一种复杂运动流体能量吸收器及其制水装置的制作方法

文档序号:16256440发布日期:2018-12-12 00:30阅读:192来源:国知局
一种复杂运动流体能量吸收器及其制水装置的制作方法

本发明涉及一种流体能量吸收器,具体涉及一种复杂运动流体能量吸收器及其制水装置。

背景技术

现有的流体能量吸收器只能吸收单一方向的流体能量,对复杂和微弱的流体不能进行有效利用。如复杂运动流体海浪。传统的风力发电技术也存在着对复杂方式运动的风力无法利用的问题。如何利用复杂运动流体,复杂气流和海浪的能量,是目前亟待解决的问题。



技术实现要素:

本发明所要解决的技术问题是提供复杂运动流体能量吸收器,利用复杂运动流体能量吸收器可以吸收复杂运动流体的能量。

本发明解决上述技术问题的技术方案如下:一种复杂运动流体能量吸收器,包括框架、逆止阀和流体流出通道,所述逆止阀设有多个,多个所述逆止阀分布镶嵌在所述框架的表面上,所有所述逆止阀的进口位于所述框架外并呈全方位分布结构,所有所述逆止阀的出口位于所述框架内并与固定在框架表面的所述流体流出通道连通,所述流体流出通道内还设有负荷。

本发明的有益效果是:本发明利用全方位分布的逆止阀构成的流体流入通道,和安装负荷的流体流出通道构建了一个流体的单向通道,即流体可以从所述的流体流入通道的四面八方进入,但却只能从安置负荷的流体流出通道流出,从而实现对复杂运动形式流体的利用,如复杂气流、海浪等;本发明可以在不运动的情况下,在同一时刻可以吸收来自不同方向的流体能量。

在上述技术方案的基础上,本发明还可以做如下改进。

进一步,每个所述逆止阀的出口上均分别设有一个内部导流通道,所有所述内部导流通道的出口集成在一起构成蜂巢结构,且所有所述内部导流通道的出口呈平行状态并正对所述流体流出通道的进口,所有所述逆止阀的出口均通过对应的内部导流通道与所述流体流出通道连通。

采用上述进一步方案的有益效果是:来自不同逆止阀的流体经内部导流通道调整方向一致后,可以减少湍流现象。

进一步,还包括气压罐,所述气压罐通过管道与所述流体流出通道连通,且所述气压罐与所述流体流出通道连通的管道上设有阀门。

采用上述进一步方案的有益效果是:当流体为海浪时,气压罐可以为装置提供一定的浮力。

进一步,所述流体流出通道内设有泄压阀,且所述泄压阀位于所述负荷上方。

采用上述进一步方案的有益效果是:流体流出通道内设有泄压阀,当流体流量超过设计值,泄压阀开启,可以保护装置免受损坏;另外,当流体为海浪时,泄压阀在关闭的瞬间会产生水锤效应,在气压罐的配合下,可以通过控制泄压阀来达到利用微弱流体推动负荷的目的。

进一步,所述泄压阀为由计算机控制的电动泄压阀。

进一步,每个所述逆止阀的进口上均分别设有一个外部导流通道,所有所述外部导流通道的进口集成在一起构成蜂巢结构,且所有所述外部导流通道的进口呈全方位分布状态。

采用上述进一步方案的有益效果是:蜂巢结构的外部导流通道可以扩大对流体的采集面积。

进一步,所述负荷为风力发电机组或海浪发电机组。

采用上述进一步方案的有益效果是:本发明可以收集风力和海浪能。

进一步,所述框架为球形框架。

基于上述一种复杂运动流体能量吸收器,本发明还提供一种基于复杂运动流体能量吸收器的制水装置。

一种基于复杂运动流体能量吸收器的制水装置,包括上述所述的一种复杂运动流体能量吸收器,以及冷凝器和导流通道,所述冷凝器通过所述导流通道与所述流体流出通道的出口相连通。

附图说明

图1为本发明一种复杂运动流体能量吸收器的第一种结构示意图;

图2为本发明一种复杂运动流体能量吸收器的第二种结构示意图;

图3为本发明一种复杂运动流体能量吸收器作为海浪发电装置的一种结构示意图;

图4为本发明一种复杂运动流体能量吸收器作为风能发电装置的一种结构示意图;

图5为本发明一种基于复杂运动流体能量吸收器的制水装置的结构示意图。

附图中,各标号所代表的部件列表如下:

1、框架,2、逆止阀,3、流体流出通道,4、负荷,5、内部导流通道,6、泄压阀,7、气压罐,8、阀门,9、外部导流通道,10、冷凝器。

具体实施方式

以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。

如图1和图2所示,一种复杂运动流体能量吸收器,包括框架1、逆止阀2和流体流出通道3,所述逆止阀2设有多个,多个所述逆止阀2分布镶嵌在所述框架1的表面上,所有所述逆止阀2的进口位于所述框架1外并呈全方位分布结构,所有所述逆止阀2的出口位于所述框架1内并与固定在框架1表面的所述流体流出通道3连通,所述流体流出通道3内还设有负荷4。

在本发明中,每个所述逆止阀2的出口上均分别设有一个内部导流通道5,所有所述内部导流通道5的出口集成在一起构成蜂巢结构,且所有所述内部导流通道5的出口呈平行状态并正对所述流体流出通道3的进口,所有所述逆止阀2的出口均通过对应的内部导流通道5与所述流体流出通道3连通。内部导流通道可以为弯曲状。

在本发明中,所述流体流出通道3内设有泄压阀6,且所述泄压阀6位于所述负荷4上方。所述泄压阀6为由计算机控制的电动泄压阀。流体流出通道内设有泄压阀6,当流体流量超过设计值,泄压阀6开启,可以保护装置免受损坏;另外,泄压阀6在关闭的瞬间会产水锤效应,在气压罐的配合下,可以通过控制泄压阀6来达到利用微弱流体推动负荷的目的;所述泄压阀6为由计算机控制的电动泄压阀,通过在流体流出通道内设置压力传感器,并在计算机的控制下利用泄压阀实现压力大泄压和在压力小的情况下利用微弱流体推动负荷的目的。其中,气压罐配合泄压阀利用微弱流体发电的原理是:在微弱流体的情况下快速关闭泄压阀会产生瞬间压力,瞬间压力推动负荷做功,同时推动气压罐水面上升,当瞬间压力消失后,气压罐的水面停止上升,因为气压罐内有压缩空气,这时压缩空气开始做功,推动水面下降,进而继续推动负荷做功。

本发明还包括气压罐7,所述气压罐7通过管道与所述流体流出通道3连通,且所述气压罐7与所述流体流出通道3连通的管道上设有阀门8,所述气压罐7安装框架1的内部或外部。

在本发明中,每个所述逆止阀2的进口上均分别设有一个外部导流通道9,所有所述外部导流通道9的进口集成在一起构成蜂巢结构,且所有所述外部导流通道9的进口呈全方位分布状态。外部导流通道可以为笔直状。

在本发明中,所述负荷4为风力发电机组或海浪发电机组。

在本具体实施例中:

当负荷4为海浪发电机组时,本发明可以实现基于复杂运动流体能量吸收器的海浪发电;即本发明又可以提供一种基于复杂运动流体能量吸收器的海浪发电装置,如图3所示,包括海浪发电机组(涡轮发电机),以及上述所述一种复杂运动流体能量吸收器,所述海浪发电机组安装在所述的流体流出通道内。潜水艇形或球形或其他形状的闭合框架1,数十个,上百个,甚至上千个所述逆止阀2安装在框架1上,形成流体流入通道。每一个所述逆止阀2对内都有一个对应的内部导流通道5。框架1内设置气压罐7。框架1下部设置流体流出通道3。框架1为潜水艇形或球形或其他形状的闭合框架可以采集运动形式复杂的海浪海流和微弱的海浪海流的流体进行发电,其结构简单,建造和运维成本低,发电装置易大型化。

当负荷4为风力发电机组时,本发明可以实现基于复杂运动流体能量吸收器的风能发电;即本发明又可以提供一种基于复杂运动流体能量吸收器的风能发电装置,包括风力发电机组,以及上述所述一种复杂运动流体能量吸收器,所述发电机组安装在所述的流体流出通道3内。基于复杂运动流体能量吸收器的风能发电装置,可以采集运动复杂和微弱的风力进行发电,其运维成本低,发电装置易大型化。

在基于复杂运动流体能量吸收器的风能发电装置中,如图4所示,框架1可以为平面框架,此时使外部导流通道9呈弯曲结构且呈全方位分布,并与平面框架上所有逆止阀2一一对应,此时不需要设置内部导流通道5。所述外部导流通道9因与所述逆止阀有一一对应关系,因此,全方位分布的外部导流通道9其实质依旧为逆止阀2的全方位分布。与上述基于复杂运动流体能量吸收器的海浪发电装置相区别的是风力发电装置设置有外部导流通道9,且外部导流通道9呈弯曲状来替代基于复杂运动流体能量吸收器的海浪发电装置中内部导流通道5的作用,基于复杂运动流体能量吸收器的海浪发电装置可以不设置的外部导流通道9。

基于上述一种复杂运动流体能量吸收器,本发明还提供一种基于复杂运动流体能量吸收器的制水装置。如图5所示,一种基于复杂运动流体能量吸收器的制水装置,包括冷凝器10和导流通道,以及上述所述的一种复杂运动流体能量吸收器其中,复杂运动流体能量吸收器用于风力发电,所述冷凝器10通过所述导流通道与基于复杂流体能量吸收器中的所述流体流出通道3的出口相连通。基于复杂运动流体能量吸收器的制水装置将复杂运动流体能量吸收器进行风能发电后剩余的流体(空气)进行再收集,将流体通过放置在地下或水中的冷凝器10,利用地温或水温自然冷凝来制取液态水,不需要消耗能源。另外,在风电无法并网或无法做其他的利用的情况下,利用流体发电装置发出的电来制冷,减少浪费,提高制冷效率。

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1