半导体器件的制造方法、衬底处理装置及记录介质与流程

文档序号:20216041发布日期:2020-03-31 11:53阅读:264来源:国知局
半导体器件的制造方法、衬底处理装置及记录介质与流程

本发明涉及半导体器件的制造方法、衬底处理装置及记录介质。



背景技术:

近年来,作为半导体器件之一,生产了使用mems技术的传感器。其中之一为悬臂结构。关于采用了悬臂结构的开关的制造方法,例如在专利文献1、专利文献2进行了记载。其中,公开了利用干法蚀刻形成可动电极,其后对形成于可动电极的下方的牺牲膜进行湿法蚀刻的方法。

[现有技术文献]

[专利文献]

[专利文献1]:日本特开2012-86315号公报

[专利文献2]:日本特开2013-239899号公报



技术实现要素:

发明所要解决的课题

悬臂结构中的可动电极利用干法蚀刻而形成。本申请的发明人进行了深入研究,结果发现因干法蚀刻而引起了构成可动电极的材质劣化这样的问题。

可动电极的湿法蚀刻速率因劣化而降低时,存在接近牺牲膜的湿法蚀刻速率这样的问题。因此,对牺牲膜进行湿法蚀刻时,担心可动电极也被湿法蚀刻。

本发明的目的在于在制造悬臂结构传感器时、形成相对于可动电极具有湿法蚀刻的选择性的、高湿法蚀刻速率的牺牲膜。

用于解决课题的方法

本发明提供下述技术:将具有控制电极、基座、对置电极的衬底搬入处理室,从第一气体供给管向所述处理室供给包含杂质及硅的非等离子体状态的第一处理气体,并且从第二气体供给管向所述处理室供给包含氧的等离子体状态的第二处理气体,从而在所述控制电极、所述基座、所述对置电极上形成包含所述杂质的牺牲膜。

发明效果

根据本发明,能够在制造悬臂结构传感器时、形成相对于可动电极具有湿法蚀刻的选择性的、高湿法蚀刻速率的牺牲膜。

附图说明

[图1]为说明衬底的构成的说明图。

[图2]为说明衬底的构成的说明图。

[图3]为示出本发明的第一实施方式涉及的衬底处理装置的概略构成例的说明图。

[图4]为说明本发明的第一实施方式涉及的衬底处理装置的控制器的说明图。

[图5]为说明本发明的第一实施方式中的牺牲膜的状态的说明图。

[图6]为说明本发明的第一实施方式中的牺牲膜的改质状态的说明图。

[图7]为说明比较例中的牺牲膜的状态的说明图。

[图8]为说明比较例中的牺牲膜的改质状态的说明图。

附图标记说明

100…衬底

101…控制电极

102…基座

103…对置电极

104…牺牲膜

200…衬底处理装置

280…控制器

具体实施方式

以下,参照附图对本发明的实施方式进行说明。

首先,使用图1、图2对本实施方式中处理的衬底的构成进行说明。通过图1、图2对采用了悬臂结构的mems开关的制造方法进行说明。制造时,对于图1(a)状态的衬底,按照图1(b)~图1(f)的顺序进行处理,并进一步按照图2(g)~图2(j)的顺序进行处理。

对图1(a)记载的衬底100进行说明。在此,衬底100上形成有控制电极101、基座102、对置电极103。控制电极101控制后述的可动电极111,基座102支承可动电极111,对置电极103为与可动电极111成对的电极。详细如后所述。

图1(b)为在衬底100、控制电极101、基座102、对置电极103上形成了牺牲膜104的状态。为了使可动电极111能够动作,牺牲膜104在后续工序中被除去。牺牲膜104的形成方法如后所述。

图1(c)为在牺牲膜104上形成抗蚀剂105、并进一步形成了图案106的状态。

图1(d)为与图案106相应地对牺牲膜104进行了干法蚀刻的状态。由此,以基座102的表面露出的方式形成有孔107。干法蚀刻中,实施已知的等离子体蚀刻。

图1(e)为除去了抗蚀剂105的状态。抗蚀剂105通过已知的等离子体灰化而被除去。

图1(f)为在基座102及牺牲膜104上形成了多晶硅薄膜108的状态的图。多晶硅薄膜108之后被加工而成为可动电极111。多晶硅薄膜108与基座102电连接。

接着,对图2进行说明。图2(g)为在图1(f)之后的处理状态。在此,为在多晶硅薄膜108上形成抗蚀剂109、并进一步形成了图案110的状态。

图2(h)为与图案110相应地对多晶硅薄膜108实施了干法蚀刻的状态。由此,多晶硅薄膜108被加工成可动电极111的形状。对于蚀刻而言,实施已知的等离子体蚀刻。

图2(i)为除去了抗蚀剂109的状态。抗蚀剂109通过已知的等离子体灰化而被除去。

图2(j)为通过湿法蚀刻除去了牺牲膜104的状态的图。由此,使可动电极111与控制电极101、对置电极103间隔开。

接下来,关于以上说明的mems开关的制造方法,说明本申请的发明人所发现的问题。在该方法中,例如存在从图2(g)到图2(h)对多晶硅薄膜108实施等离子体蚀刻的工序,或者从图2(h)到图2(i)将抗蚀剂109通过等离子体灰化而除去的工序。此时,存在多晶硅薄膜108曝露于等离子体中受到破坏而劣化,其结果强度降低等问题。

存在劣化了的多晶硅薄膜108的湿法蚀刻速率变高这样的问题。由此,牺牲膜104与可动电极111的湿法蚀刻速率变得接近。这样一来,当对牺牲膜104实施湿法蚀刻时,多晶硅薄膜108的劣化部分也被蚀刻。存在若在这样的状态下对可动电极111供给电力,则电力集中于劣化部分、或者电力变得难以流动等问题。

为了解决上述问题,为了对牺牲膜104与可动电极111的湿法蚀刻速率赋予差别,需要具有湿法蚀刻的选择性。因此,本实施方式中,形成湿法蚀刻速率比加工后的多晶硅薄膜108的湿法蚀刻速率高的牺牲膜104。

接下来,使用图3对形成牺牲膜104的衬底处理装置200的一例进行说明。

(腔室)

首先,对腔室进行说明。

衬底处理装置200具有腔室202。腔室202构成为例如横截面为圆形、且扁平的密闭容器。另外,腔室202由例如铝(al)、不锈钢(sus)等金属材料构成。在腔室202内形成有处理空间205、和在将衬底100搬送至处理空间205时供衬底100通过的搬送空间206,其中,所述处理空间205对作为衬底的硅衬底等衬底100进行处理。腔室202由上部容器202a和下部容器202b构成。在上部容器202a与下部容器202b之间设置有隔板208。待处理的衬底100为如图1(a)记载的状态。因此,衬底100上形成有控制电极101、基座102、对置电极103。

在下部容器202b的侧面设置有与闸阀149相邻的衬底搬入搬出口148,衬底100经由衬底搬入搬出口148而在下部容器202b与未图示的真空搬送室之间移动。在下部容器202b的底部设有多个提升销207。此外,使下部容器202b接地。

构成处理空间205的处理室由例如后述的衬底载置台212和簇射头230构成。在处理空间205内设有支承衬底100的衬底支承部210。衬底支承部210主要具有载置衬底100的衬底载置面211、在表面具有衬底载置面211的衬底载置台212、和内置于衬底载置台212的作为加热源的加热器213。衬底载置台212中,在与提升销207对应的位置分别设有供提升销207贯通的贯通孔214。在加热器213上,连接有对加热器213的温度进行控制的温度控制部220。

衬底载置台212被轴217支承。轴217的支承部将设置于腔室202的底壁的孔215贯通,进而经由支承板216而在腔室202的外部与升降机构218连接。通过使升降机构218工作而使轴217及衬底载置台212升降,从而能够使载置于衬底载置面211上的衬底100升降。需要说明的是,轴217下端部的周围被波纹管219覆盖。腔室202内被气密地保持。

对于衬底载置台212而言,在搬送衬底100时,衬底载置面211下降至与衬底搬入搬出口148相对的位置,在处理衬底100时,如图3中所示,衬底100上升至处理空间205内的处理位置。

具体而言,使衬底载置台212下降至衬底搬送位置时,提升销207的上端部从衬底载置面211的上表面突出,从而成为提升销207从下方支承衬底100的状态。另外,使衬底载置台212上升至衬底处理位置时,提升销207从衬底载置面211的上表面没入,从而成为衬底载置面211从下方支承衬底100的状态。

在处理空间205的上部(上游侧)设置有簇射头230。簇射头230具有盖体231。盖体231具有凸缘232,凸缘232被支承于上部容器202a上。此外,盖体231具有定位部233。通过将定位部233与上部容器202a嵌合,由此盖体231被固定。

簇射头230具有缓冲空间234。缓冲空间234是由盖体231和定位部232构成的空间。缓冲空间234与处理空间205连通。已供给至缓冲空间234中的气体在缓冲空间234内扩散,并被均匀地供给至处理空间205中。此处,将缓冲空间234和处理空间205作为不同的构成进行说明,但不限于此,也可在将缓冲空间234包含在处理空间205中。

处理空间205主要由上部容器202a、衬底处理位置处的衬底载置台212的上部结构构成。将构成处理空间205的结构称作处理室。需要说明的是,处理室只要是构成处理空间205的结构即可,无需赘言,并不限于上述结构。

搬送空间206主要由下部容器202b、衬底处理位置处的衬底载置台212的下部结构构成。将构成搬送空间206的结构称作搬送室。搬送室配置于处理室的下方。需要说明的是,搬送室只要是构成搬送空间205的结构即可,无需赘言,并不限于上述结构。

(气体供给部)

接着,对气体供给部进行说明。在公共气体供给管242上,连接有第一气体供给管243a、第二气体供给管244a。

从包含第一气体供给管243a的第一气体供给系统243主要供给第一处理气体,从包含第二气体供给管244a的第二气体供给系统244主要供给第二处理气体。

(第一气体供给系统)

在第一气体供给管243a上从上游方向起依次设置有第一气体供给源243b、作为流量控制器(流量控制部)的质量流量控制器(mfc)243c、及作为开闭阀的阀243d。

含有第一元素的气体(以下,称为“第一处理气体”)从第一气体供给管243a经由质量流量控制器243c、阀243d、公共气体供给管242而被供给至簇射头230。

第一处理气体为包含碳(c)或者硼(b)等杂质、和硅(si)的处理气体。即,第一处理气体也称作含硅气体。作为含硅气体,可使用例如原硅酸四乙酯(si(oc2h5)4。也称作teos。)气体。

第一处理气体供给系统243(也称作含硅气体供给系统)主要由第一气体供给管243a、质量流量控制器243c、阀243d构成。

此外,也可考虑将第一气体供给源243b包含在第一处理气体供给系统243内。

(第二气体供给系统)

在第二气体供给管244a的上游,从上游方向起依次设置有反应气体供给源244b、作为流量控制器(流量控制部)的质量流量控制器(mfc)244c、及作为开闭阀的阀244d。使反应气体成为等离子体状态的情况下,在阀244d的下游设置作为等离子体生成部的远程等离子体单元(rpu)244e。

另外,反应气体从第二气体供给管244a经由mfc244c、阀244d、公共气体供给管242而被供给至簇射头230内。反应气体利用rpu244e而成为等离子体状态。

反应气体为处理气体之一,为氧气。作为氧气,可使用例如氧(o2)气体。

反应气体供给系统244主要由第二气体供给管244a、mfc244c、阀244d、rpu244e构成。需要说明的是,也可考虑反应气体供给系统244包含反应气体供给源244b、后述的稀释气体供给系统。

在第二气体供给管244a的比阀244d更靠近下游侧的位置连接有稀释气体供给管245a的下游端。在稀释气体供给管245a上,从上游方向起依次设置有稀释气体供给源245b、作为流量控制器(流量控制部)的质量流量控制器(mfc)245c、及作为开闭阀的阀245d。另外,稀释气体从稀释气体供给管245a经由mfc245c、阀245d、第二气体供给管244a、rpu244e而被供给至簇射头230内。如后所述,通过调节稀释气体的量,而能调节牺牲膜中的杂质的量。

稀释气体例如可使用氩(ar)气或氮(n2)气。与ar相比,氮与硅的结合度更高,在之后的牺牲膜的改质处理中不易脱离,因此更优的是,使用ar气体是理想的。

稀释气体供给系统主要由稀释气体供给管245a、mfc245c、及阀245d构成。需要说明的是,也可考虑稀释气体供给系统包含稀释气体供给源245b、第二气体供给管243a、rpu244e。另外,也可考虑将稀释气体供给系统包含在第二气体供给系统244内。

(排气部)

将腔室202的气氛排出的排气系统主要由将处理空间205的气氛排出的排气系统261构成。

排气系统261具有连接于处理空间205的排气管261a。排气管261a以与处理空间205连通的方式设置。排气管261a上设置有将处理空间205内控制为规定压力的压力控制器apc(autopressurecontroller(自动压力控制器))261c、计测处理空间205的压力的压力检测部261d。apc261c具有可进行开度调节的阀芯(未图示),根据来自后述的控制器280的指示而调节排气管261a的流导。另外,排气管261a中在apc261c的上游侧设置有阀261b。将排气管261和阀261b、apc261c、压力检测部261d统称为处理室排气系统261。

在排气管261a的下游侧设置有dp(drypump。干式泵)278。dp278经由排气管261a而将处理空间205的气氛排出。

(控制器)

衬底处理装置200具有对衬底处理装置200的各部的动作进行控制的控制器280。如图4中记载的那样,控制器280至少具有运算部(cpu)280a、临时存储部280b、存储部280c和发送接收部280d。控制器280经由发送接收部280d而连接于衬底处理装置200的各构成,根据上位控制器、使用者的指示从存储部280c调用程序、制程,并根据其内容控制各构成的动作。需要说明的是,控制器280可构成为专用的计算机,也可构成为通用的计算机。例如,准备存储有上述程序的外部存储装置(例如,磁带、软盘、硬盘等磁盘、cd、dvd等光盘、mo等光磁盘、usb存储器(usbflashdrive)、存储卡等半导体存储器)282,使用外部存储装置282将程序安装至通用的计算机中,由此可构成本实施方式涉及的控制器280。另外,用于向计算机供给程序的方法不限于经由外部存储装置282进行供给的情况。例如,可使用互联网、专用线路等通信手段,也可经由发送接收部283而从上位装置270接收信息、不经由外部存储装置282而供给程序。另外,也可使用键盘、触摸面板等输入输出装置281,对控制器280进行指示。

需要说明的是,存储部280c、外部存储装置282构成为计算机能够读取的记录介质。以下,也将它们统一而简称为记录介质。需要说明的是,本说明书中使用记录介质这一用语时,存在仅包含存储部280c单体的情况、仅包含外部存储装置282单体的情况、或者包含这二者的情况。

(衬底处理工序)

接下来,作为半导体制造工序的工序之一,对使用上述构成的衬底处理装置200在基板100上形成牺牲膜104的工序进行说明。需要说明的是,以下的说明中,构成衬底处理装置的各部的动作由控制器280进行控制。

此外,关于对牺牲膜104进行改质的工序进行说明。对牺牲膜104进行改质的装置是例如并行平板方式的装置这样的普通等离子体处理装置即可,因此省略了装置的说明。

(牺牲膜形成工序)

在此,使用图3所述的衬底处理装置200。作为第一处理气体,使用teos气体,作为第二处理气体,使用o2气体。以下,对具体例进行说明。

(衬底搬入载置工序)

使衬底载置台212下降至衬底100的搬送位置(搬送position),使提升销207贯通衬底载置台212的贯通孔214。其结果,提升销207处于仅从衬底载置台212表面突出规定高度的量的状态。与进行上述动作并行地,将搬送空间206的气氛排出,从而成为与邻接的真空搬送室(未图示)为相同压力、或者比邻接的真空搬送室的压力低的压力。

接着,打开闸阀149,使搬送空间206与邻接的真空搬送室连通。然后,使用未图示的真空搬送机械臂将衬底100从真空搬送室搬入至搬送空间206中。

被搬入的衬底100为图1(a)记载的状态。因此,衬底100上形成有控制电极101、基座102、对置电极103。

(衬底处理位置移动工序)

经过规定时间后,使衬底载置台212上升,在衬底载置面211上载置衬底100,并进一步如图3所示地使其上升至衬底处理位置。

(牺牲膜的成膜工序)

接着,对牺牲膜104的成膜工序进行说明。

(处理气体供给工序)

衬底载置台212移动至衬底处理位置后,经由排气管262将处理室204的气氛排出,调节处理空间204的压力。

调节至规定的压力,并且衬底100的温度到达规定的温度例如500℃~600℃后,从第一气体供给系统243供给并非等离子体状态的、非等离子体状态的teos气体。与此并行地,从第二气体供给系统244供给等离子体状态的o2气体。o2气体利用rpu244e而成为等离子体状态。非等离子体状态的teos气体与等离子体状态的氧气在缓冲空间234、处理空间204内反应,由此所生成的反应物被堆积在衬底100上,形成图5那样的牺牲膜104。

如图5所示,所形成的牺牲膜104为包含teos气体中含有的硅及碳成分、和o2气体的氧成分的含碳sio膜。需要说明的是,作为第一处理气体也可使用包含硅成分及硼成分的气体。该情况下,图5中形成了包含硼成分来代替碳成分的含硼sio膜。

teos气体未被分解至等离子体水平。因此,如后述的比较例那样,碳成分的气化量少,从而气化并从处理空间205排出的量少。即成膜时,处理空间205中存在大量的碳成分。因此,牺牲膜104中含有大量的碳成分。

经过规定时间,形成期望膜厚的含碳sio膜后,停止各处理气体的供给。

(衬底搬出工序)

形成期望膜厚的牺牲膜后,使衬底载置台212下降,将衬底100移动至搬送位置。移动至搬送位置后,从搬送空间206搬出衬底100。

(牺牲膜的改质工序)

接着,说明对形成的牺牲膜104进行改质的工序。牺牲膜的改质工序通过例如并行平板方式的普通的单片式等离子体装置进行。因此,省略装置的说明。

首先,将衬底100搬入至单片式等离子体装置的处理室中。搬入后,如图6所示,使包含氧成分的含氧气体成为等离子体状态并照射于牺牲膜104上。

被照射的等离子体中的氧成分与牺牲膜104中的碳成分反应,使碳成分脱离。此时,碳成分脱离的部位成为空孔112。如此一来,牺牲膜104被改质为作为包含空孔112的膜的改质膜113。

需要说明的是,脱离的碳成分与等离子体中的氧成分反应而成为co2气体,从而被排出。

进行规定时间等离子体处理后,将衬底100从单片式等离子体装置搬出。

如上所述,通过形成大量的空孔112,从而使牺牲膜104的膜密度降低、使强度降低。由于牺牲膜104的强度被降低,因此能够提高牺牲膜104的湿法蚀刻速率。

接下来,对使第一气体供给管234a在rpu244e的下游合流的理由进行说明。首先,作为比较例,对第一气体供给管234a被连接于rpu244e的上游的情况下的问题进行说明。

使用图7对在比较例中形成的牺牲膜120进行说明。

比较例中,第一气体供给管234a被连接于rpu244e的上游。因此,第一处理气体teos经由rpu244e而被供给至处理空间205。形成牺牲膜120时,为了使第一处理气体与第二处理气体反应,与第一处理气体并行地供给第二处理气体。

因此,第一处理气体、第二处理气体通过rpu244e时,这两者的气体成为等离子体状态,从而被分解。因此,缓冲空间234中,硅成分、碳成分、氧成分以被分解的状态均匀地存在。

该情况下,碳成分的一部分与氧成分反应而成为co2气体,从而对牺牲膜的形成没有帮助。因此,与图5的本实施方式的状态相比,比较例的牺牲膜如图7所示的那样碳成分的量变少。如此以来,即使如前述那样进行改质而使碳成分脱离、如图8那样形成改质膜122,空孔121的量也少。

如上所述,由于比较例中仅形成了少量的空孔121,因此难以使牺牲膜121的膜密度降低。即,无法提高湿法蚀刻速率。

另外,比较例中,由于在因等离子体而分解成各成分后进行再结合来形成含碳sio膜,因此各成分中的结合度变高。该情况下,改质工序中为了除去碳成分,需要供给高能量状态的氧等离子体。为了生成高能量状态的等离子体,需要新准备与其对应的电极等,从而导致成本增加,因此不优选。

另一方面,本实施方式中,将第一气体供给管234a设置于rpu244e的下游。如此以来,第一处理气体不会被rpu244e分解,因此在处理空间205中,在维持硅成分与碳成分的结合的同时与氧等离子体进行反应。因此,大量的碳成分被混入牺牲膜。因此,通过之后的改质工序能够形成大量的空孔,能够提高湿法蚀刻速率。

另外,本实施方式中,能调节稀释气体的供给量。通过调节而能够调节所含有的碳的量。

具体而言,当稀释气体的供给量增多,则稀释气体与氧等离子体的碰撞次数增加、失活量变多,从而不易生成co2气体。由于大量的碳成分被供给至衬底100,因此牺牲膜104中的碳成分的量变多。因此,能够提高湿法蚀刻速率。

另一方面,当稀释气体的供给量减少,则稀释气体与氧等离子体的碰撞次数变少,等离子体能够维持高能量,因此易于生成co2气体。即,大量的碳成分成为气体而被排出。因此,牺牲膜104中的碳成分的量变少,能够降低湿法蚀刻速率。

如此一来,通过调节稀释气体的供给量,能够调节湿法蚀刻速率。因此,能够使湿法蚀刻时的蚀刻液浓度成为最适条件。

作为稀释气体,可使用ar气体或n2气体,使用ar气体更佳。形成牺牲膜104时,有稀释气体的成分被包含在含碳sio膜的膜中的可能性。稀释气体为n2气体的情况下,具有n成分与硅的结合度增高的性质,因此形成了结合有氮的含碳sio。由于形成了结合度高的膜,因此湿法蚀刻速率可能会降低。

由于ar气体与硅的结合度不强,因此并不会被吸收到含碳sio膜中。即,与使用n2气体的情况相比,能够实现高湿法蚀刻速率。

以上,具体说明了本发明的实施方式,但本发明并不限定于上述的各实施方式,在不脱离其主旨的范围内可进行各种变更。

例如,在上述的各实施方式中,举出了在衬底处理装置所实施的成膜处理中,作为第一元素含有气体(第一处理气体)使用teos气体、作为第二元素含有气体(第二处理气体)使用氧气来形成sio膜的情况的例子,但本发明并不限定于此。即,作为第一处理气体只要包含杂质即可。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1