用于给井眼加衬的系统的制作方法

文档序号:12426916阅读:142来源:国知局
用于给井眼加衬的系统的制作方法与工艺

技术领域

本发明涉及一种用于给井眼加衬的系统,该系统包括布置在井眼中的可膨胀管状元件。所述井眼是例如用于生产烃流体的井眼。



背景技术:

在传统井眼钻探过程中,钻制井眼的多个节段,并在随后的步骤中设置套管或衬管。在各步骤中,钻柱下行穿过已经安装在井眼中的套管,在安装的套管或衬管下方钻探新的井眼节段。对于这个程序,即将安装在新钻探的井眼节段的各套管必须穿过前面安装的套管。所以,新的套管的外径要小于之前套管的内径。

因此,可获得的用于生产烃流体的井眼的直径随着深度而减小。对于较深井来说,这将导致不切实际的小直径。

在传统井眼术语中,词语"套管"是指从地面延伸至井眼内的管状部件,词语"衬管"是指从井下部位延伸至井眼内的管状部件。然而,在本说明书的上下文中,引用的"套管"和"衬管"没有这种暗含的差异。

已经提出通过利用一系统克服井眼内径阶梯式变小的问题,一可膨胀管状元件被下放到井眼中,然后利用膨胀器径向膨胀为较大直径,所述膨胀器被拉、推或泵送穿过该管状元件。

US-2004/0231860-A1公开了这样的系统,其中,可膨胀管状元件的端部分首先膨胀抵靠井眼壁,以便将端部分锚固到井眼壁上。使用悬挂于展开管柱的可膨胀封隔器来使端部分膨胀。然后,展开管柱被收回到地面,将设有膨胀器的工作管柱下放到井眼中,以膨胀管状元件的其余部分。

该已知系统存在这样的缺陷:分开的管柱必须下放到井眼中以将管状元件的端部分锚固到井眼壁上,然后用膨胀器膨胀管状元件的其余部分。此外,在用膨胀器膨胀过程中,由于膨胀器从被锚固的端部分离开以便管状元件在轴向拉力下膨胀,所以膨胀力较大。

US-3162245公开了一种用于在井的套管内放置金属衬管的方法和设备。该设备用在缆索上。在点燃推进剂时,来自推进剂的气体将液压致动的卡瓦压紧在套管壁上。同时,气体压力施加于液压缸和活塞,在这里,其起作用迫使膨胀器锥形体穿过波纹管,从而使该波纹管向外膨胀而抵靠套管。当该锥形体到达一杆时,杆上的压力致动一点火机构,该点火机构引爆助爆药包而摧毁脆性的缸筒和所述杆。

US-3162245的设备的缺点包括,由于缸筒和杆被摧毁,其只能使用一次。碎片会保留在井眼中,可能导致堵塞。另外,该设备设计成用在缆索上,用于膨胀波纹管的所有的力在设备的活塞-缸筒组件内的闭环系统中解决。所述闭环不包括卡瓦,卡瓦不适于对套管施加轴向膨胀力。

本发明的目的是提供一种改进的用于给井眼加衬的系统,其克服了现有技术的缺陷。



技术实现要素:

依照本发明,提供一种用于给井眼加衬的系统,该系统包括:布置在井眼中的可膨胀管状元件,该管状元件具有第一端部分和第二端部分,第二端部分延伸到位于井眼中的管状壁内;膨胀器,其布置成通过使该膨胀器在从第一端部分到第二端部分的方向上穿过管状元件的运动而使管状元件径向膨胀,所述方向定义为膨胀方向,该系统还包括有锚固器,所述锚固器将所述第二端部分锚固到管状壁上,使得锚固器基本上防止所述第二端部分在膨胀方向上运动以及允许所述第二端部分在与膨胀方向相反的方向上运动。

锚固器提供了必需的反作用力来抵抗膨胀器施加于管状元件的膨胀力,所以不需要单独的管柱来首先靠着井眼壁膨胀管状元件的端部分以提供必需的反作用力。同时,通过允许第二端部分在与膨胀方向相反的方向上移动,锚固器补偿膨胀过程中管状元件的轴向缩短。此外,由于管状元件借助于膨胀器朝锚固器的移动而在轴向压力下膨胀,因而膨胀力较低。

合适的是,锚固器设置有锚固本体和至少一个锚固部件,所述锚固部件布置成在锚固本体沿膨胀方向选择性运动时卡持住所述管状壁,以及其中,锚固部件布置成在锚固本体沿与膨胀方向相反的方向选择性运动时释放所述管状壁。例如,锚固器可以设置有在锚固器的周向方向上相互间隔的多个所述锚固部件。

为使锚固器易于下放到井眼内,优选地,各锚固部件可在径向延伸位置和径向缩回位置之间移动,在径向延伸位置,锚固部件延伸抵靠所述管状壁,在径向缩回位置,锚固部件从所述管状壁缩回。

各锚固部件优选从地面由一从地面延伸至锚固器的细长管柱进行控制,其中,细长管柱布置成与锚固器协作以便使各锚固部件在延伸位置和缩回位置之间移动。

合适的是,借助于选自下面列举的激活参数而可使各锚固部件移动至延伸位置,所述激活参数为:细长管柱中的液压力,细长管柱的旋转和/或平移次序,以及细长管柱中的液压力和细长管柱的旋转和/或平移次序的组合。细长管柱可以是例如钻柱。

在一示例性实施例中,钻柱(或其它细长管柱)经过锚固本体的中心通道,钻柱设置有布置在中心通道中的芯轴。该芯轴通过一个或更多个剪切销临时连接到锚固本体上,所述剪切销布置成在细长管柱孔中的液压力作用下断裂。因而,在剪切销出现故障时,锚固本体变成与钻柱断开。同时,液压力导致各锚固部件移动至径向延伸位置。

在一可选实施例中,芯轴设置有至少一个销,各销可以移动穿过设置在锚固本体的内表面上的J锁形凹槽,好比滚珠支枢中的机构。在组件下入井眼中的过程中,销借助于J锁形凹槽承载锚固器。一旦组件到达目标深度,钻柱次序的旋转和平移就能使各销穿过相应凹槽,从芯轴释放锚固本体。为了致动锚固部件,锚固本体的顶部设有摩擦块,当锚固器相对于周围的壁移动时,所述摩擦块沿着周围的管状壁缓慢移动。因此,当锚固器由即将被膨胀的管状元件向上移动时,摩擦块与周围的壁之间的拖曳力使得各锚固部件被径向向外推动而与周围的壁接合。

在一优选实施例中,细长管柱设置有一释放接头,锚固器设置有一释放装置,释放接头和释放装置布置成彼此协作,以致在拉动释放接头靠近释放装置时,使得锚固部件移动至缩回位置。

为确保膨胀器在被拉动至管状元件内之前处于合适位置,该系统优选包括用于使膨胀器相对于管状元件对中的扶正器,该扶正器延伸到管状元件的所述第一端部分内,并可释放地与之相连。合适的是,在沿膨胀方向拉动膨胀器穿过管状元件时,所述扶正器适于从管状元件的第一端部分释放。

实际上,在管状元件和井眼壁之间会有环空,该环空可填充有水泥以密封地层并在膨胀后将管状元件固定在井眼中。为防止流态水泥在管状元件膨胀期间回流至管状元件内,优选地,管状元件设置有用于密封所述环空的密封装置,密封装置包括管状元件的可折叠壁节段,可折叠壁节段相对于管状元件的其余壁节段具有减小的抗弯刚度,并且通过对管状元件施加压缩折叠力,所述可折叠壁节段可以从非折叠模式变形为折叠模式,其中在折叠模式,可折叠壁节段包括至少一个径向向外延伸至所述环空内的环状褶皱部。借助于该可折叠壁节段,管状元件可以在可折叠壁节段处于非折叠模式的情况下下放到井眼中。然后可折叠壁节段可以变形至折叠模式。因此,在下放过程中,密封装置不会形成堵塞,所以,下放过程中管状元件被卡住的风险减小。

在一优选实施例中,具有减小的抗弯刚度的所述壁节段包括相对于所述其余壁节段具有减小的厚度的壁节段。例如,在折叠模式具有减小的厚度的壁节段包括多个手风琴形状的褶皱部。

为了在折叠工序的初始阶段在预定部位启动具有减小的壁厚度的节段的折叠和/或为减少折叠力的大小,优选地,具有减小的壁厚度的节段设置有沿着该节段的内表面和外表面中的至少一个在周向方向上延伸的较小的环状凹槽。

具有减小的抗弯刚度的壁节段还可以包括多个形成在管状元件上的环状凹槽,其中,各褶皱部具有在第一环状凹槽和第二环状凹槽之间延伸的上腿以及在第二环状凹槽和第三环状凹槽之间延伸的下腿。

在管状元件径向膨胀期间,为了移动膨胀器穿过管状元件,需要对膨胀器施加一膨胀力。优选地,可折叠壁节段的减小的抗弯刚度选择成使得所述折叠力的大小小于膨胀力的大小。从而实现:在膨胀器开始膨胀管状元件之前,可折叠壁节段由膨胀器所施加的压缩力变形至折叠模式。因为由此形成的各褶皱部随着膨胀器经过褶皱部而进一步膨胀,所以这是有利的。因此,折叠的壁节段具有较大的膨胀率。

在本发明系统的引人注目的实施例中,所述第一端部分为管状元件的下端部分,所述第二端部分为管状元件的上端部分。

锚固器被适当地称为"顶部锚固器"。为了确保管状元件的第一端部分在膨胀过程中留在预定深度,从而为待安装在井眼中的下一个管状元件提供参照点,优选地,第一端部分设置有一底部锚固器,所述底部锚固器适于通过膨胀器对所述第一端部分的径向膨胀而将第一端部分锚固到井眼的壁上。当底部锚固器将第一端部分锚固到井眼的壁上时,由于膨胀过程出现的管状元件的轴向缩短被顶部锚固器收容(accommodated),这允许管状元件的第二端部分朝与膨胀方向相反的方向运动。

附图说明

下面参照附图,通过举例子的方式更详细地描述本发明,其中:

图1示意性显示了依照本发明的用于给井眼加衬的系统的实施例的纵截面,其中可膨胀管状元件在井眼中延伸;

图2示意性显示了图1实施例中的顶部锚固器的细节;

图3示意性显示了管状元件的下部壁部分的第一实施例;

图4示意性显示了管状元件的下部壁部分的第二实施例;

图5示意性显示了管状元件的下部壁部分的第三实施例;

图6示意性显示了管状元件的下部壁部分的第四实施例;

图7示意性显示了在下部壁部分折叠之后的第四实施例;

图8示意性显示了管状元件的下部壁部分的第五实施例;

图9示意性显示了在下部壁部分折叠之后的第五实施例;

图10示意性显示了图1实施例中的底部锚固器的细节;

图11示意性显示了在管状元件径向膨胀过程中的底部锚固器;

图12示意性显示了底部锚固器的透视图;

图13示意性显示了在水泥已被泵入井眼中并且顶部锚固器已延伸抵靠井眼中的套管之后的图1实施例;

图14示意性显示了在管状元件径向膨胀过程中的图1实施例;和

图15显示了本发明系统的替换实施例。

在下文的详细说明书中,同样的参考数字涉及同样的部件。

具体实施方式

参照图1,显示了深入地层2中的井眼1。井眼1设置有套管3或类似的管状元件,其已经用水泥浇筑在井眼1中。井眼1的裸孔节段4在套管3下方延伸。参考数字5表示裸孔节段4的壁。可膨胀管状元件为可膨胀衬管6的形式,其悬置在裸孔节段4中。一环孔7形成在可膨胀衬管6和井眼壁5之间。

衬管6具有第一端部分或朝井下的端部分16和第二端部分或朝井口的端部分8。第二端部分8伸入到套管3中。在整个说明书中,上端是指用来指任何所述部件上的朝井口的那一端,而下端用来指任何所述部件上的朝井下的那一端。

钻柱10从地面上的钻机或修井机(未显示)伸入到井眼1中,并经过衬管6的内部空间。钻柱10在其朝井下的端部设置有适于径向膨胀衬管6的锥形膨胀器12。钻机或修井机适于穿过衬管6朝地面拉动钻柱10以及与之相连的膨胀器12。在此,朝地面可指向上的方向以及部分水平方向。钻柱10还设置有接通/断开接头11,所述接通/断开接头允许钻柱10根据需要与膨胀器12断开。

膨胀器12的直径设计成,使得膨胀器12强制膨胀衬管6的上端8抵接套管3的内表面,以便在衬管6的上端8与套管3之间实现紧密连接。钻柱10和膨胀器12具有一共同的中心孔13,该中心孔在地面的泵送设备(未显示)与裸孔节段4之间提供流体连通。中心孔13设置有一镖冲件(dart)捕捉器14(或滚珠捕捉器),用于接收经由钻柱10的中心孔13泵送的镖冲件(或滚珠)。

如图1所示,膨胀器12在开始膨胀衬管之前位于衬管6下方。膨胀器12在其上端设置有用于使膨胀器12相对于衬管6对中的扶正器15。扶正器15伸入到衬管6的第二端部分16中。所述第二端部分16是朝井下的那一端或下端。扶正器通过可释放的连接部(未显示)、例如一个或更多个剪切销连接于衬管6。当钻柱10向上拉动膨胀器12穿过衬管6时,所述可释放的连接部自动断开。因而在衬管6开始膨胀之前,衬管6由钻柱10支撑在井眼1中。这里,衬管6的重量经由膨胀器12传递给钻柱10。此外,钻柱10设置有释放接头18,所述释放接头布置在扶正器15上方一段短距离处。释放接头18的作用将在下文介绍。

衬管6的上端设置有一顶部锚固器20,所述顶部锚固器包括锚固本体22和沿着锚固本体22的外周相互间隔开的多个锚固部件24。顶部锚固器20通过从锚固本体22延伸到衬管6内的臂26可释放地连接于衬管6,并被夹紧到衬管6的内表面。

图2显示了顶部锚固器20的细节,示出了其中一个锚固部件24,其它锚固部件在结构和功能上类似。锚固部件24具有形成齿28的锯齿状外表面和搁靠在支撑元件34的相应倾斜表面32上的倾斜内表面30。倾斜内表面30和相应的倾斜表面32在形状上互补。锚固部件24和支撑元件34布置在锚固本体22的腔室36中,因此,锚固部件24和支撑元件34两者在腔室36内能够在缩回位置与延伸位置之间径向移动。锚固部件24在延伸位置时从腔室36向外径向延伸,接合衬管6的内表面。在缩回位置,锚固部件24摆脱衬管6的内表面。为了使锚固部件24和支撑元件34在相应的缩回位置和延伸位置之间移动,在腔室36中设置一液压致动器38,该液压致动器38在镖冲件捕捉器14上方一部位处与钻柱10的中心孔13流体连通,以便当该中心孔13被接收在捕捉器14中的镖冲件(或滚珠)堵塞时,允许液压致动器38由钻柱10的中心孔中的流体压力控制。顶部锚固器20还设置有一释放装置(未显示),所述释放装置布置成:当钻柱10的释放接头18被拉动抵靠顶部锚固器20的释放装置时,则使得支撑元件34和锚固部件24移动至各自的缩回位置。

此外,锚固部件24在腔室36中具有一定的轴向间隙,以允许锚固部件24沿着支撑元件34的倾斜表面32轴向滑动一段短距离。由于这种沿着倾斜表面32的滑动,如果锚固本体22向上移动一段短距离,锚固部件24在延伸位置时会牢固地卡持住套管3的内表面,而如果锚固本体22向下移动,锚固部件24则释放套管3的内表面。由此实现允许衬管6的上端部分8由于衬管在径向膨胀期间轴向缩短而向下移动,同时顶部锚固器20基本上防止衬管6的上端部分8向上运动。

在一实际的实施例中,倾斜表面32的倾斜角α在约5度到30度的范围内,例如8度到20度。角度β,即锚固部件24上齿28的顶角,在约60度到120度的范围内。这里,齿的顶表面基本上垂直于钻柱的轴线。锚固部件24的长度或高度L1例如为可膨胀衬管6的直径的约0.5到3倍的范围内。轴向间隙L2,即锚固部件的最大行程长度,例如约为(主套管3直径-可膨胀衬管6直径)/2/tan(alpha):

L2=~(套管3直径-衬管6直径)/2/tan(α)。

腔室36的高度L3的长度约为锚固部件24的长度L1+锚固部件24的行程L2。

进一步参照图3-9,显示了衬管6的下端部分16的可折叠壁节段39的各个实施例的纵截面。在各实施例中,参考数字40表示衬管6的纵向中心轴线。

在如图3所示的第一实施例中,一环状外凹槽45形成在下端部分16的外表面上。

在图4所示的第二实施例中,一环状外凹槽46形成在下端部分16的外表面上,两个环状内凹槽47、48形成在所述下端部分的内表面上。内凹槽47、48相对于外凹槽46对称布置。

在图5所示的第三实施例中,一环状内凹槽49形成下端部分16的内表面上,两个环状外凹槽50、51形成在所述下端部分的外表面上,外凹槽50、51相对于内凹槽49对称布置。

在图6和7所示的第四实施例中,可折叠壁节段39包括在下端部分16的内表面上的一环状内凹槽52和在外表面上的两个环状外凹槽53、54,外凹槽53、54相对于于内凹槽52对称布置。内凹槽52朝径向向外的方向逐渐缩减。借助于环状凹槽52、53、54的存在,通过对衬管6的下端部分16施加选定的压缩力,下端部分16从非折叠模式(图6)变形至折叠模式(图7)。在折叠模式,一环状褶皱部55形成在衬管的下端部分16上。环状褶皱部55具有在外凹槽53与内凹槽52之间延伸的上腿55a以及在内凹槽52与外凹槽54之间延伸的下腿55b。施加于下端部分16以形成环状褶皱部55所需的压缩力在下文被称为"折叠力"。显而易见的是,折叠力的大小取决于下端部分16的设计特征,即衬管壁的材料性质、壁厚度、环状凹槽的深度和宽度以及凹槽之间的轴向间距。例如,折叠力随着衬管6的壁的抗弯刚度的减少而减少,或者随着凹槽52、53、54的深度的增加而减少。而且,折叠力随着凹槽52、53、54之间的轴向间距的增加而增加。优选地,这些设计特征选择成使得折叠力的大小比在径向膨胀衬管6期间拉动膨胀器12通过衬管6所需的力小,其原因将在下文解释。

以上参照图3-5所述的可折叠壁节段的第一、第二和第三实施例能够以类似于可折叠壁节段的第四实施例的变形方式从非折叠模式变形到折叠模式。

在图8和9所示的第五实施例中,可折叠壁节段39由具有减小的壁厚度的节段56形成,在该节段,壁在内、外两个表面均形成凹陷。借助于该凹陷的壁节段56,通过对衬管6的下端部分16施加选定的压缩力,下端部分16从非折叠模式(图8)变形至折叠模式(图9),该压缩力也被称为"折叠力"。在折叠模式,多个环状褶皱部55形成在衬管的下端部分16上。本例子显示了手风琴形状的两个环状褶皱部57、58,不过可以以类似的方式形成更多的环状褶皱部。折叠力的大小取决于下端部分16的设计特征,即衬管壁的材料性质、衬管6的凹陷节段56的壁厚度以及凹陷节段56的轴向长度。例如,折叠力随着凹陷节段56的抗弯刚度的减少而减少,或者随着凹陷节段56的壁厚度的减少而减少。优选地,这些设计特征选择成使得折叠力的大小比在径向膨胀衬管6期间拉动膨胀器12通过衬管6所需的力小,其原因将在下文解释。

再参照图10-12,衬管6的下端部分16设置有底部锚固器59,各底部锚固器59适于由于下端部分16的径向膨胀的原因而接合井眼壁5,以便将下端部分16锚固到井眼壁5上。在图1中,示出了三个这样的底部锚固器59。然而,可以应用任何其它合适数量的底部锚固器59。

各底部锚固器59包括有锚固臂60和楔部件62,锚固臂和楔部件均安装到衬管6的下端部分16的外表面上,且二者在竖向上相互偏离。锚固臂60设置有环状凹槽63a、63b、63c以形成塑性铰链,从而允许锚固臂径向向外弯曲。虽然显示了三个环状凹槽,但是可以根据环境应用任何其它数量的凹槽。此外,锚固臂60具有例如通过焊接或其它合适的手段附于衬管6外侧的固定端64和朝楔部件62延伸的自由端65。自由端65,也被称为"尖端",没有附于衬管6外侧,所以锚固臂60的除固定端64之外的部分都能相对于衬管6自由移动。锚固臂60可以构造成使得其内径等于或大于衬管6的未膨胀外径。

同样,楔部件62包括例如通过焊接或其它合适的手段附于衬管6的固定端66。楔部件62的自由的另一端朝锚固臂60延伸,并限定一具有长度LB的撑条68。撑条68没有固定于衬管6外部,其相对于衬管6能够自由移动。在自由端处,楔部件62包括斜坡部70,该斜坡部朝锚固臂60延伸并接触或接近接触锚固臂60的自由端65。斜坡部70可构造成具有任何所需要的表面角度,并且可以与撑条68一体形成或者可以是与撑条68分开的件。各楔部件62和锚固臂60的厚度是设计的问题,但是受系统膨胀之前的最大容许直径限制。

锚固臂60和楔部件62均可以具有环状和/或分段式构造。在分段式构造中,锚固臂60和/或楔部件62可以包括纵向条、杆或板。如图12所示,锚固臂60和楔部件62分别包括例如8个条72、74。条72、74绕衬管6的外周延伸。任选地,锚固臂60和/或楔部件62的条包括分段式部分,其包括比该条的宽度更小的条或指状物76。锚固臂和楔部件可以包括任意数量的、与衬管6的尺寸相关的条72、74和/或指状物76

下面介绍图1的系统的常规操作,假定衬管6的下端部分16设置有第四实施例的可折叠壁节段(如图6和7所示)。如果设置有其它实施例的可折叠壁节段,该系统的常规操作类似于设置有第四实施例的系统的常规操作。还假定,已经利用传统的钻柱(未显示)钻出裸孔节段4,钻柱已经从井眼1移除。

在常规操作期间,由钻柱10、膨胀器12、扶正器15、可膨胀衬管6和顶部锚固器20形成的组件在钻柱10上下放到井眼中,直到衬管6的主要部分位于裸孔节段4中,只有衬管的上端部分8延伸到套管3中(如图1所示)。顶部锚固器20的锚固部件24在下放操作过程中位于缩回位置。

再参照图13,在下一步骤,将水泥浆料从地面经由钻柱10和膨胀器12的中心孔13泵送至裸孔节段4内。水泥浆料流入衬管6与井眼壁5之间的环空7内,以便形成仍然处于流体状态的水泥本体80。然后,利用流体流、例如钻井流体将镖冲件(未显示)泵送通过中心孔13。当镖冲件进入镖冲件捕捉器14时,流体通过中心孔13的进一步流动被堵塞。因此,在流体流中产生压力脉冲,这导致致动器38使各自的锚固部件24移动至延伸位置,以便锚固部件24与衬管6的内表面相接合。然后流体流中的流体压力暂时进一步增大,以从镖冲件捕捉器14释放镖冲件,从而恢复裸孔节段4与地面钻机之间的液体连通。

再参照图14,在下一步骤,对钻柱10施加向上的拉力,使得由钻柱10、膨胀器12、扶正器15、可膨胀衬管6和顶部锚固器20形成的组件向上移动一距离增量。当锚固本体22向上移动时,由于锚固部件24与衬管6的内表面之间的摩擦力,锚固部件24趋向于保持静止。因此,锚固部件24相对于支撑元件34向下滑动,由此,迫使锚固部件24径向向外与套管3的内表面卡紧接合。这样,顶部锚固器20被致动,防止衬管6在井眼1中进一步向上运动。

由地面对钻柱10施加的向上的拉力进一步增大,直到由膨胀器12施加给衬管6的下端部分16的压缩力达到折叠力的大小。在达到折叠力大小时,下端部分16的可折叠壁节段从非折叠模式移动到折叠模式,由此形成环状褶皱部55。褶皱部55从衬管6的其余部分径向向外延伸到环空7内。由此形成的褶皱部55可以局部接触井眼壁5,但这不是必要的。

在已经形成褶皱部55之后,对钻柱10施加的向上的拉力进一步增大,直到施加给膨胀器12的向上的力达到膨胀力的大小,所述膨胀力是膨胀衬管6期间拉动膨胀器12通过衬管6所需的力。膨胀器12因而被拉动到衬管6的下端部分16内,开始膨胀衬管6。借助于膨胀器12的向上运动,扶正器15与衬管6自动断开。如果,例如,使用剪切销来连接扶正器15和衬管6,则这种剪切销在膨胀器向上运动时折断。

由于衬管6的下端部分16的径向膨胀,褶皱部55径向膨胀,从而被压缩到井眼壁5上。这样,膨胀的环状褶皱部55形成密封褶皱部55上方的环空7的上部分90与褶皱部55下方的环空的下部分92而使它们隔开的密封部件。由于褶皱部55形成在衬管的下端部分16上,该下端部分靠近井眼底部,所以,环空的下部分92相对于上部分90具有最小的容积。由于该褶皱部55形成密封部件,在衬管6进一步膨胀期间,流态水泥80从环空7的上部分90向下部分92不会出现明显的回流。

然后通过进一步向上拉动膨胀器12通过衬管6,继续进行膨胀处理。由于该膨胀处理的进行,衬管6轴向缩短。所以,随着膨胀器12经过衬管的下端部分16,各底部锚固器59在锚固臂60的固定端64与楔部件62的固定端66之间的轴向距离减少。因此,锚固臂的自由端65在斜坡部70上朝井眼壁5滑动,从而搭叠斜坡部70,并从衬管6径向向外延伸。优选地,锚固臂60的长度选择为,使得其自由端65在膨胀器12经过斜坡部70时接合井眼壁5。

膨胀器12随后前进超过斜坡部70,衬管6在膨胀器的位置继续膨胀和缩短。由于缩短,楔部件62的固定端64朝锚固臂60移动,由此斜坡部70被推压抵接锚固臂60。如果由衬管6由于膨胀而缩短引起的锚固臂60的自由端上的径向力大于地层的局部阻力或强度,则锚固臂60在其自由端的尖端处将进一步刺入地层中。

然而,如果所述径向力小于或等于地层的局部阻力或强度,则锚固臂60的尖端不会进一步刺入地层。那样的话,锚固臂60由地层保持在适当位置,斜坡部70则又由锚固臂60保持在适当位置。由于楔部件62的撑条68不会沿着衬管6的外侧继续滑动,不会发生进一步的缩短。一旦膨胀装置移动经过楔部件62的固定端66,楔部件62的固定端66与锚固臂60的固定端64之间就达到最终距离。如果楔部件62的自由端(包括斜坡部70)由锚固臂保持在适当位置,则施加于衬管6的壁的最大负载约等于所谓的固定-固定负载(fixed-fixed load)。固定-固定负载是膨胀器12在衬管所固定的两点之间移动时施加于衬管壁的局部负载,这样,在这两点之间衬管不能缩短。由于固定-固定负载可以预先确定,例如在实验室测试期间确定,本发明的锚固臂60可以设计成,使得施加于地层的径向力不超过施加于衬管6的壁的最大容许径向负载。因此,本发明的锚固臂确保衬管壁足够坚固,而能够承受膨胀期间的最大径向力,这样,当锚固臂接合地层时,衬管壁将仍然为大体上圆形(横截面)。该实施例允许衬管6设计成避免塌陷,即使在地层太硬而不能接收锚固臂60的情况下也是如此,因为作用在衬管壁上的最大负载不会超过所述固定-固定负载,所述固定-固定负载可以算出或者至少根据实验确定。这样,防止了膨胀处理期间对衬管壁造成的塌陷、破裂或类似破坏。如上所指出的,如果可膨胀衬管6受到破坏,可能致使整个井下区段无用而不得不移除,这样的代价非常大。本发明的可膨胀衬管因此极大地改善了这方面的可靠性。

膨胀期间,衬管6和地层上的径向负载取决于例如下列中的一个或更多个:斜坡部70的表面角度、楔部件62和衬管6之间的摩擦力、楔部件62和锚固臂60之间的摩擦力、地层硬度、膨胀期间衬管壁与地层之间的距离等等。斜坡部的表面角度优选设计成施加最大径向力,而同时,径向负载仍然保持在衬管的径向破坏负载之内。

由于管状元件的壁上的径向负载和轴向负载受到限制,本实施例适用于较硬的地层,例如那些强度或硬度为例如3000psi(20MPa)至4000psi(28MPa)或之上的那些地层。另外,可以通过限制锚固臂与楔部件之间的叠置度和/或通过限制锚固臂与地层之间的接触面积,来限制作用在所述管状元件的壁上的径向负载。在一实际的实施例中,斜坡部70的表面角度在约30度到60度的范围内,例如约45度。

这样,衬管6的下端部分16在该下端部分16膨胀之后牢固地锚固到井眼壁5上。所以,下端部分16在井眼1中的位置在衬管进一步膨胀期间不再变化,从而提供一参照点,例如在后一阶段将下一管状元件安装到井眼中的过程中或者在井眼的修井作业过程中。这是有利的,因为它消除了在该后一阶段确定衬管6的下端部分16的位置的需要。

在衬管的下端部分16牢固地锚固到井眼壁5上的情况下,进一步向上拉动膨胀器12通过衬管6,以径向膨胀衬管的其余部分。带有与之相连的顶部锚固器20的衬管上端由于膨胀处理期间衬管的轴向缩短而向下移动,由此,锚固部件24自动释放套管3的内表面,正如上文所解释的那样。随着膨胀器12经过衬管6的上端部分8,所述上端部分8由此包覆在套管3上,以在膨胀的衬管6与套管3之间形成坚固的流体密封连接。任选地,衬管的上端部分8的外表面可以设置有一个或更多个弹性密封件,以增强膨胀的上端部分8与套管3之间的流体密封性。

在该阶段,钻柱10的释放接头18被拉动抵靠顶部锚固器20的释放装置,以使锚固部件24移动至缩回位置。通过进一步向上拉动钻柱10,膨胀器12将顶部锚固器20的臂26从衬管6的上端部分8推出来。然后钻柱10与附着于其的膨胀器12、扶正器15和顶部锚固器20一起被回收到地面上。

在膨胀处理完成后,使环空7中的水泥本体80硬化。借助于形成环状密封部件的褶皱部55,膨胀工艺完成之后,环空7的下部分92中基本上不会存在硬化水泥。所以,如果井眼1需要钻得更深,只需要将极少量的水泥塞钻出来,或者根本没有水泥塞。在将下一可膨胀衬管安装到井眼中时,已经膨胀的衬管处于套管的角色。优选的是,使用直径稍小的膨胀器或可收缩式膨胀器来膨胀该下一衬管,以允许膨胀器带有一定间隙地下放通过已经膨胀的衬管。

如图15所示的依照本发明的系统的替换实施例类似于上文参照图1-14所述的实施例,不同之处在于,钻柱10延伸到膨胀器12的下方,并设置有钻井组件,所述钻井组件包括可收缩扩孔器94和具有导眼钻头98的可转向钻具96。处于收缩模式时的扩孔器94以及可转向钻具96的直径小于膨胀的衬管6的内径,以允许扩孔器94和可转向钻具96通过膨胀的衬管6被回收到地面上。

如图15所示的替换实施例的常规操作类似于上文参照图1-14所述的实施例的常规操作,不同之处在于,在衬管下放到井眼1内之前,没有利用单独的钻柱钻出裸孔节段4。而是利用扩孔器94和可转向钻具96钻出裸孔节段。在用扩孔器94和可转向钻具96钻出后,衬管6以上文所述的方式膨胀。替换实施例的优点在于,衬管6钻到目标深度,随后膨胀,不需要额外的往返行程。为了在钻出井眼节段4的过程中提供足够的流动面积而用于钻井流体,优选的是,膨胀器12可收缩至较小直径。

在示例性实施例中,可膨胀管状元件的壁的可折叠壁节段的厚度可约为管状元件的其余部分的厚度的50%或更小,例如约为40%或更小。可折叠壁节段的长度例如在约50mm到500mm的范围内,例如在约75mm到150mm的范围内。管状元件的膨胀率,即膨胀的管的管径相对于膨胀之前的管的管径的比率,可以为5%到25%的范围内,如约10到20%。可折叠壁节段的膨胀率,即膨胀之后的可折叠壁节段的外径相对于膨胀之前的可折叠壁节段的外径的比率,可以为30%到60%的范围内,例如约为40%到55%。在膨胀之后,折叠部分可以密封在一封闭壁(例如井眼壁)上,提供超过50bar或例如超过约150bar的流体密封性。这里,流体密封性提供了折叠部分上方和下方的环状区域之间的层间封隔。膨胀和折叠可折叠节段所需的折叠力例如在约250kN到1000kN的范围内,例如400kN到700kN。管状元件大体上由脱氧钢制成。

进行了许多有关具有可折叠壁节段的管样品的测试,以测试在压缩负载下环状褶皱部的形成以及由此形成的褶皱部在随后的径向膨胀,如下文所述。

测试1

测试样品具有上文所述的依照第五实施例的可折叠壁节段(图8和9)。此外,测试样品具有下列特征:

制造商:V&M

材料:S355J2H

外径:139.7mm

壁厚度:10mm

屈服强度:388MPa

抗拉强度:549MPa

制造方法:无缝

热处理:正火

管样品具有一减小的厚度为3.5mm、长度为100mm的区段。为确保机加工适当集中化以及减小的截面积处壁厚度的均匀,壁在内、外两个表面都凹陷进去。此外,一小的环状凹槽设置在具有减小的壁厚度的阶段的内表面上,以启动折叠作用,降低所需的压缩折叠力。在膨胀之前,管样品内部用Malleus STC1润滑剂进行润滑。用于膨胀该样品的膨胀器为外径为140.2mm的Sverker21材料。膨胀器的膨胀率(即管径的增大量与膨胀之前的直径之比)为17%。

由膨胀器向样品施加压缩负载,以使可折叠壁节段折叠成手风琴形状。该测试表明,启动折叠所需的力约为450kN。所施加的负载导致样品迭代地形成褶皱,衍变成折叠节段。该折叠节段具有比样品的其余部分低的轴向刚度和抗塌陷强度,使得各褶皱部形成过程中轴向负载明显降低。由此形成的褶皱部的外径为170.4mm。这对应的当量膨胀率为37%。接着增大施加于膨胀器的负载,拉动膨胀器通过管样品,以径向膨胀样品。膨胀之后的褶皱部的外径为185.1mm,这对应的当量膨胀率约为50%。该测试表明,膨胀所述褶皱部期间的平均膨胀负载,即移动膨胀器通过样品所需的力,约为520kN,峰值负载为650kN。

测试2

测试样品具有上文所述的依照第五实施例的可折叠壁节段(图8和9)。此外,测试样品具有下列特征:

制造商:V&M

材料:S355J2H

外径:139.7mm

壁厚度:10mm

屈服强度:388MPa

抗拉强度:549MPa

制造方法:无缝

热处理:正火

管样品具有一减小的厚度为3.5mm、长度为100mm的区段。为确保机加工适当集中化以及减小的截面积处壁厚度的均匀,壁在内、外两个表面都凹陷进去。此外,一小的环状凹槽设置在具有减小的壁厚度的阶段的内表面上,以启动折叠作用,降低所需的压缩折叠力。在膨胀之前,管样品内部用Malleus STC1润滑剂进行润滑。用于膨胀样品的膨胀器为外径为140.2mm的Sverker21材料。膨胀器的膨胀率(即管径的增大量与膨胀之前的直径之比)为17%。样品被放置在内径为174.7mm、壁厚度为9.5mm的S355J2H钢管内,并在其内膨胀。

由膨胀器向样品施加压缩负载,以使可折叠壁节段折叠成手风琴形状。该测试表明,启动折叠所需的力约为450kN。所施加的负载导致样品迭代地形成褶皱,衍变成折叠节段。该折叠节段具有比样品的其余部分低的轴向刚度和抗塌陷强度,使得各褶皱部形成过程中轴向负载明显降低。接着增大施加于膨胀器的负载,拉动膨胀器通过管样品,以径向膨胀样品。膨胀之后的褶皱部的外径接触外管的内径,这对应的当量膨胀率约为41%。该测试表明,膨胀所述褶皱部期间的平均膨胀负载,即移动膨胀器通过样品所需的力,约为520kN,峰值负载为850kN。内管和外管之间的环空经受水压力。压力测试显示耐压紧密度约为200bar。

本发明不局限于上述实施例,其中在附带的权利要求书的范围内可以想得到许多修改。各个实施例的特征可以例如组合。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1