502上的池509,越过堰534,通过通道505,通过插入件530中的开口 531,到达通道设备550的通道551,并且到达收集池506)。来自筛503的流体流到收集池506。图9C和9D示出串联流动模式的振动筛500。如图9C中所示,插入件530 (翻转)阻挡来自通道515的流体流动,以使筛502接收从筛501流出的流体。插入件530还阻挡流体流动通过通道551,以使从筛502流出的全部流体流到筛503。如图9E中所示,插入件530具有流体流动通道530c。根据本发明的(包括但不限于图2A到9E的那些)任何筛组件、任何分流器、任何筛组件对和/或任何插入件可与本文公开的根据本发明的任何振动筛或系统一起使用。本发明因此至少在一些实施例中提供用于处理钻井流体和固体材料混合物的系统,以将所述混合物的至少一种组分按照尺寸从混合物分离,所述系统包括振动篮,其用于接收其中具有固体的钻井流体的输入流;多个间隔开的筛组件,其包括第一筛组件和设置在所述第一筛组件下方的第二筛组件;所述筛组件安装在所述可振动篮中,并且可随其一起振动;转换设备,其与所述筛组件结合,用于选择地控制输入流来选择到所述筛组件的串联流动和并联流动中的一种;钻井流体,其可流动通过所述第一筛组件;和钻井流体,其可流动通过所述第二筛组件,并且可从其向下流动。这样的系统可以具有下面的一个或以任何可能组合的一些在所述第一筛组件和第二筛组件之间的系统流动通道;包括在所述第二筛组件上方的保持结构的转换设备,具有贯穿其的分流器通道的分流器,流体可通过系统流动通道从所述第一筛组件经由所述分流器通道向下流动到所述第二筛组件,获得从所述第一筛组件到所述第二筛组件的输入流串联流,还包括与所述第一筛组件相邻的形成隔板的堰,以便于在所述第一筛组件上保持钻井流体和固体的池,并且所述分流器具有阻挡部分,所述分流器可移动来阻挡通过所述系统通道的流动,以使池升高,并且具有固体的钻井流体绕过所述第一筛组件流到所述第二筛组件,获得到两个筛组件的输入流的并联流动;所述保持结构具有间隔开的轨道,并且具有端部开口,所述分流器设置在所述轨道之间,并且在所述端部开口处具有手柄设备,所述手柄设备可用于于相对于所述系统流动通道移动所述分流器;流回设备,其位于所述第一筛组件下方,以将通过所述第一筛组件的流动导向到所述系统流动通道;收集池,其位于所述第二筛组件下方,用于接收通过所述筛组件的来流;并联流动通道,其与所述筛组件相邻,用于在所述系统的并联流动过程中将来自池的流动绕过所述第一筛组件导向到所述第二筛组件;保持结构,其位于所述第二筛组件上方,和夹持设备,其用于将所述分流器保持在所述保持设备中;其中,所述第一筛组件包括粗筛筛;其中,所述第二筛组件包括筛,所述筛具有尺寸适用于去除堵漏材料尺寸的固体的第二筛网;系统流动通道,其位于所述第一筛组件和所述第二筛组件之间,流体可通过所 述系统流动通道从所述第一筛组件流到所述第二筛组件,所述转换设备具有主体,所述主体具有阻挡部分,用于阻挡到所述系统流动通道的流动,以实现到两个筛组件的输入流的并联流,并且所述主体具有流动管道,用于接收来自所述第一组件的来流,所述来流可流动通过所述管道到达所述第二筛组件,以用于到所述筛组件的系统串联流动;管道挡板,其用于阻挡通过所述管道的流动;和/或所述转换设备具有主体,贯穿所述主体的第一流动通道,其用于实现到所述筛组件的系统并联流动,和贯穿所述主体的第二流动通道,其用于实现到所述筛组件的系统串联流动。本发明因此在至少一些实施例中提供用于处理钻井流体和固体材料混合物的系统,以将所述混合物的至少一种组分按尺寸从所述混合物分离,所述系统包括可振动篮,其用于接收其中具有固体的钻井流体的输入流;多个间隔开的筛组件,其包括第一筛组件和设置在所述第一筛组件下方的第二筛组件;所述筛组件安装在所述可振动篮中,并且可随其一起振动;转换设备,其与所述筛组件结合,用于选择地控制输入流来选择到所述筛组件的串联流动和并联流动中的一种;可流动通过所述第一筛组件的钻井流体,和可流动通过所述第二筛组件并且从其向下流动的钻井流体;系统流动通道,其位于所述第一筛组件和所述第二筛组件之间;所述转换设备具有主体,贯穿所述主体的第一流体通道,其用于实现到所述筛组件的系统并联流动,贯穿所述主体的第二流体通道,其用于实现到所述筛组件的系统串联流动;流回设备,其位于所述第一筛组件下方,用于将通过所述第一筛组件的流动导向到所述系统流动通道;收集池,其位于所述第二筛组件下方,用于接收通过所述筛组件的流;和并联流动通道,其与所述筛组件相邻,用于在并联流动到所述筛组件过程中将来自池的来流绕过所述第一筛组件导向到所述第二筛组件。本发明因此在至少一些实施例中提供用于处理钻井流体和固体材料混合物来将所述混合物的至少一种组分从所述混合物分离的系统的转换设备,所述系统包括可振动篮,其用于接收其中具有固体的钻井流体的输入流;多个间隔开的筛组件,其包括第一筛组件和设置在所述第一筛组件下方的第二筛组件,所述筛组件安装在所述可振动篮中,并且可随其一起振动;可流动通过所述第一筛组件和从其向下通过所述第二筛组件的钻井流体;转换设备,其与所述筛组件结合,用于选择地控制输入流来选择到所述筛组件的串联流动和并联流动中的一种,所述转换设备包括主体,贯穿所述主体的第一流体通道,其用于实现到所述筛组件的系统并联流动,和贯穿所述主体的第二流体通道,其用于实现到所述筛组件的系统串联流动。本发明因此在至少一些实施例中提供用于处理具有固体的钻井流体流的方法,所述方法包括将具有固体的钻井流体流引入到用于将至少一种组分与流分离的系统中,所述系统为本文公开的根据本发 明的任一种;所述方法还包括使用转换设备选择到所述系统的筛组件的系统串联流动和到所述筛组件的系统并联流动中的一种;使具有固体的钻井流体流到所述筛组件;和使所述流由每一个筛组件过筛。所述方法可以具有下述中的一种或以任何可能组合的一些其中,所述转换设备具有主体,贯穿所述主体的第一通道,其用于实现到所述筛组件的系统并联流动,和贯穿所述主体的第二通道,其用于实现到所述筛组件的系统串联流动,所述方法还包括选择用于系统并联流动的所述第一流动通道,或选择用于系统串联流动的所述第二流动通道;其中,所述系统还具有流回设备,其位于所述第一筛组件下方,用于将通过所述第一筛组件的流动导向到所述系统流动通道,所述方法还包括将来自所述第一筛组件的来流导向到所述系统流动通道;其中,所述系统还具有收集池,其位于所述第二筛组件下方,所述收集池接收通过所述筛组件的来流;其中,所述系统还具有位于所述第二筛组件上方的保持结构,和用于将所述分流器保持在所述保持结构中的夹持结构,所述方法还包括使用所述夹持设备夹持所述分流器;和/或其中,所述第一筛组件包括粗筛筛,并且其中,所述第二筛组件包括具有第二筛网的筛,所述第二筛网具有适用于去除堵漏材料尺寸的固体的第二尺寸。本申请为2009年6月24日提交的名称为“Shale Shaker flow Diverter”的申请12/490,492的部分继续申请,该申请12/490,492为2008年10月10日提交的美国申请序列号 No. 12/287,709 的名称为 “Systems and Methods For the Recovery of LostCirculation and Similar Material”的部分继续申请,所述申请以其全部公开内容以引用的方式并入本文中。
权利要求
1.一种用于将固体从携带固体的钻井流体分离并且将所述固体进行筛分的设备,所述设备包括篮(312)、振动机构(314)、第一筛板(318b)及安装在所述第一筛板下方的第二筛板(318c)、和导向装置,所述导向装置用于选择并联或串联操作模式,其中,携带固体的钻井流体流在所述第一筛板和所述第二筛板之间分开,以及串联操作模式,在串联操作模式中,携带钻井流体的固体被导向到所述第一筛板上,然后由其筛过的钻井流体被导向到所述第二筛板上,其中,所述设备还包括可动分流器盘,用于选择并联或串联操作模式。
2.根据权利要求I所述的设备,其中,所述可动分流器盘(320)能滑动地布置在导轨(320a)中。
3.根据权利要求2所述的设备,其中,所述导轨包括可膨胀元件(320p,320s),用于选择地将所述可动分流器盘(320)固定在所述导轨(320a)中。
4.根据前述权利要求中任一项所述的设备,其中,所述可动分流器盘(320)布置在所述第一筛板(318b)和所述第二筛板(318c)之间。
5.根据前述权利要求中任一项所述的设备,其中,流盘(317b)布置在所述第一筛板(318b)和所述第二筛板(318c)之间,并且所述可动分流器盘(320)形成流盘(317b)的一部分。
6.根据前述权利要求中任一项所述的设备,其中,所述第一筛板(318b)从所述篮(312)的进料端到排放端以上升角布置,所述第一筛板包括堰(313),以当池形成在所述第一筛板(318b)上并且达到预定深度时,携带固体的钻井流体可越过所述堰(313)排出。
7.根据权利要求6所述的设备,还包括通道(311),用于将来自所述堰(313)的携带固体的钻井流体流导向到所述第二筛板(318c)。
8.根据权利要求6或7所述的设备,其中,所述堰设置有凸缘(487a),其用于阻止固体从其越过。
9.根据前述权利要求中任一项所述的设备,还包括粗筛筛板(318a)。
10.根据权利要求9中所述的设备,还包括流盘(317a),用于将粗筛过的携带固体的钻井流体导向到所述第一筛板(318b)的进料端。
11.根据前述权利要求中任一项所述的设备,其中,所述分流器盘(320)在其下面具有用于将筛过的携带固体的钻井流体导向到所述第二筛板上的管道(326),从而当所述分流器盘缩回时,筛过的携带流体的钻井流体流动通过所述管道(326)流到所述第二筛板(318c)上。
12.根据权利要求I到10中任一项所述的设备,其中,所述分流器盘(320)在其下面具有用于将筛过的携带固体的钻井流体导向到收集池(456)的管道(471),从而当所述分流器盘(320)缩回时,筛过的携带固体的钻井流体流动通过所述管道(326)进入所述收集池(456)中。
13.一种用于将固体从携带固体的钻井流体分离并且将所述固体进行筛分的设备,所述设备包括篮(312)、振动机构(314)、第一筛板(318b)及安装在所述第一筛板下方的第二筛板(318c)、和导向装置,所述导向装置用于选择并联或串联操作模式,其中,携带固体的钻井流体流在所述第一筛板和所述第二筛板之间分开,以及串联操作模式,在串联操作模式中,携带固体的钻井流体被导向到所述第一筛板上,然后由其筛过的钻井流体被导向到所述第二筛板上,其中,所述设备还包括可动板(390,439)或管道(391,441),所述可动板或管道用于选择并联或串联操作模式。
14.根据权利要求13中所述的设备,其中,所述可动板是实心的。
15.根据权利要求13中所述的设备,其中,所述可动板在其中具有至少一个孔。
16.根据权利要求13、14或15中所述的设备,其中,所述管道(391,441)包括其中具有孔的板。
17.根据前述权利要求中任一项所述的设备,其中,所述第一和第二筛板(318b,318c)包括具有相同筛网尺寸的筛。
18.根据权利要求I到16中任一项所述的设备,其中,所述第一和第二筛板(318b,318c)包括具有不同筛网尺寸的筛。
19.一种用于将固体从携带固体的钻井流体分离并且选择地将所述固体进行筛分的方法,设备包括篮(312)、振动机构(314)、第一筛板(318b)及安装在所述第一筛板下方的第二筛板(318c)、和导向装置,所述导向装置用于选择并联或串联操作模式,其中,携带固体的钻井流体流在所述第一筛板和所述第二筛板之间分开,以及串联操作模式,在串联操作模式中,携带固体的钻井流体被导向到所述第一筛板上,然后由其筛过的钻井流体被导向到所述第二筛板上,其中,所述方法还包括移动可动分流器盘的步骤,以选择并联或串联操作模式。
20.一种用于将固体从携带固体的钻井流体分离并且选择地将所述固体进行筛分的方法,设备包括篮(312)、振动机构(314)、第一筛板(318b)及安装在所述第一筛板下方的第二筛板(318c)、和导向装置,所述导向装置用于选择并联或串联操作模式,其中,携带固体的钻井流体流在所述第一筛板和所述第二筛板之间分开,以及串联操作模式,在串联操作模式中,携带固体的钻井流体被导向到所述第一筛板上,然后由其筛过的钻井流体被导向到所述第二筛板上,其中,所述方法还包括移动可移动板(390,439)或管道(391,441)的步骤,所述可移动板或管道用于选择并联或串联操作模式。
全文摘要
一种用于将固体从携带固体的钻井流体分离并且选择性地将所述固体进行筛分的设备,所述设备包括篮(312),振动机构(314),第一筛板(318b)及安装在所述第一筛板下方的第二筛板(318c),和导向装置,其用于选择并联或串联操作模式,其中,携带固体的钻井流体流在所述第一筛板和所述第二筛板之间分开,以及串联操作模式,在串联操作模式中,携带钻井流体的固体导向到所述第一筛板,然后由其筛过的钻井流体被导向到所述第二筛板上,其中,所述设备还包括可动分流器盘(320)、可动板(390,439)或管道(391,441),用于选择并联或串联操作模式。
文档编号B07B13/16GK102625733SQ201080028027
公开日2012年8月1日 申请日期2010年6月24日 优先权日2009年6月24日
发明者G·A·伯内特 申请人:国民油井华高有限合伙公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1