改善航空发动机加速性能的增量式pi控制器参数调整方法

文档序号:11024500阅读:1072来源:国知局
改善航空发动机加速性能的增量式pi控制器参数调整方法
【技术领域】
:
[0001]本发明属于航空发动机数控系统领域。
【背景技术】
:
[0002]加速性能是航空发动机一项非常重要的性能指标,减小发动机加速时间是提高飞机作战敏捷性的重要因素之一。航空发动机加速性能完全取决于加速过程中的供油情况。
[0003]发动机加速过程中的主燃油供油量计算方法如图1所示。当飞行员在Is内快速将油门杆从慢车状态推动至中间状态,主燃油流量控制算法使得高压转子转速给定值N2_dem(k) (k为系统采样时刻)从慢车状态控制计划突升到中间状态控制计划,使得高压转子转速N2的控制误差“eN2(k) = N2_dem(k)-N2 (k) ”突升,进而导致增量式PI (比例、积分)控制器计算出的当前周期主燃油流量增量“dWF(k) = KpX [eN2(k)-eN2(k-l)]+Kp/Ti X eN2 (k) ”突升,主燃油流量总量“WF_PI (k) = WF_PI (k_l) +dffF (k) ”也跟着突升。主燃油流量控制算法将WF_PI与加速燃油流量限制线WFacc进行低选,得到主燃油供油量WF。一般在加速过程的初期dWF较大,后期dWF较小,导致初期按照加速燃油流量限制线供油,即WF = WFacc,后期按照增量式PI控制器运算结果供油,即WF = WF_PI。加速过程中的主燃油供油变化规律如图2所示,其中A为分离点,即在分离点之前按照加速燃油流量限制线WFacc供油,在分离点之后按照增量式PI控制器运算结果WF_PI供油。
[0004]在发动机加速过程中,分离点A是个关键因素。如果WF与WFacc过早分离,则加速性能不会太好,加速时间偏长;如果WF与WFacc分离晚,虽然加速时间短,但是发动机转子转速会产生较大的超调,影响发动机的安全。
[0005]目前国内工程应用中加速过程主燃油供油量分离点A靠增量式PI控制器的运算结果WF_PI与加速燃油流量限制线WFacc的自适应低选确定,当主机单位一旦确定加速燃油流量限制线后,发动机的加速性能就完全取决于增量式PI控制器的运算结果,而增量式PI控制器的运算结果又唯一取决于其控制参数Kp、Ti。因此,PI控制参数的确定是影响发动机加速性能的关键所在。
[0006]主燃油增量式PI控制器控制参数Kp、Ti设计时通常只能考虑稳态时频域内的带宽特性和稳定裕度储备,不能直接反映加速特性,因此台架试车时发动机的加速特性通常不会令人满意,需要根据试验结果调整PI控制参数以改善加速特性。目前国内工程应用中调整PI控制参数以改善发动机加速特性的方法欠缺,通常采用增大比例增益Kp或者减小积分时间常数Ti的方法,但不能很好地把握,需要反复试凑。增大Kp能适当改善加速特性,但是系统稳定裕度储备会降低,而且Kp增大到一定程度后加速特性反而会降低,加速过程中由于加速燃油流量限制线WFacc的干扰,同时增量式PI控制器比例环节计算出的燃油流量增量“dup (k) = KpX [eN2(k)-eN2(k-l)]”为负值(加速过程中随着转速的上升eN2 (k)逐渐减小),因此会阻碍加速过程。减小积分时间常数Ti能改善发动机加速特性,但会降低系统稳定裕度储备,而且降低多少很难评估,同时分离点A也难以准确预估。
【发明内容】
:
[0007]发明目的:提供一种改善航空发动机加速性能的增量式PI控制器控制参数调整方法,用于快速调整主燃油流量PI控制器的比例增益Kp和积分时间常数Ti,以使发动机获取优良的加速特性。
[0008]技术方案:
[0009]一种改善航空发动机加速性能的增量式PI控制器参数调整方法,包括:
[0010](I)将主燃油流量增量式PI控制器的比例增益设计值Kp_des ign乘以比例因子kKp,作为加速性能摸底试验的比例增益初始值KpO:
[0011](2)将积分时间常数设计值Ti_des ign除以缩放因子kTi,结果与0.2比较,取二者中最大值作为加速性能摸底试验的积分时间常数初始值T1:
[0012](3)将比例增益ΚρΟ、积分时间常数T1写入增量式PI控制器作为发动机台架加速性能摸底试验的控制参数初始值,获取试验数据;
[0013](4)从所述试验数据中提取同时满足WF = WFacc,dup < O条件的高压转子换算转速N2r、加速燃油流量限制线WFacc、主燃油供油量WF、增量式PI控制器比例环节计算出的燃油流量增量dup和增量式PI控制器积分环节计算出的燃油流量增量dui,作如下计算:
[0014]dffF_need = WFacc_WFacc_pre > 0,其中dWF_need是保证主燃油供油走加速燃油流量限制线所需的最小单步燃油流量增量,WFacc_pre是WFacc上一周期的值;
[0015]dui_need = dffF_need - dup > 0,其中dui_need是除去比例环节燃油流量增量dup的反作用之后,还能保证最小单步燃油流量增量dWF_need所需的积分环节燃油流量增量;
[0016]K_need = dui_need/dui < 1,其中K_need是所需积分量比实际所用积分量的比例;
[0017]K_rsv = K_needX 1.3,其中K_rsv是考虑鲁棒性后所需积分量比实际所用积分量的比例;
[0018](5)设期望的加速过程燃油流量分离点A的转速为N2r0,则对积分时间常数缩放因子K作如下取值:
[0019]当N2r 彡(N2r0-2% )时,K = K_rsv ;
[0020]当(N2r0-2%) < N2r < N2r0 时,K 为 K_rsv 与 K_need 的线性插值;
[0021]当N2r = N2r0 时,K = K_need ;
[0022]当N2r0 < N2r < (N2r0+3% )时,K 从 K_need 线性平滑过渡到 I ;
[0023]当N2r0 彡(N2r0+3% )时,K = I ;
[0024](6)计算得到增量式PI控制器最终所需的积分时间常数:Ti_final = T1/K ;
[0025](7)计算得到增量式PI控制器最终所需的比例增益Kp_final:
[0026]当N2r N2r0 时,Kp_final = KpO ;
[0027]当N2r0 < N2r < (N2r0+3% )时,Kp_final 从 KpO 线性平滑过渡到 Kp_des ign ;
[0028]当N2r ^ (N2r0+3% )时,Kp_final = Kp_des ign ;
[0029](8)将Kp_final、Ti_final写入主燃油流量增量式PI控制器,进行后续台架试车。
[0030]其中,比例因子kKp的取值范围为0.5 ^ kKp ^ 0.8 ;缩放因子kTi的取值范围为3 ^ kTi ^ 5 ;加速过程燃油流量分离点A的转速N2r0的取值范围为N2r0 < 95%。
[0031]有益效果:
[0032]本方法对主燃油流量增量式PI控制器的控制参数设计结果进行一次调整,便可最终确定控制参数,在后续台架试车中既能获取准确的加速过程燃油流量分离点A,保证发动机具有良好的加速性能,又能使增量式PI控制器在具备一定鲁棒性的基础上,将系统的稳定余度储备降低到最小,解决了当前工程应用中试凑法存在的弊端,即既需要反复试凑,又不能准确获取加速过程中的燃油流量分离点A,且很难最大限度得保证系统稳定裕度储备等问题。
【附图说明】
[0033]图1为发动机加速过程中主燃油供油量计算法示意图。
[0034]图2为发动机加速过程中主燃油供油变化规律示意图。
【具体实施方式】
[0035](I)将主燃油流量增量式PI控制器的比例增益设计值Kp_des ign乘以比例因子kKp (0.5 ^ kKp ^ 0.8),作为发动机台架加速性能摸底试验的比例增益初始值,例如KpO =Kp_des ignX 0.8;
[0036]因为后续要减小增量式PI控制器的积分时间常数Ti,这样会降低系统的稳定裕度储备,而在此处将比例增益设计值Kp_des ign乘以比例因子kKp,能够提高系统的稳定裕度储备,从而一定程度弥补减小积分时间常数Ti对系统稳定裕度储备的影响;
[0037](2)将主燃油流量增量式PI控制器的积分时间常数设计值Ti_des ign除以缩放因子kTi (3 ( kTi ( 5),但所得值不能小于0.2,作为发动机加速性能摸底试验的积分时间常数初始值,例如 T1 = max (Ti_des ign/5, 0.2);
[0038]按照该方法得到的积分时间常数初始值T1会使增量式PI控制器产生一个较强的积分效果(dui = Kp/Ti X eN2 (k)),从而导致加速过程中燃油流量分离点A较晚产生,产生转子转速超调(但是由于转子转速限制计划的存在,超调不会太大,因此对发动机台架试车不会有风险),同时系统稳定裕度储备下降较多。
[0039](3)将根据上述步骤获得的比例增益初始值ΚρΟ、积分时间常数初始值T1写入增量式PI控制器,作为发动机台架加速性能摸底试验的控制参数初始值,获取试验数据;然后根据试验数据重新调整积分时间常数,以保证获取准确的加速过程燃油流量分离点Α,同时在保证一定鲁棒性的基础上积分时间常数尽可能减小得少,使得系统稳定裕度储备在满足加速特性和鲁棒性的基础上尽可能下降得少;
[0040](4)获取试验数据中主燃油流量走加速燃油流量限制线的数据,即满足如下要求:
[0041 ] a) WF 与 WFacc 重合,即 WF = WFacc ;
[0042]b) dup < O,
[0043]从满足上述要求的试验数据中抽离出如下参数作为后续计算的基础:
[0044]a) N2r:发动机高压转子换算转速;
[0045]b) WFacc:加速燃油流量限制线;
[0046]c)WF:增量式PI控制器运算结果与加速燃油流量限制线低选后的结果;
[0047]d) dup:增量式PI控制器比例环节计算出的燃油流量增量;
[0048]e) du1:增量式PI控制器积分环节计算出的燃油流量增量,即dui = Kp/TiXeN2 (k)。
[0049](5)计算保证主燃油供油走加速燃油流量限制线所需的最小单步燃油流量增量:dffF_need = WFacc_WFacc_pre > 0,其中 WFacc_pre 是 WFacc 上一周期的值;
[0050](6)计算除去比例环节燃油流量增量dup的反作用之后,还能保证最小单步燃油流量增量dWF_need所需的积分环节燃油流量增量:dui_need = dffF_need - dup > O ;
[0051](7)计算K_need(所需积分量比实际所用积分量的比例)和1(_^7(考虑鲁棒性后所需积分量比实际所用积分量的比例,在K_need基础上预留1.3倍的余量):
[0052]a) K_need = dui_need/dui < I ;
[0053]b) K_rsv = K_needX 1.3 ;
[0054](8)设期望的加速过程燃油流量分离点A的转速为N2r0 (92 % ( N2r0 ^ 95% ),则对积分时间常数缩放因子K作如下取值:
[0055]a)当 N2r (N2r0~2% )时,K = K_rsv ;
[0056]b)当(N2r0-2% ) < N2r < N2r0 时,K 为 K_rsv 与 K_need 的线性插值;
[0057]c)当 N2r = N2r0 时,K = K_need ;
[0058]d)当 N2r0 < N2r < (N2r0+3% )时,K 从 K_need 线性平滑过渡到 I ;
[0059]e)当 N2r0 彡(N2r0+3% )时,K = I ;
[0060](9)计算得到增量式PI控制器最终所需的积分时间常数:Ti_final = T1/K ;
[0061](10)计算得到增量式PI控制器最终所需的比例增益Kp_final:
[0062]a)当 N2r N2r0 时,Kp_f inal = KpO ;
[0063]b)当 N2r0 < N2r < (N2r0+3 % )时,Kp_final 从 KpO 线性平滑过渡到 Kp_design ;
[0064]c)当 N2r ^ (N2r0+3% )时,Kp_final = Kp_des ign ;
[0065](11)将最终所得的比例增益Kp_final、积分时间常数Ti_final写入主燃油流量增量式PI控制器,进行后续台架试车,这样在试验时既能获取准确的加速过程燃油流量分离点A,保证发动机具有良好的加速性能,又能使增量式PI控制器在具备一定鲁棒性的基础上(通过积分时间常数固定预留1.3倍的余量),将系统的稳定余度储备降低到最小。
【主权项】
1.一种改善航空发动机加速性能的增量式PI控制器参数调整方法,其特征在于,包括: (1)将主燃油流量增量式PI控制器的比例增益设计值Kp_design乘以比例因子kKp,作为加速性能摸底试验的比例增益初始值KpO: (2)将积分时间常数设计值Ti_design除以缩放因子kTi,结果与0.2比较,取二者中最大值作为加速性能摸底试验的积分时间常数初始值T1: (3)将比例增益ΚρΟ、积分时间常数T1写入增量式PI控制器作为发动机台架加速性能摸底试验的控制参数初始值,获取试验数据; (4)从所述试验数据中提取同时满足WF= WFacc, dup < O条件的高压转子换算转速N2r、加速燃油流量限制线WFacc、主燃油供油量WF、增量式PI控制器比例环节计算出的燃油流量增量dup和增量式PI控制器积分环节计算出的燃油流量增量dui,作如下计算: dffF_need = WFacc-ffFacc_pre > 0,其中dWF_need是保证主燃油供油走加速燃油流量限制线所需的最小单步燃油流量增量,WFacc_pre是WFacc上一周期的值; dui_need = dffF_need - dup > 0,其中dui_need是除去比例环节燃油流量增量dup的反作用之后,还能保证最小单步燃油流量增量dWF_need所需的积分环节燃油流量增量;K_need = dui_need/dui < 1,其中K_need是所需积分量比实际所用积分量的比例;K_rsv = K_needX 1.3,其中K_rsv是考虑鲁棒性后所需积分量比实际所用积分量的比例; (5)设期望的加速过程燃油流量分离点A的转速为N2r0,则对积分时间常数缩放因子K作如下取值: 当 N2r (N2r0-2% )时,K = K_rsv ; 当(N2r0-2% ) < N2r < N2r0 时,K 为 K_rsv 与 K_need 的线性插值;当 N2r = N2r0 时,K = K_need ; 当N2r0 < N2r < (N2r0+3% )时,K从K_need线性平滑过渡到I ; 当 N2r0 彡(N2r0+3% )时,K = I ; (6)计算得到增量式PI控制器最终所需的积分时间常数:Ti_final= T1/K ; (7)计算得到增量式PI控制器最终所需的比例增益Kp_final:当 N2r N2r0 时,Kp_f inal = KpO ; 当 N2r0 < N2r < (N2r0+3% )时,Kp_final 从 KpO 线性平滑过渡到 Kp_design ;当 N2r ^ (N2r0+3% )时,Kp_final = Kp_design ; (8)将Kp_final、Ti_final写入主燃油流量增量式PI控制器,进行后续台架试车。2.如权利要求1所述的改善航空发动机加速性能的增量式PI控制器参数调整方法,其特征在于, 比例因子kKp的取值范围为0.5彡kKp彡0.8 ;缩放因子kTi的取值范围为3 ^ kTi ^ 5 ;加速过程燃油流量分离点A的转速N2r0的取值范围为N2r0 < 95%。
【专利摘要】本发明属于航空发动机数控系统领域,提供一种改善航空发动机加速性能的增量式PI控制器参数调整方法,用于调整PI控制器的Kp和Ti,使发动机获取优良的加速特性。技术方案包括:将设计值Kp_design、Ti_design缩放,得到Kp0、Ti0,进行加速试验,获取试验数据,提取满足WF=WFacc、dup<0的数据,计算dWF_need、dui_need、K_need、K_rsv,根据分离点A转速N2r0对K分段取值,然后得到Ti_final、Kp_final,并写入PI控制器,进行台架试车。
【IPC分类】F02C9/26
【公开号】CN105715384
【申请号】CN201410736305
【发明人】高亚辉, 季春生, 俞刚, 王松, 王振华, 贾盼盼
【申请人】中国航空工业集团公司航空动力控制系统研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1