风洞式涡轮发电的制造方法

文档序号:5142503阅读:258来源:国知局
风洞式涡轮发电的制造方法
【专利摘要】本发明公开了一种风洞式涡轮发电机,其包括一具隔热性的风洞装置,风洞装置包括由前而后连续设置的进气收缩段、测试段及排气扩散段,进气收缩段的前端设有空气压缩机,空气压缩机的前端设有加热元件,测试段内设有气流涡轮机,而气流涡轮机与发电机连接。藉此,经由加热元件预先加热通过空气压缩机的空气,即能在风洞装置的测试段内形成高速的气流,驱使气流涡轮机转动,以产生电力,并同时避免气流涡轮机出口因低温而使水汽凝结,从而确保发电效果。
【专利说明】
【技术领域】
[0001] 本发明有关一种涡轮发电机,尤指一种能以空气压缩机产生高速气流,以进行发 电的风洞式涡轮发电机。 风洞式涡轮发电机

【背景技术】
[0002] 近年来由于地球的石油即将面临耗尽的危机,世界各国皆不断的积极开发风力、 水力、地热或太阳能等利用天然资源以产生电力能量的方法,以此来缓减石油能源消耗的 速度。
[0003] 其中,针对风力发电而言,一般是以增大风力发电涡轮机的涡轮叶片扫风面积做 为增加发电功率的努力方向,而依据发电功率的计算公式:发电功率=1/2 (涡轮有效系 数)X (空气密度)X (圆周率)X (涡轮半径)2X (风速)3,可知增加涡轮半径而使得涡轮 叶片的扫风面积增加确实可以提高发电功率。


【发明内容】

[0004] 在实际应用时,涡轮半径增加得太大,相对的将使得整个风力发电涡轮机组的体 积重量加大,大幅增加制造成本。
[0005] 为了解决现有技术中的上述问题,改善现有结构缺点,发明人积多年的经验及不 断的研发改进,提供了一种风洞式涡轮发电机。
[0006] 本发明提供的风洞式涡轮发电机,包括一风洞装置、一空气压缩机、一气流涡轮 机、一发电机以及一加热元件。其中,该风洞装置包括一进气收缩段、一测试段及一排气扩 散段,该进气收缩段及该排气扩散段分别为收敛形及发散形,该进气收缩段较细的一端与 该测试段的前端连接,该排气扩散段较细的一端与该测试段的后端连接;该空气压缩机设 于该进气收缩段的前端;该气流涡轮机设于该测试段内;该发电机与气流涡轮机连接,供 气流涡轮机转动时进行发电;而该加热元件设于空气压缩机的前端,供预先加热通过空气 压缩机的空气。
[0007] 优选地,上述风洞式涡轮发电机还包括一管,该管的后端连接进气收缩段的前端, 该管的前端连接排气扩散段的后端。
[0008] 更优选地,该风洞装置及管设有至少一隔热材料,供阻隔风洞装置及管内的热量 向外散出。
[0009] 更优选地,该风洞装置及管为一隔热材料制成,供阻隔风洞装置及管内的热量向 外散出。
[0010] 优选地,该空气压缩机、该发电机及该气流涡轮机依序排列,且位于同一轴线上。
[0011] 优选地,该加热元件具有一排热端,该排热端设于风洞装置的内部。
[0012] 更优选地,该排热端包括多个并列且分别呈飞机机翼截面形状的散热叶片,该多 个散热叶片分别具有宽端及窄端,宽端是以远离空气压缩机的方向由该窄端向前延伸而 成。所述宽端与窄端是相对的,散热叶片宽端横截面的最长直径大于窄端横截面的最长直 径。
[0013] 更优选地,该多个散热叶片分别由导热材料所制成,其内部中空,且各中空散热叶 片的内部相互连通 优选地,该加热元件为一热泵,该热泵还具有一排冷端,且该排冷端设于风洞装置的外 部。
[0014] 与现有技术相比,本发明具有以下有益效果: 本发明的风洞式涡轮发电机能利用风洞装置所形成的文氏管效应,直接以空气压缩机 产生气流,再使气流加速,使高速的气流推动气流涡轮机转动,以进行发电。
[0015] 本发明的结构在空气压缩机的前端设置加热元件,以预先加热通过空气压缩机的 空气,并使本发明具有隔热效果,而可使气流温度有效的提升,以提供充足的能量,从而使 高速气流驱动气流涡轮机和发电机,以输出电能,并同时避免气流涡轮机出口因低温而使 水汽凝结,从而确保发电效果。

【专利附图】

【附图说明】
[0016] 图1为本发明的第一实施例的剖面示意图。
[0017] 图2为本发明的第二实施例的剖面示意图。
[0018] 图3为本发明的实施例的气流涡轮机与热泵的发电系统示意图。
[0019] 图4为本发明的实施例的压力-体积(P-V)图。
[0020] 图5为本发明的实施例的温度-熵(T-S)图。
[0021] 图6为现有燃气涡轮机的剖面示意图。
[0022] 图7为第6图的燃气涡轮机的压力-体积(P-V)图。
[0023] 图8为第6图的燃气涡轮机的温度-熵(T-S)图。
[0024] 符号说明: 风洞式涡轮发电机1 ; 风洞装置2 ; 进气收缩段21; 测试段22; 排气扩散段23 ; 空气压缩机3 ; 发电机4; 气流涡轮机5; 加热元件6; 排热端61; 排冷端62 ; 散热叶片63 ; 管7。

【具体实施方式】
[0025] 下面结合具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地 理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
[0026] 本发明是以风洞装置做为设计基础,其中,以现今的密闭式风洞装置而言,因其内 部阻力及空气压缩机的运转,将使气流持续加温,所以气流必须经过冷却降温之后,才能提 供风洞装置的测试段使用。但是,冷却系统会消耗大量的能源,而本发明的气流涡轮机正需 要热气流驱动,使风洞原有的缺点变成优点,且因本发明的风洞装置无需设置冷却系统,将 大幅减少能源浪费;而利用气流温度上升所增加的能量驱动气流涡轮机,则可提高能源效 率。
[0027] 本发明的作用原理在于,风洞装置内的气流被热泵(Heat Pump)取自外界的 热能预热后,进入空气压缩机加温加压,再经进气收缩段增速,此高速气流常在马赫 (Mach) 0. 6-0. 9之间,通过并驱动气流涡轮机以释出能量,同时气温和流速大幅下降,气温 将低于其原来进入空气压缩机前的温度。如此一来,气流前、后温度差和速度差表示气流释 出大量内能和动能,当气流驱动气流涡轮机释出的能量大于空气压缩机和热泵压缩机二者 的消耗能量时,系统能量输出净值变为正数,以对外输出电能。
[0028] 而如果空气压缩机送出的气流温度不高,当气流进入气流涡轮机再离开时,温度 可能会下降至接近零摄氏度,使气流内的水汽凝结成冰而伤害机件。为避免此种现象,即 必须提高气流温度,而提高气流温度最有效的方法就是在气流离开气流涡轮机,而回流到 空气压缩机之间,或在空气压缩机之前方以热泵(Heat Pump)预热,提高空气压缩机的进气 温度,以使风洞装置内的气流不再凝结。同时,由于热泵自外界输入的热能约为热泵压缩机 耗能的三倍(Coefficient of Performance,C0P=3),如此一来,将会大幅增加气流内能, 转化成输出功,而提升本发明系统的能源效率。
[0029] 请参阅图1所示,其为本发明风洞式涡轮发电机1的第一实施例,包括一风洞装置 2、一空气压缩机3、一发电机4、一气流润轮机5以及一加热兀件6。
[0030] 该风洞装置2为连续开放式(Continuous Open-Circuit Type, C0CWT),包括由前 而后连续设置的一进气收缩段21、一测试段22及一排气扩散段23。其中,进气收缩段21及 排气扩散段23分别为收敛形及发散形,测试段22为圆形管。进气收缩段21的前端较粗, 进气收缩段21的后端较细,该较细的后端与测试段22的前端连接,而排气扩散段23较细 的前端与测试段22的后端连接。
[0031] 该空气压缩机3、发电机4及气流涡轮机5由前而后依序排列,且位于同一轴线上。 其中,空气压缩机3同轴定位在进气收缩段21的前端,气流涡轮机5同轴定位在测试段22 内,而发电机4与气流涡轮机5同轴连接,并位于空气压缩机3与气流涡轮机5之间,实施 时,该发电机4也可设于测试段22的外部,并经由传动装置与气流涡轮机5连接。
[0032] 而该加热兀件6设于空气压缩机3的前端,加热兀件6较佳为一热泵,热泵具有一 排热端61及一排冷端62,排热端61设于风洞装置2的内部,排冷端62设于风洞装置2的 外部。排热端61较佳地包括多个并列且分别呈飞机机翼截面形状的散热叶片63,以使该多 个散热叶片63分别具有较宽的一宽端及较窄的一窄端,较宽的宽端是以远离空气压缩机3 的方向由较窄的窄端向前延伸而成。另外,该多个散热叶片63分别由导热材料所制成,其 内部中空,且各中空散热叶片63的内部相互连通。
[0033] 请参阅图2所示,其为本发明风洞式涡轮发电机1的第二实施例,其与第一实施例 的不同之处在于:第一实施例的风洞装置2为连续开放式,而本实施例的风洞装置2为连续 闭合式(Continuous Closed-Circuit Type, CCCWT),也就是说,在本实施例中,还包括一 管7,且该管7的后端连接进气收缩段21的前端,该管7的前端连接排气扩散段23的后端, 以形成气流的循环管路。
[0034] 在第一、第二实施例中,该风洞装置2及该管7教佳地为隔热材料所制成,以阻隔 风洞装置2及管7内的热量向外散出。实施时,风洞装置2及管7也可在其内管壁上结合 一层隔热材料,或在外管壁上结合一层隔热材料,或在内、外管壁之间结合一层隔热材料, 同样可以达到阻隔风洞装置2及管7内的热量向外散出的效果。
[0035] 以上结构设计,使得经由空气压缩机3的空气加压及文氏管效应,空气即能在风 洞装置2的测试段22内形成高速的气流,驱使气流涡轮机5转动,使发电机4产生电力,而 经由加热元件6的预先加热,即可避免气流涡轮机5的出口因低温而使水汽凝结,从而确保 发电的效果;再者,经由隔热材料的阻隔,则可有效避免风洞装置2及管7内的热量向外散 出,以提高空气压缩机3的进气温度,进而降低加热元件6输出功率,从而提高整体的发电 效果。
[0036] 为证明本发明确实可行,本发明同时提出"内阻耗能净值系数CK"的概念,以研究 风洞装置的内阻及气流各项参数的变化,并以热力学的观点加以验证。
[0037] 首先,以能量进出观点,讨论本发明连续密闭式气流风洞装置与同型现今传统风 洞装置的内部阻力等项的差异,其中,请同时参阅图3所示,所采用的符号定义如下: Wcps :空气压缩机消耗功,就传统风洞而言,Wcps就是"内阻耗能总和SWir"与"热 损失能量Qcl "二者之和; CK :风洞内阻净值系数,是"内阻耗能净值Net Wir"与"空气压缩机消耗功Wcps"的比 值,即 CR = Net Wir / Wcps ; Wtb:本发明风洞涡轮机输出功(约等于发电机输出功); Qhp :本发明热泵输入风洞的热能; Whp:本发明热泵压缩机消耗功,Whp = l/3XQhp (假设C0P=3); fcet :系统输出能量净值; f| energy :系统能源效率; 再针对"内阻耗能总和SWir"与"内阻耗能净值Net Wir"的概念进一步说明如下: 风洞内阻为风洞装置内壁、测试模型及支架、扩散管、蜂巢形整流器、滤网及转角导片 等元件所产生的气流阻力,主要分为"磨擦损失"与"动态损失"两大类。其中,磨擦损失由 流速不同的层流(Laminar Flows)之间分子磨擦所产生,在风洞装置内部,处处皆有此磨擦 损失持续发生中;而动态损失是指风洞内某些特别装置在特定点造成的气流阻力,因各种 装置形状及位置不一,必须逐项评估其值。
[0038] 各种装置磨擦损失hf可由下列Darcy-Weisbach公式计算求得: L F2 因所有风洞装置的内阻均转化为气流热能,因此,风洞装置内的气流会越来越热,使得 测试段不能使用,必须将其冷却,也就是说,风洞装置内阻转化为热能为传统风洞装置的巨 大负担,必须要以冷却系统进行降温。
[0039] 就传统风洞装置而言,内阻消耗的能量大约是空气压缩机输入功的一半或略小, 即Σ Wir = l/2XWcps。而就本发明而言,因风洞装置为密闭式热绝缘体,又无冷却系统, 风洞装置的内阻与外界无关,内阻产生的热将使风洞内气流温度上升,内能增加,以驱动气 流涡轮机和发电机。此时,增加的内能部分转化成有用的电能,将传统风洞的损耗转变为电 能输出,而未转化的热能皆保存在风洞装置内,并无流失,正是本发明产生高效率清洁能源 的关键。
[0040] 因此,以"内阻耗能净值"的概念以讨论本发明的风洞装置与传统风洞装置之间的 差异时,可知传统风洞装置的内阻消耗能净值Net Wir =全部内阻耗能总和SWir ;传统 风洞装置的 CK = 1/2 故 Net Wir = = l/2XWcps。
[0041] 而本发明风洞装置的内阻耗能部分转化成电能输出,故Net Wir ? Xffir (0〈 CK〈〈 1/2 ),也就是说,本发明系统的"内阻耗能净值"远小于"内阻耗能总和", 由实施例个案的精确数值可由试验求得,本发明对此保守估计为C K= 1/3,即Net Wir = l/3XWcps。
[0042] 另,再针对"热损失能量Qcl"与"内阻耗能净值Net Wir"的概念进一步说明如 下: Qcl: "热损失"或"冷却损失"是指风洞装置的冷却系统移走的热能与风洞装置的管 壁逸散到外界的热能二者之和。这是传统风洞主要的能量损失,会使风洞装置运转成本大 幅增加;当风洞压缩机不断对气流增压加温,再加上内阻持续变成热能,其使产生的高温气 流并不适合测试段使用,因此,需以冷却系统将热能带走以冷却降温,然而,将会造成大量 能源的浪费,因此,传统风洞装置的运转成本一向高居不下,半个多世纪以来并无改善。而 就传统风洞装置而言,"热损失"所消耗的能量约为空气压缩机输入功的一半(或略大于一 半),g卩,Qcl = l/2XWcps。而在本发明系统中,并无冷却装置,再加上风洞装置绝热,热 能均变为气流内能,无任何热量损失,因此,Qcl = 0。
[0043] 说明1:传统风洞的能量出入计算如下: 当〇; = 1/2,Wcps= 2Wir+ Qcl 说明2 :本发明系统的能量出入计算,用CK = 1/3的实施例来说明如下: fftb + Netffir + Qcl = ffcps +Qhp CR = 1/3 或 NetWir=l/3XWcps ; Qhp = 3Xffhp ; Qcl = 0 fftb = ffcps + Qhp - Netffir = 2/3Xffcps+ 3Xffhp ffhp = 1/3X (fftb - 2/3Xffcps) ffnet = (fftb) - (ffcps + ffhp )= {(2/3Xffcps) + 3Xffhp} - (ffcps + ffhp)= 2 Xffhp - 1/3 Xffcps energy =ffnet/ ( ffcps + ffhp) = (2 Xffhp -1/3 Xffcps )/( ffhp+ ffcps) 根据以上公式,可设定Whp =1/6 XWcps,求得fjenergy= 0;设定Whp =1/2 Xffcps ,求得 energy= 44. 4% ;设定 Whp =Wcps ,求得 if energy= 83. 3% ;设定 Whp =1.33XWcps ,求得 f|energy= 100%。
[0044] 经由上述表示:iCK= 1/3,热泵压缩机消耗功大于空气压缩机消耗功的1/6 后,本系统即有正值净功输出;当(;=1/3,热泵压缩机消耗功等于空气压缩机消耗功的 1. 33倍时,本系统能源效率为100%。
[0045] 然而,若热泵马达消耗功Whp设定值太大,风洞内气温偏高,热泵C0P值会下降 (此为热泵特性,即当冷热源两端温差加大,C0P值将下降),表示整个风洞系统能源效率 随之下降;再者,Wcps值变大,风洞气流速度随之增加,涡轮机进口气流速度到达音速Mach 1.0时,会产生"堵塞"Choke现象,破坏系统正常运作,故本发明的最佳热泵压缩机消耗功 Whp设定值应为: ffcps < ffhp < 1.33Xffcps 艮P :热泵压缩机消耗功设定值宜在风洞压缩机消耗功的等值到1. 33倍之间。
[0046] 经由上述说明,本发明对内阻耗能净值采保守值Net Wir = l/3XWcps (即CK = 1/3)的实施例,如若更乐观的估计,例如:CK= 1/5 *CK = 1/10,则本发明系统能源效率 JJ energy值将随之增加,即热泵压缩机消耗功Whp设定值还可更低,使系统节能性更佳,从 而使发电效率更好。
[0047] 其次,谨再提出以下说明,以证明本发明符合热力学的观点。
[0048] 请参阅图1所示,其中,风洞装置2内部气流涡轮机5入口气流速度设定约为 MachO. 6-0. 9,根据空气动力学原理,在风洞装置2中的气流经渐缩段21时,压力、温度和密 度下降,速度和体积增加;而经渐扩段23时,压力、温度和密度增加,速度和体积减少。依 此,气流经过本发明的实施例时,压力-体积(P-V)和温度-熵(T-S)图如图4、图5所示, 各项参数的变化分列如下: A-B 段~| B-C 段~| C D-E 段 | E-F 段 | F-G 段^ 压力 ΔΡ<0 ΔΡ?0~-W^O ΔΡ?0 ΔΡΞ^Ο~ 潖ΔΤ = 0 ΔΤ?0 ΔΤ<0 ΔΤ ? 0 ΔΤ > 0~ 烟 AS = 0 AS > 0 Δ5 = 0 AS > 0 AS = 0 运运~~Δν>0 ZvT〇 Δν>>0 AV?〇 Δν<〇~ 而如图6所示为现今全球通用的实际燃气涡轮机(Actual Gas Turbine,简称AGT), 图7和图8为其压力-体积(P-V)和温度-熵(T-S)图,其各项参数的变化分列如下: 丨a-b段 | b-c段 | c-d段^丨d-e段 | e-f段 压力 ilP<0 ΔΡ? 0 iiP<0 ΔΡ? 0 ΔΡ> Ο Δ\〇1_<0 Δ\ ο?. < Ο Δ\〇1.>0 Δ\ ο?. ? Ο Δν〇1._ <0 涵度 ΔΤ= Ο ΔΤ?0 ΔΤ? Ο~~ΔΤ ? Ο ΔΤ>Ο~~ Δ$ = 0 Δ5>0 Δ$ ?0Δ$ >0 Δ$ = 0~ 速度 ΔΥ > Ο Δ\Γ<0 ΔΥ ?0~"Δ\τ? 〇 ΔΥ<〇~ 比较本发明与现有燃气润轮机的理想Brayton循环(实线部分,由b、cs、ds和es围成) 及实际循环(虚线部份,由b、ca、da和ea围成)系统P-V及T-S图即可发现本发明与其实 际循环系统相近。而在二者的T-S图中,图5的B-C段及E-F段与图8的b-ca段及da-ea 段两处熵(Entropy,S )的变化均为AS > 0,因此,符合热力学第二定律。
[0049] 参见图1和图6,其中,当气流通过本发明B-C段的空气压缩机时,会增温增压,到 E-F段时,会驱动涡轮机和发电机以释出能量,此时,速度和温度会大蝠下降,此与AGT的 b-c段和d-e段相同,但二者在c-d (D-E)段时的差异甚大,比较如下: 本发明的D-E段为收缩段,收缩比约在9到12之间,气流速度在此增加数倍,温度微 降,以驱动气流涡轮机;而AGT的c-d段为燃烧段,燃油在此注入燃烧,产生超高温,气流温 度和速度大增,驱动气流涡轮机以释出能量。
[0050] 在此c_d (D-E)段,本发明无燃烧装置,仅以气体循环或排放,不会产生有害废 气;且以经过空气压缩机增压加温至约100-300°C左右及收缩段加速的气流以驱动气流涡 轮机,气流通过气流涡轮机之后,大幅降温,气流涡轮机出口的气温低于空气压缩机进口的 温度。而为避免涡轮机出口的气温低于零度(〇°C ),本发明在空气压缩机的前方安装热泵 (Heat Pump,HP)系统,预热进入压缩机的气流,以将温度提升摄氏数十度,使水汽不再凝 结。
[0051] 另查热泵的性能系数COP (Coefficient of Performance)约为3,即每一单位压 缩机工作能量输入,可得到三单位热能量输出(Qhp=3 Whp),如此一来,经由热泵即可增高 本发明风洞内部的气流温度,提供更多的热能以驱动气流涡轮机,从而提升整体的能源效 率。
[0052] 上述燃气涡轮机(AGT)的热源主要是来自于燃烧化石燃料,以产生超过1,000°C 的超高温,再把数百摄氏度的高温有害废气排出;而本发明主要以热泵代替AGT的燃烧系 统,除了可以提供风洞气流热能外,热泵也在风洞系统外产生冷源,以供冷气机或冷冻机使 用,使成为本发明的附属系统,此亦为本发明的另一贡献。
[0053] 请参阅下表所不,为英国 ARA (Aircraft Research Association ,Bedford, England)及法国 0NERA SIMA 的连续穿音速风洞(Continuous Transonic Wind Tunnels,TWT)的测试段的各项数据。 空气密度测试纖面枳 效系数 的流速 英国ARA马赫1J ^ 0.3 L2Kg m- -'4m <2_44m 马赫 l 4 连续穿音速凤洞 法国 ONERASIMA . 0.3 L2 Kg ur* 4m.<4m 马赫 1 0 的连续穿音速潮I 丨 _丨
[0054] 上述两个风洞被改为本发明发电系统时,应依照下列各项修改或规定: 1. 测试段截面改为内径圆形,以便纳入等圆径气流涡轮机,而涡轮机输出功Wtb依下 列公式计算: Wtb= l/2XaXbXAXV3 三次方 a:涡轮有效系数;b:空气密度; A:涡轮叶片扫过的面积; V3 :气流涡轮机入口的空气流速; 为方便计算,本实施例采用: a=0. 3 ; b=l. 2 kg/m3 ; A=风洞收缩段喷嘴(即测试段)的截面积(m2) Wtb = 1/2X0. 3X1. 2XAXV3 三次方 2. 为方便计算,采用:Machl.O =在15°C及1.0大气压下的空气流速为341m/s。假 设气流涡轮机进气温度T3=200°C,则Machl. 0 =在200°C及1. 0大气压下的空气流速为 436m/s。
[0055] 3.第一例的英国ARA风洞的Whp = L 33XWcps,CK = 1/3 ;第二例的法国ONERA SIMA风洞的Whp = Wcps,CK = 1/3;此两例的风洞皆为隔热性,故其Qcl = 0。
[0056] 其中,当气流涡轮机置入英国ARA风洞的测试段,以形成本发明的具体结构,且假 设 Whp = 1.33XWcps,CK= 1/3 时,由于 Wcps=15.8 百万瓦,因此,Whp = 1.33X15.8 = 21.01百万瓦。
[0057] 依 Wtb = 2/3XWcps + 3XWhp = 2/3XWcps + 3X1. 33XWcps 的公式求得: fftb = 2/3X 15.8 + 3X 1.33X 15.8= 10.53+ 63.04= 73. 57MW ; 再依发电功率的公式计算: Wtb = 73. 57MW= 1/2X0. 3X1.2XAXCubeV3 ; 求得 V3 = 394m/s 依 Wnet = 2XWhp _l/3XWcps 的公式求得: ffnet= 2X20.01 - 1/3X15.8=40.02 -5.27 = 34. 75MW 此表示英国ARA风洞改装成为本发明的发电系统时,需安装20. 01丽压缩机的热泵, 系统净输出功34. 75丽。而本发明风洞测试段的风速394m/s(MachO. 9)仅为其风洞设 计最高速Machl. 4的64. 3%。理论上,空气压缩机的出力仅为其最大马力的41. 34%,即 6. 53MW(=15. 8X41. 34%),因此,当空气压缩机输出为15. 8MW时,实际系统净输出功应远远 大于上值34. 75MW。
[0058] 而依上述计算结果,再依Whp = 1. 33XWcps及能源效率的公式计算求得,1| energy= (2 Xffhp -l/3Xffcps) / (ffhp+ ffcps) = 100%〇
[0059] 另外,当气流涡轮机置入法国ONERA SIMA风洞的测试段,以形成本发明的具体结 构,且假设Whp = Wcps,CK = 1/3时,由于Wcps=88百万瓦(MW),因此,Whp =88百万瓦 (MW)。
[0060] 依 Wtb = 2/3 X Wcps + 3 X Whp 的公式求得: fftb =2/3 Xffcps + 3 Xffcps = 2/3X88 + 3X88= 58.67+264 = 322. 67MW ; 再依发电功率的公式计算: fftb = 322. 67MW = 1/2X0. 3X1. 2 XAXCubeV3 ; 求得 V3 = 329 m/s ; 依 Wnet = 2XWhp _l/3XWcps 的公式求得: Wnet=2X88 - 1/3X88 = 146. 7MW; 此表示法国ONERA SIMA风洞改装成为本发明的发电系统时,需安装88丽压缩机的 热泵,系统净输出功146. 7MW。而本发明风洞测试段的风速329m/s (MachO. 755)仅为其风 洞设计最高速Machl. 0的75. 5%。理论上,空气压缩机的出力仅为其最大马力的57%,即 50. 16丽(=88X57%),因此,当空气压缩机输出为88丽时,实际系统净输出功应大于上值 146. 7MW。
[0061 ] 而依上述计算结果,再依Whp = Wcps及能源效率的公式计算求得, energy=(2Xffhp -1/3Xffcps) / (ffhp+ ffcps) =83. 3%〇
[0062] 通过上述二种不同风洞机型的验证可知,本发明热泵压缩机消耗功Whp设定值在 空气压缩机马达消耗功Wcps的1. 33倍到等值之间时,能源效率?| energy可达约100%至 83%,足以证明本发明具有实用性与可行性。
[0063] 再者,下表为将本发明的实施例依照法国ONERA SIMA风洞尺寸大小所模拟的发电 系统,与目前全球陆上型最大的德国Enercon E126风力发电机的比较结果。 本发明 Enercon E126 尺寸 165m^55m <2Sm 19$5m -:126m '-:26m ~兑重畺 1=000吨 3:500吨 运转方式每天24小吋连续运转 间歇性运转 浄能源输出 146JMW 15MW 能渾重畺l:h 0J46~ K^Vkg 0.00214 KWkg^
[0064] 基于上述比较可知,八个上述本发明发电系统的输出电力为1,174MW,约相当于一 座核能电厂的电力输出,占地仅为〇. 073平方公里,且能够每天24小时持续不断发出完全 清洁的能源电力;相对于风力发电机而言,其只能进行间歇性的供电,能源重量比很小,建 造成本又高,实无法与本发明的系统相比。
[0065] 因此,本发明具有以下优点: 1、本发明利用风洞装置所形成的文氏管效应,使高速的气流推动气流涡轮机转动,以 进行发电,因此,不但不会浪费能源,且在发电过程中,也不会排放污染物,相当符合环保要 求。
[0066] 2、本发明以空气压缩机产生气流,再使气流加速,以进行发电,因此,在发电时并 不会受到外在环境的限制。
[0067] 3、本发明以加热元件预先加热通过空气压缩机的空气,使高速气流驱动气流涡轮 机和发电机,以输出电能,因此,不但能使通过空气压缩机的气流温度有效提升,以提供充 足的能量,且能有效避免气流涡轮机出口因低温而使水汽凝结。
[0068] 4、本发明的风洞装置具有隔热效果,可将风洞装置内阻所转化的热能做为空气加 热之用,因此,能有效降低加热元件的输出功,从而提高整体发电效率。
[0069] 综上所述,依上文所揭示的内容,本发明确可达到发明的预期目的,提供一种不但 能在不使用风力的状态下,利用高速的气流以进行发电,且可让发电效率有效提升的风洞 式涡轮发电机,再者,如本文前述模拟英国ARA风洞暨法国S1MA风洞的大型本发明发电系 统,可装置地热源热泵(Ground Source Heat Pump, GSHP),以利用地热供应热能,使热泵的 C0P值可高达4至5倍,从而倍增本发电系统的能源效率,极具产业利用价值。
[0070] 以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范 围不限于此。本【技术领域】的技术人员在本发明基础上所作的等同替代或变换,均在本发明 的保护范围之内。本发明的保护范围以权利要求书为准。
【权利要求】
1. 一种风洞式涡轮发电机,其特征在于,包括: 一风洞装置,包括一进气收缩段、一测试段及一排气扩散段,该进气收缩段及该排气扩 散段分别为收敛形及发散形,该进气收缩段较细的一端与该测试段的前端连接,该排气扩 散段较细的一端与该测试段的后端连接; 一空气压缩机,设于该进气收缩段的前端; 一气流涡轮机,设于该测试段内; 一发电机,与气流涡轮机连接,供气流涡轮机转动时进行发电;以及 一加热元件,设于该空气压缩机的前端,供预先加热通过该空气压缩机的空气。
2. 如权利要求1所述的风洞式涡轮发电机,其特征在于,还包括一管,该管的后端连接 该进气收缩段的前端,该管的前端连接该排气扩散段的后端。
3. 如权利要求2所述的风洞式涡轮发电机,其特征在于,该风洞装置及该管设有至少 一隔热材料,供阻隔该风洞装置及该管内的热量向外散出。
4. 如权利要求2所述的风洞式涡轮发电机,其特征在于,该风洞装置及该管为一隔热 材料制成,供阻隔该风洞装置及该管内的热量向外散出。
5. 如权利要求1所述的风洞式涡轮发电机,其特征在于,该空气压缩机、该发电机及该 气流涡轮机依序排列,且位于同一轴线上。
6. 如权利要求1所述的风洞式涡轮发电机,其特征在于,该加热元件具有一排热端,该 排热端设于该风洞装置的内部。
7. 如权利要求6所述的风洞式涡轮发电机,其特征在于,该排热端包括多个并列且分 别呈飞机机翼截面形状的散热叶片,该多个散热叶片分别具有宽端及窄端,且该宽端是以 远离空气压缩机的方向由该窄端向前延伸而成。
8. 如权利要求7所述的风洞式涡轮发电机,其特征在于,该多个散热叶片分别由导热 材料所制成,其内部中空,且各中空散热叶片的内部相互连通。
9. 如权利要求1至8任一项所述的风洞式涡轮发电机,其特征在于,该加热元件为一热 泵,该热泵还具有一排冷端,该排冷端设于风洞装置的外部。
【文档编号】F02C1/00GK104110307SQ201310138390
【公开日】2014年10月22日 申请日期:2013年4月19日 优先权日:2013年4月19日
【发明者】冯以张 申请人:冯以兴, 冯以张
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1