一种用于MEMS器件制作的对准键合装置的制作方法

文档序号:15201978发布日期:2018-08-19 13:21阅读:354来源:国知局

本发明属于对准键合技术领域,涉及一种用于mems器件制作的对准键合装置。



背景技术:

mems的英文全称是:micro-electro-mechanicalsystems,一般也称作微机电系统,微机电系统是指尺寸在几毫米乃至更小的高科技装置,其内部结构一般在微米甚至纳米量级,是一个独立的智能系统,是集微传感器、微执行器、微机械结构、微电源微能源、信号处理和控制电路、高性能电子集成器件、接口、通信等于一体的微型器件或系统。mems技术是微电子技术的拓宽和延伸。它将微电子技术和精密机械加工技术相互融合,是一项革命性的新技术,广泛应用于高新技术产业,是一项关系到国家的科技发展、经济繁荣和国防安全的关键技术。

mems器件通常具有3d微结构,如微流控芯片,而传统加工方法很难实现3d微结构的加工,因此研究人员提出把上下都带有微结构的两片芯片键合在一起的方法,来制作3d微结构。对准键合装置一般通过ccd摄像头和精密调节平台,实现两层芯片的精准键合,但芯片上的微结构通常在几微米到几十微米之间,即使借助显微镜,通过手动调节也会产生较大的误差。



技术实现要素:

本发明的目的在于提供一种用于微机械器件制作的对准键合装置,实现具有微结构的两层芯片的高精准键合。

本发明的技术方案:

一种用于mems器件制作的对准键合装置,包括底座1、主二维式移动平台2、支撑架3、副三维式移动平台4、调平组件5、旋转组件6和ccd观测组件7;

所述的底座1上设有支架,用于拆卸安装ccd观测组件7;

所述的主二维式移动平台2为螺旋丝杆平台,固定在底座1上;主二维式移动平台2包括壳体、滑道、滑块、丝杠、螺母、联轴器和螺母座,螺母座上固定支撑架3;

所述的支撑架3为具有底板的框架结构,底板固定在主二维式移动平台2的螺母座上,当主二维式移动平台2的丝杠转动时,螺母随丝杆的转动角度按照对应的导程转化成直线运动,主二维式移动平台2沿xy轴方向移动,并带动支撑架3沿xy轴方向移动,从而实现芯片与ccd观测组件7的精准定位;所述的支撑架3的上端设有插槽,玻璃板a32插在插槽中,并通过螺栓31固定在支撑架3上,玻璃板a32的下表面上固定有微结构的上芯片;支撑架3的底板的x轴方向的两侧设有垂直板,一侧垂直板用于支撑副三维式移动平台4的螺旋微分头a411,另一侧垂直板贴有强磁铁片412;支撑架3的底板的y轴方向两侧固定有v形导轨413,与x轴移动平台41的v形导轨413相配合;

所述的副三维式移动平台4为组合式平台,位于支撑架3内,固定在支撑架3的底板上;所述的副三维式移动平台4包括x轴移动平台41、y轴移动平台42和z轴移动平台43;所述的x轴移动平台41位于底部,下表面的v形导轨与支撑架3的v形导轨相配合,通过v形导轨实现相对滑动;所述的y轴移动平台42位于在x轴移动平台41的上表面,y轴移动平台42下表面的v形导轨与x轴移动平台41上表面的v形导轨相互配合,通过v形导轨实现相对滑动;所述的z轴移动平台43固定在y轴移动平台42的垂直加强板的一侧;

所述的x轴移动平台41的下表面在y轴方向两侧分别固定有v形导轨413,与支撑架3上的v形导轨413相配合,相配合的两个v形导轨413之间设有保持架415,v形导轨413的v形槽中放置滚珠414,通过保持架415和滚珠414实现相对滑动;所述的x轴移动平台41,在x轴方向的两侧,一侧安装螺旋微分头a411,另一侧贴有强磁铁片412,与支撑架3的底板的垂直板上的强磁铁片412相对应;所述的x轴移动平台41的上表面在y方向两侧设有垂直板,一侧的垂直板上安装螺旋微分头a411,螺旋微分头a411与y轴移动平台42的一个侧面相接触,另一侧的垂直板上贴有强磁铁片412,与y轴移动平台42侧面的强磁铁片412相对应;所述的x轴移动平台41的上表面在x方向两侧固定有v形导轨413;所述的y轴移动平台42的下表面在x方向两侧固定有v形导轨413,通过保持架415和滚珠414与x轴移动平台41上表面的v形导轨413相配合,实现相对滑动;所述的y轴移动平台42,在y轴方向的两侧,一侧安装螺旋微分头a411,另一侧贴有强磁铁片412,与x轴移动平台41的垂直板上的强磁铁片412相对应;成组的强磁铁片412之间产生的排斥力,两个螺旋微分头a411分别与x轴移动平台41、y轴移动平台42的侧面紧密接触,通过螺旋微分头a411导向,使螺旋微分头a411的预压紧力与排斥力相互抵消,再调节螺旋微分头a411的微调旋钮副三维式移动平台4分别沿x、y轴方向移动;所述的y轴移动平台42上设有垂直加强板,垂直加强板上设有的滑道、滑块、丝杠、螺母、螺母座、联轴器和旋钮,滑道固定在垂直加强板的一侧,滑块与滑道通过滑槽连接,滑块的另一侧固定在z轴移动平台43的垂直板上;丝杆和螺母上设有弧形螺旋槽,丝杆和螺母套装在一起形成螺旋滚道,螺旋滚道内放置滚珠;丝杠一端设有联轴器,旋钮固定在联轴器上,螺母座为中空结构,与螺母一端紧密配合,螺母座上表面设有螺纹孔,用于固定z轴移动平台43;当扭动旋钮使丝杠转动时,螺母随丝杆的转动角度按照对应的导程转化成直线运动,从而实现z轴移动平台43沿z轴方向移动;所述的z轴移动平台43为一块垂直板和一块水平板组成的γ形结构板,垂直板固定在y轴移动平台42的螺母座上,水平板上设有球形槽44和螺纹孔;

所述的调平组件5通过螺栓与z轴移动平台43的水平板上的螺纹孔相配合,活动连接在z轴移动平台43的水平板上,调平组件5包括快速夹具51、球夹a52、连接件53和球夹b54,调平组件5用于对不完整球体61进行夹紧和调平;所述的球夹a52和球夹b54,一侧开有半圆形开口,二者对称放置,一端由连接件53连接,另一端由快速夹具51连接;所述的快速夹具51为门扣式夹具,用于夹紧不完整球体61;

所述的旋转组件6用于球面接触式调平,位于调平组件5的上方,底部的不完整球体61与调平组件5相接触;所述的旋转组件6主要由不完整球体61、基板62、载物板63和旋转机构64组成;所述的不完整球体61固定在基板62的下表面,下半球完整,与z轴移动平台43的水平板上的球形槽44相接触;所述的旋转机构64包括弹簧顶尖641、移动块642、固定块643和螺旋微分头b644;所述的固定块643的中部开有槽口,移动块642位于槽口内,固定块643固定在基板62的上表面,移动块642固定在载物板63的下表面;所述的螺旋微分头b644与弹簧顶尖641分别与移动块642两侧接触,调节螺旋微分头b644的微调旋钮,推动移动块642向弹簧顶尖641的一侧移动,使弹簧顶尖641内的弹簧被压缩,从而移动块642带动载物板63绕中心轴转动;所述的载物板63的上表面固定有玻璃板b,玻璃板b的上表面固定有具有微结构的下芯片。

所述的底座1材质为金属材质;所述的支撑架3为铝合金材质。

所述的支撑架3的框架与底板通过螺丝连接,或加工成一体。

所述的x轴移动平台41、y轴移动平台42和z轴移动平台43由非导磁性的材质制成。

本发明的有益效果:

1.解决了手动对准芯片误差较大的问题;

2.螺旋丝杆具有自锁功能,提高芯片与ccd观测组件的定位精度;

3.上芯片位置固定,通过副三维移动平台和旋转组件实现下芯片与上芯片微结构的精确定位;

4.调平组件的引入,解决了上下芯片不平行带来的间隙问题;

5.集对准和键合功能为一体、操作简单、可扩展性强,能够键合硅片/pmma、硅片\玻璃、玻璃\pmma等芯片。

附图说明

图1为本发明装置的正视图。

图2为图1的右视图。

图3为图1的俯视图。

图4为支撑架3的结构示意图。

图5为玻璃板a的固定方式示意图。

图6为副三维式移动平台立体结构示意图。

图7为x轴移动平台结构示意图。

图8为y轴移动平台结构示意图。

图9为x轴移动平台和y轴移动平台位置关系示意图。

图10为调平及旋转组件组合示意图。

图11为调平组件简单示意图。

图12为快速夹具结构图。

图13为基板与载物板连接方式示意图。

图14为旋转组件简单示意图。

图中:1底座;2主二维式移动平台;3支撑架;4副三维式移动平台;5调平组件;6旋转组件;7ccd观测组件;31螺栓;32玻璃板a;41x轴移动平台;42y轴移动平台;43z轴移动平台;44球形槽;;411螺旋微分头a;412强磁铁片;413v形导轨;414滚珠;415保持架;51快速夹具;52球夹a;53连接件;54球夹b;511拉钩;512铆钉;513螺母;514圆头螺母;515手把;516销子;517钣金;518拉紧连杆;61不完整球体;62基板;63载物板;64旋转机构;621圆板a;622圆板b;623紧固螺钉;641弹簧顶尖;642移动块;643固定块;644螺旋微分头b。

具体实施方式

下面将结合附图和技术方案对本发明作进一步的详细说明。

如图1-3所示,一种用于mems器件制作的对准键合装置,包括底座1、主二维式移动平台2、支撑架3、副三维式移动平台4、调平组件5、旋转组件6和ccd观测组件7,底座1上设有支架,支架可拆卸安装ccd观测组件7,主二维移动平台2是螺旋丝杆平台,固定在底座1上,二维移动平台2上设有支撑架3,支撑架3可实现xy轴移动,实现芯片与ccd观测组件7的精准定位。

如图4-5所示,支撑架3的上端设有插槽,插槽内可插入玻璃板a32,玻璃板a32通过六个螺栓31固定在支撑架3上,具有微结构的上芯片固定在玻璃板a32的下表面。

如图6所示,副三维式移动平台4位于支撑架3内,固定在支撑架3的底板上,x、y轴移动是磁铁式移动,实现下芯片与上芯片x、y轴方向定位,z轴移动是螺旋丝杆式移动,具有自锁性,定位准确,不仅可以实现上、下芯片表面直接接触,还可以施加一定键合力。

如图10所示,旋转组件6是球面接触式调平,位于调平组件5的上方,与调平组件5相接触;玻璃板b固定在旋转组件6上,固定方式不唯一,具有微结构的下芯片固定在玻璃板b的上表面,具体操作如下:芯片和ccd观测组件7相对位置可以通过调节主二维式移动平台2来实现,获得最佳观测视野和放大倍数。调节z轴方向的螺旋丝杆使上、下芯片预接触,松开快速夹具51,不完整球体61可绕球夹a52和球夹b54的球面自由转动,继续升高螺旋丝杆,直至z轴位移达到极限,紧固快速夹具51实现球夹a52、球夹b54与不完整球体61的相对固定。此时下芯片与上芯片无缝隙直接接触,然后降下螺旋丝杆,得到高精度平行的两表面,调节x轴移动平台41、y轴移动平台42、旋转组件6实现上、下芯片微结构的精确对准,最后再次升高螺旋丝杆,均匀施加一定的键合力。本发明的键合装置集对准、调平和键合功能为一体,解决了手动对准芯片误差较大的问题。

进一步地,底座1材质优选为强度较高的金属材质,底座1上需加工一些螺纹孔,以便于固定主二维式移动平台2,底座1应具有一定重量,避免整体装置倾倒。支撑架3优选为质量较轻的铝合金材质,框架与底板可以通过螺丝连接,也可以加工成一体。

进一步地,所述的x轴移动平台41、y轴移动平台42、z轴移动平台43采用非导磁性的材质制成,如图9,x轴移动平台41的x轴方向的强磁铁片412,与支撑架3底板上的垂直板上的强磁铁片相对应;y轴移动平台42的y轴方向的强磁铁片与x轴移动平台41垂直板上的强磁铁片相对应;成组的强磁片之间会产生一定的排斥力,而螺旋微分头a411与x轴移动平台41、y轴移动平台42侧边紧密接触,通过依靠螺旋微分头a411导向,先使螺旋微分头a411的预压紧力与排斥力相互抵消,再调节微调旋钮使下芯片沿x、y轴方向移动。

进一步地,不完整球体61与球形槽44需要具有一定的加工精度。

进一步地,如图12,门扣式快速夹具51采用市售产品,包括拉钩511、铆钉512、螺母513、圆头螺母514、手把515、销子516、钣金517、拉紧连杆518,所述的拉紧连杆518为u型,闭合的一端固定在拉钩511上,开口的一端通过螺母513、圆头螺母514和销子516固定在钣金517上;所述的手把515固定安装在钣金517上,位于拉紧连杆518开口一端的中间;但不限于此固定方式。

进一步地,旋转组件的载物板63相对于基板62是活动件,连接方式如图13所示,圆板a621通过螺栓连接在基板62的上表面,圆板a621中心设有单向圆柱结构,圆板b622通过螺栓连接在载物板63的下表面,圆板b622中心设有单向柱孔结构,单向圆柱结构与单向柱孔结构之间为间隙装配,载物板63中心设有沉头孔,紧固螺钉623穿过沉头孔,与单向柱孔接触,此种连接方式使载物板63保持水平,松开紧固螺钉623可使载物板63大范围绕中心轴转动。在拧紧螺钉623的条件下,旋转机构64使载物板63绕中心轴小范围相对转动。旋转机构64如图14所示,移动块642通过螺栓固定在载物板63上,固定块643通过螺栓固定在基板62上,螺旋微分头b644与弹簧顶尖641分别与移动块642两侧接触,调节螺旋微分头b644的微调旋钮,弹簧顶尖641内的弹簧被压缩,使移动块642带动载物板63转动。

进一步地,玻璃板的固定方式必须易于拆卸,如图5,松开固定玻璃板a32的六个螺栓,就可以轻松将玻璃板a32取下,而玻璃板b的固定方式不唯一,如:旋转组件6的载物板63上可放置一块方形的pdms,利用pdms软质和吸附特性,粘附性于玻璃板底部,玻璃板就可以固定在载物板上。如果芯片已经经过等离子等处理手段,对准贴合同时也完成键合,如果并未处理,因为玻璃板a32和玻璃板b易于拆卸,可以同时用夹子固定两片玻璃板和芯片,再进行后续加热等处理。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1