线性马达装置和终端设备的制作方法

文档序号:22323119发布日期:2020-09-23 02:00阅读:144来源:国知局
线性马达装置和终端设备的制作方法

本申请涉及线性马达领域,更具体地,涉及一种线性马达装置。



背景技术:

随着信息化水平的快速提高,以及人们对智能终端设备小型化、轻量化、便携化、智能化的要求,高屏占比以及高交互性成为未来终端设备的发展方向。例如,高屏占比需求下的伸缩式摄像头方案、高交互性需求下线性马达的应用等。

线性马达凭借其反应速度快、功耗低、易于调节和控制以及易于定制化等特点,在手机以及可穿戴设备等终端设备中的应用越来越广泛。现有的终端设备中,线性马达只是用来提供震感,其它活动部件的伸缩需要增加步进电机或者其它复杂的机构来实现。

可见,在现有的终端设备中,线性马达和步进电机的作用单一,其中,线性马达只提供震感,而步进电机仅作为部件的动力源。由此导致终端设备的成本上升,体积无法最小化,这与智能终端设备的小型化、轻量化等发展方向是相悖的。



技术实现要素:

本申请提供一种线性马达装置,兼有提供震感和为其它活动部件提供动力的功能,可以节省智能终端设备的空间,有助于推动终端设备实现小型化和轻量化。

第一方面,提供了一种线性马达装置,包括:

线性马达本体,具有中空结构;

气缸,包括缸筒、端盖和活塞,其中,所述端盖上设置有两个单向透气孔,所述活塞设置在所述缸筒的内部,所述活塞能够在所述缸筒内部作直线往复运动;

质量块,包括基部和l型的延伸部,所述基部内置于所述线性马达本体的中空结构中,并与所述线性马达本体滑动连接,且可以在所述中空结构中作直线往复运动,所述l型的延伸部延伸至所述中空结构之外,且与所述气缸内部的所述活塞连接;

气管,具有中空结构,与所述气缸邻近设置,其上套设有永久磁铁和弹性部件,所述永久磁铁套设在所述气管上靠近所述气缸的一侧,所述弹性部件套设在所述气管上远离所述气缸的一侧,所述弹性部件受到沿着所述气管的轴线方向的压力时被压缩;

两组电磁铁,围绕所述气管的周向方向相对设置,其中,每个电磁铁上绕有线圈,所述线圈被通电后,所述两组电磁铁产生的磁力和所述永久磁铁的磁力相互作用,使得所述气管上套设有所述永久磁铁的一端处于悬空位置,或者连接在所述气缸的所述两个单向透气孔中的其中一个上。

本申请提供的线性马达装置,设置有单向透气孔的气缸、包括l型延伸部的质量块、气管和电磁铁等结构,可以实现线性马达装置的自动充气、吸气以及震动的功能。线性马达装置兼有多种功能,可以节省终端设备的空间,节省终端设备的制造成本,有助于终端设备的轻量化、小型化。

结合第一方面,在第一方面的某些实现方式中,所述两个单向透气孔包括进气孔和排空,其中,

当所述气缸内的活塞作直线往复运动,且所述气管上套设有所述永久磁铁的一端连接所述进气孔上时,所述气缸处于吸气状态;

当所述气缸内的活塞作直线往复运动,且所述气管上套设有所述永久磁铁的一端连接在所述排气孔上时,所述气缸处于排气状态;

当所述气缸内的活塞作直线往复运动,且所述气管上套设有所述永久磁铁的一端处于悬空位置时,所述线性马达装置处于震动状态。

结合第一方面,在第一方面的某些实现方式中,所述气管的远离所述气缸的一端设置有气囊,当所述气管上套设有所述永久磁铁的一端配合连接在所述进气孔上时,所述气囊内的空气经过气管被吸入所述气缸内,所述气囊处于吸气状态且作单向运动;

当所述气管上套设有所述永久磁铁的一端配合连接在所述排气孔上时,所述气缸内的空气经过气管被充入所述气囊内,所述气囊处于充气状态且作单向运动。

应理解,气囊处于吸气状态而作单向运动时的运动方向,与气囊处于充气状态而作单向运动时的运动方向是相反的。

进一步,在线性马达装置的气管上配合设置气囊,可以将自动充气和吸气的过程转变为气囊的单向运动,从而作为活动部件的动力源,为活动部件提供动力。通过对线性马达的结构进行改进,使得线性马达不仅具有提供震感的功能,还可以作为活动部件的动力源。

由此,现有的终端设备中用于为活动部件提供动力的步进电机或其它复杂的结构可以省去,在终端设备的功能不减少的情况下,可以简化其内部结构,有利于节省终端设备的空间,降低制造的复杂度。

结合第一方面,在第一方面的某些实现方式中,所述线性马达装置还包括:

控制器,用于控制所述两组电磁铁产生的磁力的大小和磁极,其中,所述永久磁铁的磁极与所述两组电磁铁的磁极相同,

当所述控制器控制所述两组电磁铁产生的磁极相同,且磁力大小相同时,所述气管上套设有所述永久磁铁的一端处于悬空位置,线性马达装置处于震动状态;

当所述控制器控制所述两组电磁铁产生的磁极相同,且靠近所述进气孔的一组电磁铁的磁力大于靠近所述排气孔的一组电磁铁的磁力时,所述气管上套设有所述永久磁铁的一端连接在所述排气孔上,所述气囊处于所述充气状态;

当所述控制器控制所述两组电磁体产生的磁极相同,且靠近所述进气孔的一组电磁铁的磁力小于靠近所述排气孔的一组电磁铁的磁力时,所述气管上套设有所述永久磁铁的一端连接在所述进气孔上,所述气囊处于吸气状态。

结合第一方面,在第一方面的某些实现方式中,所述气囊的大小和体积可调节。

结合第一方面,在第一方面的某些实现方式中,所述气囊的与所述气缸连接的一端相对的另一端连接有活动部件,当所述气囊处于所述吸气状态或所述充气状态时,所述气囊由于吸气或者充气而作单向运动产生的动力为所述活动部件提供动力。

结合第一方面,在第一方面的某些实现方式中,所述弹性部件为回位弹簧。

结合第一方面,在第一方面的某些实现方式中,所述两组电磁铁中每组设置的电磁铁的数量为一个。

第二方面,提供了一种终端设备,包括如第一方面或其任意方面所述的线性马达装置。

附图说明

图1为本申请提供的线性马达装置的示意性结构图。

图2为线性马达本体、气缸以及质量块的另一个角度的视图。

图3示出了质量块与线性马达本体的位置关系的剖面视图。

图4为线性马达装置的气管的结构示意图。

图5为线性马达装置的气缸的结构示意图。

图6为本申请实施例的排气孔结构的剖面图。

图7为本申请实施例的进气孔结构的剖面图。

图8为本申请实施例的悬空位置槽结构的剖面图。

图9示出了线性马达装置的气管配合连接到靠近电磁铁50的单向透气孔的俯视图。

图10示出了线性马达装置的气管处于悬空位置的俯视图。

图11示出了线性马达装置的气管配合连接到靠近电磁铁60的单向透气孔的俯视图。

图12为线性马达装置的气囊充气过程的最终状态的俯视图。

图13为线性马达装置的气囊吸气过程的最终状态的俯视图。

附图标记说明:

线性马达本体10

凹槽11

气缸20

缸筒21

端盖22

活塞23

单向透气孔221,222

悬空位置槽223

排气孔的阀门2211

进气孔的阀门2221

质量块30

质量块的基部31

质量块的l型的延伸部32

气管40

永久磁铁41

弹性部件42

两组电磁铁50,60

气囊70

控制器80

活动部件90

具体实施方式

下面将结合附图,对本申请中的技术方案进行描述。

在现有的终端设备中,线性马达仅提供震感,步进电机仅作为部件的动力源,线性马达和步进电机作用单一。针对线性马达作用单一的现状,本申请在现有的线性马达的基础上,对线性马达的质量块加以改进,配合有单向透气孔的气缸、气管和电磁铁等结构,可以实现自动充气、吸气以及震动功能。再在气管上配合设置气囊,可以将自动充气和吸气的过程转变为气囊的单向运动,从而作为活动部件的动力源,为活动部件提供动力。通过对线性马达的结构进行改进,使得线性马达不仅具有提供震感的功能,还可以作为活动部件的动力源。

参见图1,图1为本申请提供的线性马达装置的示意性结构图。如图1,线性马达装置主要包括线性马达本体10、气缸20、质量块30、气管40和两组电磁铁(50,60)。

具体地,线性马达本体10具有中空结构。气缸20与线性马达本体10分离或接触设置,包括缸筒21、端盖22和活塞23。其中,端盖22上设置有2个单向透气孔(221,222)。按照所述2个单向透气孔(221,222)在线性马达装置在工作状态时的功能,所述2个单向透气孔(221,222)可以分别称为排气孔221和进气孔222。其中,当线性马达装置处于工作状态时,排气孔221仅用于气缸内的空气向外出,进气孔222仅用于气缸外部的空气向内进。

此外,气缸20为中空的结构,活塞23设置在缸筒21的内部,是气缸20中的受压力部件。活塞23可以在气缸20内部作直线往复运动。

质量块30,包括基部31和l型的延伸部32,所述基部31内置于所述线性马达本体10的中空结构中,并与所述线性马达本体10滑动连接,且可以在所述中空结构中作直线往复运动,所述l型的延伸部32延伸至所述中空结构之外,且与所述气缸20内部的所述活塞23连接,质量块30的基部31的直线往复运动通过其l型的延伸部32传递至活塞23,从而使得所述活塞23作直线往复运动。

气管40,具有中空结构,与气缸20临近设置,其上套设有永久磁铁41和弹性部件42。其中,永久磁铁41套设在气管40上靠近气缸20的一侧,弹性部件42套设在气管40上远离气缸20的一侧。当受到沿着气管40的轴线方向的压力时,弹性部件42被压缩。当压力消除时,弹性部件42恢复自由状态。

两组电磁铁(50,60),围绕气管40的周向方向相对设置,其中,每个电磁铁上绕有线圈。当线圈被通电后,这两组电磁铁(50,60)产生的磁力和气管40上的永久磁铁41的磁力相互作用,使得气管40上套设有永久磁铁41的一端处于悬空位置,或者连接在气缸20的端盖22上的所述2个单向透气孔(221,222)中的其中一个上。

参见图2,图2为线性马达本体、气缸以及质量块的另一个角度的视图。如图2,在具体实现中,线性马达本体10可以设计为中空结构,气缸20设置于所述中空结构之外。其中,所述线性马达本体10的中空结构的上表面设置有一个凹槽11。质量块30的基部31放置于所述中空结构的内部,其l型的延伸部32由所述基部31经过所述凹槽11延伸至所述中空结构的外部,并与气缸20内部的活塞23连接。

本申请实施例中,线性马达本体10的中空结构可以有多种具体的实现。应理解,各附图中所示的中空的长方体结构仅是作为一种示例,也可以设计为中空的近似于长方体或其它形状的结构,不作限定。

为了更清楚地显示质量块30的结构,请参见图3,图3示出了质量块与线性马达本体的位置关系的剖面视图。

通过为质量块30设计l型的延伸部32,当线性马达装置将电能转换为机械能,使得质量块30的基部31在线性马达本体10的所述中空结构内部作直线往复运动时,通过质量块30的l型的延伸部32,将基部31的直线往复运动引导至线性马达本体10的中空结构之外,并传递给气缸20内部的活塞23,从而推动活塞23在气缸20内部作直线往复运动。

当气缸20内的活塞23作直线往复运动时,同时控制气管40上套设有永久磁铁41的一端,使其处于悬空位置,或者使其连接在气缸20的相应的单向透气孔上,可以实现线性马达装置的震动功能,或者使得线性马达装置的气缸20处于排气或者吸气的状态。

例如,质量块的l型的延伸部32与活塞23连接,当质量块30的基部31在作直线往复运动时,通过l型的延伸部32,将基部31的直线往复运动传递至活塞23,使得活塞23在气缸20内也作直线往复运动。在此过程中,若控制气管40上套设有永久磁铁41的一端连接到气缸20的排气孔221上,可以使气缸20处于排气的状态。

若控制气管40上套设有永久磁铁41的一端配合连接在气缸20的进气孔222上,可以使气缸20处于吸气的状态。

若控制气管40上套设有永久磁铁41的一端处于悬空位置时,线性马达装置仅震动。

应理解,当线性马达装置处于震动状态、排气或者吸气的状态时,气缸20上的两个单向透气孔(221,222)均处于工作的状态。其中,排气孔221仅用于排气,进气孔222仅用于进气,相互配合实现气缸的排气和吸气功能。

参见图4,图4为线性马达装置的气管的结构示意图。如图4所示,气管40可以设计为中空的圆柱体结构,其上套设有永久磁铁41和弹性部件42。可选地,该弹性部件42可以为回位弹簧。回位弹簧的远离永久磁铁41的一端固定连接在气管40上,靠近永久磁铁41的另一端可在气管40上自由滑动。当回位弹簧未受到沿气管40的轴线方向的压力时,回位弹簧处于自由状态。当回位弹簧受到沿气管40的轴线方向的压力时,回位弹簧朝着远离永久磁铁41的一侧被压缩。

参见图5,图5为线性马达装置的气缸的结构示意图。如图5所示,气缸20可以为中空的圆柱体结构,或者也可以为其它形状,本文不作限定。

气缸20的端盖22上设置有2个单向透气孔(221,222)以及一个悬空位置槽223。应理解,单向透气孔(221,222)通过类似于心脏瓣膜的结构实现单向透气。

应理解,图5中所示的单向透气孔(221,222)和悬空位置槽223的相对位置仅是作为示例。例如,图5中所示的排气孔221和进气孔222的位置可以互换。

可选地,气缸20的端盖22可以设计为曲面,所述2个单向透气孔(221,222)以及所述悬空位置槽223设置在所述曲面上。所述端盖22和气缸20的缸筒21可以一体成型。

下面分别结合图6-图8说明本申请实施例中的单向透气孔以及悬空位置槽。

参见图6,图6为本申请实施例的排气孔结构的剖面图。如图6,当气缸20内部的活塞23作直线往复运动的过程中,若气管40上套设有永久磁铁41的一端配合连接在气缸20的端盖22上的排气孔221上,此时,气缸20处于排气的状态。

参见图7,图7为本申请实施例的进气孔结构的剖面图。如图7,当气缸20内部的活塞23作直线往复运动的过程中,若气管40上套设有永久磁铁41的一端配合连接在气缸20的端盖22上的进气孔222上,此时,气缸20处于吸气的状态。

参见图8,图8为本申请实施例的悬空位置槽结构的剖面图。如图8,当气管40上套设有永久磁铁41的一端位于气缸20的端盖22上的悬空位置槽223内时,线性马达装置处于震动的状态,也即,此时线性马达装置仅提供震感。

应理解,当线性马达装置分别处于如图6-图8中所示的排气、吸气或震动的状态时,排气孔221和进气孔222分别用于实现其单向透气的功能。

例如,当线性马达装置处于排气、吸气或震动中的任意一个工作状态的过程中,当排气孔221处于工作状态时,排气孔221的阀门2211朝着远离气缸的一侧被打开,如图6中虚线箭头所示的方向。当进气孔222处于工作状态时,进气孔222的阀门2221朝着靠近气缸的一侧被打开,如图7中虚线箭头所示的方向。

可选地,线性马达装置处于震动状态时,气管40上套设有永久磁铁41的一端与气缸可以接触,或者也可以不接触,不作限定。

此外,应理解,悬空位置槽223是气缸20的端盖22上的一个凹槽,它与缸筒21的内部不通。悬空位置槽223仅是为了气管上套设有永久磁铁的一端处于悬空状态时而设计,仅是作为一个示例。

在另一个示例中,气缸20的端盖22上也可以不设计悬空位置槽223,仅设计两个单向透气孔(221,222)即可,不作限定。

在具体实现中,线性马达装置还包括控制器80。其中,控制器80用于控制线性马达装置的两组电磁铁(50,60)产生的磁极以及磁力的大小。

可选地,控制器80可以设置于线性马达本体的中空结构中,例如图3中所示。或者,当线性马达装置应用于终端设备(例如,手机)中时,控制器80也可以设置于终端设备内部的任意合适的位置,本领域技术人员可以理解如何设置是合适的,本申请不作限定。

可选地,所述两组电磁铁(50,60)每组电磁铁的数量可以根据所需的磁力的大小设置。在一种实现中,每组仅设置一个电磁铁,或者,每组也可以设置多于1个电磁铁,本申请不作限定。

在一种具体的实现中,控制器80控制所述两组电磁铁(50,60)产生相同的磁极,且与气管40上套设的永久磁铁41的磁极相同。由此,两组电磁铁(50,60)分别产生排斥永久磁铁41的排斥力。如上文所示,控制器80除了控制两组电磁铁(50,60)的磁极,同时控制两组电磁铁(50,60)各自产生的磁力的大小。当所述两组电磁铁(50,60)产生相同的磁极,且均对永久磁铁41产生排斥力的情况下,磁力较大的一组电磁铁对永久磁铁41的排斥力将大于磁力较小的另一组电磁铁对永久磁铁41的排斥力,从而将永久磁铁41推向磁力较小的一组电磁铁的一侧,使得气管40上套设永久磁铁41的一端与靠近所述磁力较小的一组电磁铁的单向透气孔连接,反之气管上套设永久磁铁41的一端则配合连接在另一个单向透气孔。这里所述的单向透气孔和另一个单向透气孔是指排气孔221或者进气孔222。

在另一种情况下,当两组电磁铁(50,60)产生的磁力的大小相等的情况下,两组电磁铁(50,60)对永久磁铁41产生的排斥力相同,气管上套设永久磁铁41的一端将处于悬空位置,例如,位于如图5或图8中所示的气缸20的端盖22上的悬空位置槽223内。

可选地,排气孔221、进气孔222和悬空位置槽223等间隔设置在气缸20的端盖22上。其中,悬空位置槽223可以设置在端盖22的中心位置,排气孔221和进气孔222分别设置在悬空位置槽223的两侧,各自靠近一组电磁铁。

图9-图11分别示出了气管配合连接到气缸上的单向透气孔的几种不同状态。图9示出了气管40连接到靠近电磁铁50的一个单向透气孔的俯视图。图10示出了气管40处于悬空位置的俯视图。图11示出了气管40连接到靠近电磁铁60的单向透气孔的俯视图。

假设,靠近电磁铁50的单向透气孔设置为排气孔221,靠近电磁铁60的单向透气孔设置为进气孔222,则图9-图11为气缸20在排气状态、震动状态和吸气状态之间的切换过程。

以上对本申请提供的线性马达装置提供震动的功能,以及自动排气和吸气的功能做了详细介绍,下面介绍本申请的线性马达装置作为动力源,为活动部件提供动力的方案。

如上文所述,气管40为中空结构,在线性马达装置处于工作状态时,气管40上套设有永久磁铁41的一端在气缸20的端盖22上的2个单向透气孔(221,222)以及悬空位置之间切换。在线性马达装置为活动部件90提供动力的实施例中,可以在气管40的与套设有永久磁铁41的相对的另一端连接气囊70,由此,可以将气缸20的排气和吸气的过程变成单向运动,并作为动力源为活动部件90提供动力。

在具体实现中,气囊70的体积和大小均为可调节,可定制化程度高。

图12为线性马达装置的气囊充气过程的最终状态。如图12,当气管40上套设有永久磁铁41的一端配合连接在气缸20的排气孔221上时,气缸20内的空气经过气管40被充入气囊70内。随着空气不断被充入气囊70内,所述气囊70处于充气过程,图12示出了充气过程的最终状态。

图13为线性马达装置的气囊吸气过程的最终状态。如图13,当所述气管上套设有所述永久磁铁41的一端配合连接在所述进气孔222上时,所述气囊70内的空气经过气管被吸入气缸20内。随着气囊70内的空气不断被吸出,气囊70内的空气不断减少,图13示出了吸气过程的最终状态。

与此同时,终端设备中的活动部件90可以与气囊70连接,由此,当气囊70处于吸气或者充气的过程中时,气囊70的单向运动产生的动力可以作为活动部件(例如,摄像头或可伸缩耳机)的动力源。

例如,活动部件90可以为终端设备的摄像头。以图12和图13为例,当气囊70在充气的过程中,摄像头在气囊70的单向运动(运动方向为远离气缸)产生的推力的作用下,从原始位置向着远离气缸的一侧被推出一定的位移。当气囊70在吸气的过程中,摄像头在气囊70的单向运动(运动方向为靠近气缸)的过程中,随着气囊70被拉回到原始位置。

本申请中不限定活动部件90和气囊70的具体连接方式,本领域技术人员可以选用合适的连接方式。

和现有的线性马达相比,本申请提供的线性马达装置扩展了现有的线性马达仅提供震动的功能,使其不仅提供震动,还可以实现自动充气、吸气的功能和作为动力源,能够充分发挥线性马达装置的作用,实现更多的功能,省去终端设备内部原本作为动力源的步进电机或其它复杂的机构。

当本申请提供的线性马达装置应用于终端设备时,可以节约终端设备的空间,有助于实现终端设备的轻量化、小型化。

应理解,图1-图13所示的线性马达装置中的各个部件的结构以及部件之间的连接关系仅为示意性说明,任何可替换的与每个部件所起的作用相同的部件的结构都在本申请实施例的保护范围内。

此外,在本申请实施例中,除非另有明确的规定和限定,术语“连接”、“固定连接”、“滑动连接”等术语应做广义理解。对于本领域的普通技术人员而言,可以根据具体情况理解上述各种术语在本申请实施例中的具体含义。

示例性地,针对“连接”,可以是固定连接、转动连接、柔性连接、移动连接、一体成型、电连接等各种连接方式。可以是直接相连,或,可以是通过中间媒介间接相连,或,可以是两个元件内部的连通或两个元件的相互作用关系。

示例性地,对于“接触”的解释,可以是一个元件与另一个元件直接接触或间接接触,此外,本申请实施例所描述的两个元件之间的接触,可以理解为在安装误差允许范围内的接触,可以存在由于安装误差原因造成的很小的间隙。

示例性地,针对“固定连接”,可以是一个元件可以直接或间接固定连接在另一个元件上;固定连接可以包括机械连接、焊接以及粘接等方式,其中,机械连接可以包括铆接、螺栓连接、螺纹连接、键销连接、卡扣连接、锁扣连接、插接等方式,粘接可以包括粘合剂粘接以及溶剂粘接等方式。

以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1