功率分流式无级传动设备的制作方法

文档序号:17592772发布日期:2019-05-03 22:03阅读:281来源:国知局
功率分流式无级传动设备的制作方法

本发明涉及一种根据权利要求1的前序部分所述的功率分流式无级传动设备,尤其是无级行星齿轮传动装置。本发明涉及一种根据权利要求12所述的机动车驱动系。



背景技术:

在us20160109002a1中公开了这种能无级调整的传动装置,其被视为最接近的现有技术。

在wo2014179717中公开了一种能无级调整的传动装置,其包括纽芬奇(nuvinci)变速器、正行星齿轮组、负行星齿轮组和多个离合器的设施,该传动装置提供两个前进行驶范围和后退行驶范围。

无级传动装置,也称cvt传动装置(连续可变的传动装置),例如可以借助所谓的变速器无级地调节在最短变速比和最长变速比之间的传动比。这与在其中设置有一系列的预定的(离散)传动比的典型传动装置中的情况下不同。cvt传动装置可以构造为例如呈皮带传动装置或实施为锥环传动装置或环面传动装置的滚动体传动装置的形式的机械无级传动装置。

机械无级传动装置的基本作用原理与其结构上的实施方式无关地始终是相同的。这样,功率传输在无能量形式转换的情况下以力锁合方式(kraftschlüssig)通过两个或更多个相对彼此运动的接触体的摩擦锁合(reibungschlüssig)的接触来实现,通常初级盘和次级盘也称作初级侧和次级侧,其中,两个盘由成对布置的锥形盘形成并且配设有传输转矩的环绕元件,其在两个锥形盘对之间绕转。

根据结构类型,在此情况下,明显超过流体静力的全负荷效率的非常高的全负荷效率是可能的。机械cvt的传动比始终通过其有效的摩擦半径比确定,即,当前的变速比通过环绕元件的运行半径限定,运行半径又是锥形盘的轴向位置的函数,并且由此受制于几何形状的边界,所述边界防止直接实现起动过程。

为了取消机械cvt的传动比范围限制,适宜的是,该机械cvt以功率分流式的传动装置结构来运行,如例如以一个或多个行星传动装置与无级传动装置组合地运行。这样的传动装置,也称ivt传动装置(无限可变的传动装置),可以在固定的变速比值之间在传输方向上任意地减速,即达到无穷大,或也减速至相反方向,即达到负的,使得被驱动的轴转动,而被输出的轴静止。

这样,利用该传动装置通过在低速度时的带有无功功率的运行可以扩宽变速器的传动比范围,使得可以直接实现起动过程,即车辆在发动机运行时出现变速比“无穷大”的情况,而无需附加的分离离合器。

通过使用功率分流式传动装置,功率流可以经由一个或多个功率路径引导。例如,功率可以沿着第一路径通过变速器引导或沿着第二路径通过行星齿轮传动装置引导。功率也可以向回引导到变速器中,由此变速器在无级传动装置运行期间的负荷被提高。



技术实现要素:

本发明的任务是,提供一种替选的无级传动装置,该无级传动装置具有简单的结构和紧凑的结构形式。

根据本发明,传动设备包括:驱动轴和输出轴;布置在驱动轴与输出轴之间的第一行星齿轮组;与第一行星齿轮组连接的并且布置在驱动轴与输出轴之间的第二行星齿轮组;变速器单元,变速器单元构造成无级地将功率从驱动轴传输到第一行星齿轮组,其中,设置有第一、第二和第三切换元件,通过有选择地操纵它们,经由变速器单元和行星齿轮组在提供第一、第二和第三行驶范围的情况下可以呈现不同的力流引导。

“轴”在本发明的意义下理解为传动装置的能旋转的构件,经由该构件,传动装置的各所从属的部件在轴向和/或径向抗相对转动地彼此连接,或经由该构件,在操纵相应的切换元件时可以建立这种连接。这样,各个轴也可以作为中间件存在,经由该中间件例如在径向接驳各个部件。

本发明现在包括如下技术教导:变速器单元固定在抗相对转动的构件上,变速器单元的初级侧与驱动轴抗相对转动地连接,并且变速器单元的次级侧经由第三轴与第一行星齿轮组的第一元件抗相对转动地连接并且与第二行星齿轮组的第一元件抗相对转动地连接。

第一行星齿轮组的第三元件经由第四轴与第二行星齿轮组的第三元件抗相对转动地连接,第一行星齿轮组的第三元件还经由第一切换元件能固定在抗相对转动的构件上。

与第二行星齿轮组的第二元件抗相对转动地连接的第五轴经由第二切换元件能与驱动轴连接,其中,与第五轴连接的第二元件还经由第三切换元件能固定在抗相对转动的构件上,并且第一行星齿轮组的第二元件与输出轴抗相对转动地连接。

换言之,在根据本发明的传动设备中,驱动轴永久抗相对转动地与变速器单元连接,而输出轴抗相对转动地与第一行星齿轮组的第二元件连接。

在操纵第一切换元件时,传动设备的第四轴和由此第一行星齿轮组的第三元件和第二行星齿轮组的第二元件固定在抗相对转动的构件上并且由此防止转动运动,而在操纵第三切换元件时,第五轴和由此第二行星齿轮组的第三元件和第一行星齿轮组的第一元件固定在抗相对转动的构件上。在操纵第二切换元件时,第四轴和由此不仅第一行星齿轮组的第三元件以及第二行星齿轮组的第二元件与驱动轴抗相对转动地连接。

传动装置的抗相对转动的构件根据本发明是传动装置的永久处于静止的部件,优选地是传动装置壳体或这种传动装置壳体的一部分。

在根据本发明的传动装置中,第一切换元件和第三切换元件构造为制动器,这些制动器在操控时分别将传动装置的各所从属的部件减速到静止状态并且固定在抗相对转动的构件上。而,第二切换元件作为离合器存在,这些离合器在操纵时分别将传动设备的各所从属的能旋转的部件在它们的转动运动方面彼此均衡并且后续抗相对转动地彼此连接。

行星齿轮组的能旋转的元件的各个抗相对转动的连接根据本发明优选地经由一个或多个在其间的轴实现,这些轴在此在这些元件在空间上紧密布置时也可以作为轴向的和/或径向的短的中间件存在。具体而言,行星齿轮组的永久抗相对转动地彼此连接的元件在此可以分别要么作为抗相对转动地彼此连接的单个部件存在,要么也可以一件式地存在。在后一种情况下,于是各个元件和必要时存在的轴通过共同的构件形成,其中,这尤其是当传动装置中的各个元件在空间上紧密地贴靠时才实现。

在行星齿轮组的首先通过操纵各个切换元件而彼此抗相对转动连接的元件中,同样优选经由一个或多个在中间的轴实现。

已证明的是,通过本发明可以提供如下传动设备,该传动设备具有带有仅两个行星齿轮组和三个切换元件的简单的构造并且具有紧凑的结构形式,并且特征还在于仅很小的传动损耗。不同于在其中变速器单元针对各个行驶范围被跨接的最接近的现有技术,根据本发明,功率能始终至少部分地经由变速器单元呈现,即,变速器单元参与所有三个行驶范围。此外,传动设备具有仅很小的构件负荷并且尤其具有很小的变速器负荷。传动设备特别适合作为具有侧向的输出部的前置横向布置或后置横向布置。

原则上,常用的机械变速器、流体静力变速器或电变速器是可考虑的。用于机械变速器的实施例是纽芬奇变速器、锥环变速器或行星滚子变速器。用于流体静力变速器的实施例是两个液压调节器。用于电变速器的实施例是两个电机。

然而根据一个实施形式优选的是,变速器是机械变速器,特别优选是纽芬奇变速器或行星滚子变速器,因为在变速器的两侧之间没有转动方向翻转。

此外优选的是,从传动设备的驱动轴的联接部位开始,两个行星齿轮组在轴向相邻地布置。“轴向”在本发明的意义下指的是沿着如下轴线的定向,第一行星齿轮组和第二行星齿轮组沿着该轴线彼此同轴地布置。

在一个替选的实施方式中优选的是,第一行星齿轮组在径向布置在第二行星齿轮组之外。由此可以实现轴向上更紧凑的结构形状。“径向”于是可理解为置于该轴线上的轴的直径方向上的定向。

优选的是,两个行星齿轮组构造为负行星齿轮组,其中,第一行星齿轮组的第一元件是太阳轮,第一行星齿轮组的第二元件是行星齿轮架并且第一行星齿轮组的第三元件是齿圈,其中,第二行星齿轮组的第一元件是太阳轮,第二行星齿轮组的第二元件是行星齿轮架并且第二行星齿轮组的第三元件是齿圈。

负行星齿轮组也已知作为简单的行星齿轮组。负行星齿轮组已知地具有能扭转地支承在行星齿轮架上或行星架上的行星齿轮,这些行星齿轮与该行星齿轮组的太阳轮和齿圈啮合,使得齿圈在行星齿轮架保持固定且太阳轮转动时沿着与太阳轮转动方向相反的方向转动。

在允许接驳各个元件之处,可以将负行星齿轮组转变为正行星齿轮组,其中,于是相对于实施为负行星齿轮组,齿圈接驳和行星齿轮行星架接驳互换,以及传动装置变速比提高了一。相反,只要传动装置的元件的接驳能够实现,正行星齿轮组也可以通过负行星齿轮组替代。在此,于是与正行星齿轮组相比,同样齿圈接驳与行星齿轮行星架接驳彼此互换,以及传动装置变速比减小了一。

这样同样优选的是,第一行星齿轮组构造为负行星齿轮组并且第二行星齿轮组构造为正行星齿轮组,其中,第一行星齿轮组的第一元件是太阳轮,第一行星齿轮组的第二元件是行星齿轮架并且第一行星齿轮组的第三元件是齿圈,其中,第二行星齿轮组的第一元件是太阳轮,第二行星齿轮组的第二元件是齿圈并且第二行星齿轮组的第三元件是行星齿轮架。

负行星齿轮组已知地具有在其行星齿轮架上能扭转地支承并且彼此齿嵌接的行星齿轮和外行星齿轮,其中,该行星齿轮组的太阳轮与内行星齿轮啮合而该行星齿轮组的齿圈与外行星齿轮啮合,使得齿圈在行星齿轮架保持固定且太阳轮转动时沿着与太阳轮转动方向相同的方向转动。

此外优选的是,在第三切换元件闭合时实现可变的第一行驶范围,尤其是第一前进行驶范围,并且/或者,其中,在第二切换元件闭合时,实现功率分流式的第二行驶范围,尤其是第二前进行驶范围,并且/或者,其中,在第一切换元件闭合时,实现可变的第三行驶范围,尤其是第一后退行驶范围。

已表明:在第二行驶范围中可以呈现很小的变速器负荷。

在本发明的改进方案中,设置有电机,该电机的转子与传动装置的其中一个能旋转的组件抗相对转动地耦联,即与驱动轴、输出轴、其中一个轴或行星齿轮组的三个元件中的一个元件抗相对转动地耦联。优选地,电机的定子抗相对转动地与传动装置的抗相对转动的构件连接。此外,电机在此情况下尤其以电动机方式和/或以发电机方式运行,以便实现不同的功能。尤其是,在此可以实现纯电行驶、在传动装置中经由电机同步和/或推进和回收。电机的转子在此可以与各个构件同轴或相对于各个构件轴向错开地布置,其中,在后一种情况下,于是经由一个或多个在其间的传动级(例如呈圆柱齿轮级形式)或经由牵引传动机构,如链条传动机构或皮带传动机构来实现。

但优选地,电机的转子与驱动轴抗相对转动地耦联,其中,据此以合适的方式和方法呈现机动车的纯电行驶。此外,切换元件中的一个或多个切换元件充当用于电行驶的内部的启动元件。但作为替选方案,也可以应用单独的启动离合器,其定位在电机与变速器单元之间。

根据本发明的另一设计可能性,其尤其是与电机的上述的布置组合地实现,还设置有分离离合器,经由该分离离合器能将驱动轴与联接轴抗相对转动地连接。联接轴于是在车辆驱动系之内用于接驳到驱动机上。分离离合器的设置在此具有如下优点:在纯电行驶的过程中可以中断至驱动机的连接,由此该驱动机不被一同牵引。该分离离合器在此优选实施为力锁合的切换元件,如例如实施为膜片式离合器,但同样也可以良好地作为形状锁合的切换元件,如例如作为牙嵌式离合器或锁止同步装置。

根据本发明的传动装置尤其是机动车驱动系的一部分并且于是布置在机动车的尤其构造为内燃机的驱动机与驱动系的其他的沿着至机动车的驱动轮的力流方向后续的部件之间。在此情况下,传动装置的驱动轴要么永久抗相对转动地与内燃机的曲轴耦联,要么能经由在其间的分离离合器或启动元件与该曲轴连接,其中,在内燃机与传动装置之间还可以设置有扭转振动阻尼器。在输出侧,变速器在机动车驱动系之内于是优选与机动车的驱动车桥的车桥传动装置耦联,其中,这里也存在至纵向差速器的接驳,经由该纵向差速器实现分配到机动车的多个被驱动的车桥上。车桥传动装置或纵向差速器在此可以与传动装置一起布置在共同的壳体中。同样,也可以将扭转振动阻尼器一起整合到壳体中。

传动装置的两个构件抗相对转动地“连接”或“耦联”,或“彼此连接”,在本发明的意义下指的是这些构件的永久的连接,使得这些构件不能彼此互不依赖地旋转。就此而言,在这些构件之间,不设置切换元件,而是相应的构件彼此刚性耦联,这些构件可以是行星齿轮组的元件和/或传动装置的轴和/或抗相对转动的构件。

而如果切换元件布置在传动装置的两个构件之间,则这些构件并不永久地彼此抗相对转动地耦联,而是首先通过操纵在其间的切换元件来执行抗相对转动的耦联。在此,操纵切换元件在本发明的意义下表示:相关的切换元件转变到闭合的状态中并且随后使直接耦联到其上的构件在它们的转动运动上彼此均衡。在相关的切换元件设计为形状锁合的切换元件的情况下,经由此直接抗相对转动地彼此连接的构件在相同的转速下运转,而在形状锁合的切换元件的情况下也可以在操纵之后在构件之间存在这些构件的转速差。期望的或也不期望的状态在本发明的范畴中还被称作各个构件经由切换元件的抗相对转动的连接。

本发明并不限于独立权利要求和从属于其的权利要求的特征的所说明的组合。此外,也可以将各个特征组合,只要它们从权利要求、后续的对本发明的优选的实施形式的描述或直接从附图中得到。通过使用附图标记使权利要求引用附图不应限制权利要求的保护范围。

附图说明

参照后续的附图详细地阐述了本发明。在附图中:

图1示出了在优选的第一实施形式中的根据本发明的传动设备的示意图;

图2示出了根据图1的传动设备的切换矩阵;

图3示出了在优选的第二实施形式中的根据本发明的传动设备的示意图;

图4示出了在优选的第三实施形式中的根据本发明的传动设备的示意图;以及

图5示出了在优选的第四实施形式中的根据本发明的传动设备的示意图;

图6示出了在优选的第五实施形式中的根据本发明的传动设备的示意图。

具体实施方式

图1示出了功率分流式无级传动设备100的示意图,该传动设备呈机械ivt传动装置的形式,该机械ivt传动装置在驱动轴1的区域中与未示出的驱动机直接作用连接,即没有耦联设备的情况下作用连接。驱动机可以是呈柴油内燃机或汽油发动机形式的内燃机。

由驱动机提供的并且在驱动轴1的区域中存在的转矩可以经由多个功率路径引导,其中,设置有用于对相应的功率路径的变速比进行改变的变速器10,由此经由变速器10可以在所期望的范围中无级地改变传动设备100的总变速比。

在传动装置输入侧在驱动轴1的区域中的转矩的经由功率路径引导的部分沿着输出轴2引导。

此外,传动装置100包括三个切换元件b1、b2和k1和与变速器10连接的第一行星齿轮组rs1。此外,传动装置100包括与第一行星齿轮组rs1连接的第二行星齿轮组rs2。切换元件b1和b2实施为制动器,切换元件k1实施为离合器。两个行星齿轮组构造为单一的(负)行星齿轮组。

变速器10、切换元件b1、b2和k1以及两个行星齿轮组rs1、rs2布置在传动装置100的驱动轴1与输出轴2之间。

行星齿轮组rs1、rs2分别包括第一元件、第二元件和第三元件e11、e12和e13或e21、e22和e23,其中,各第一元件e11或e21对应于太阳轮so1或so2,各第二元件e12或e22对应于行星齿轮架或行星架pt1或pt2,并且各第三元件e13或e23对应于齿圈ho1或ho2。

已知地,太阳轮so1或so2与一个或多个能转动地支承在行星齿轮架pt1或pt2的行星齿轮pr1、pr2啮合,所述行星齿轮就其而言与齿圈ho1或ho2啮合。齿圈ho1能经由制动器b1与传动壳体gg连接或耦联,而齿圈ho2能经由制动器b2与传动壳体gg连接或耦联。

变速器10构造为纽芬奇变速器。已知地,纽芬奇变速器具有初级侧11和次级侧12。此外,该纽芬奇变速器安置在传动装置壳体上。初级侧12与壳体100的驱动轴1抗相对转动地连接。变速器10的次级侧12经由第三轴3与第一元件e11,即第一行星齿轮组rs1的太阳轮so1且与第一元件e21,即第二行星齿轮组rs2的太阳轮so2抗相对转动地连接。

行星齿轮架或行星架pt1与输出轴2抗相对转动地连接,使得换言之,行星架pt1形成传动装置100的输出部2。

第三元件e13,即第一行星齿轮组rs1的齿圈ho1经由第四轴4与第三元件e24,即第二行星齿轮组rs2的齿圈ho2抗相对转动地连接。此外,第四轴4和由此每个齿圈ho1、ho2经由第一切换元件,即制动器b1能固定在抗相对转动的构件gg上。

与第二元件e22,即第二行星齿轮组rs2的行星架pt2抗相对转动连接的第五轴5可以经由第二切换元件,即离合器k1与驱动轴1连接,其中,与第五轴5连接的行星架pt2还经由第三切换元件,即制动器b2能固定在抗相对转动的构件gg上。

这样,在此在传动设备100中可以通过有选择地切换切换元件b1、b2和k1,呈现用于前进行驶的两个变速比范围或行驶范围v1和v2,和用于后退行驶的变速范围或行驶范围r1。在行驶范围之间的变换通过在转速同步点中交替地断开和闭合两个切换元件来实现。

为了能够在径向方向上安装空间上有利地实施传动设备100,行星齿轮组rs1和rs2轴向上彼此相邻地布置,其中,行星齿轮组rs1轴向上布置在变速器10与第二行星齿轮组rs2之间。

通过选择合适的变速比,第一行星齿轮组的太阳轮so1和齿圈ho1以等大但相反的周向速度运行,使得进行输出的行星架pt1静止,即其转速等于零。现在,如果太阳轮so1的转速通过调整变速器变速比来改变,则行星架pt1开始转动。车辆起动。这样有利地可以省去起动离合器。

图2示出了传动设备100的表格式切换示意图。从切换示意图中获知的是,为了呈现用于前进行驶的第一变速比范围v1,闭合第一切换元件b1,而其他切换元件b2和k1处于断开的运行状态中。如果存在相应要求来呈现用于前进行驶的第二变速比范围v2,则第一切换元件b1在当前挂入用于前进行驶的第一变速比范围v1时被断开并且闭合第二切换元件k1,而第三切换元件b2保留在断开的运行状态中。如果又存在相应要求来呈现用于后退行驶的第三变速比范围r1,可以闭合第三切换元件b2,而切换元件k1和b1转变并且保持在断开的运行状态中。

在挂入用于前进行驶的变速比范围v1时,整个经由驱动轴1导入传动设备100中的转矩经由变速器10朝向输出轴2在没有功率分流的情况下引导,由此第一变速比范围v1呈现所谓的直接行驶范围,其传动比范围对应于变速器10的传动比范围。

在该行驶范围中,除了变速器10之外仅第一行星齿轮组rs1承受负荷。第二行星齿轮组rs2由于切换元件b2和k1断开而保持不承受负荷。

在挂入用于前进行驶的变速比范围v2时,经由驱动轴1导入传动设备100中的转矩的较小的第一部分经由变速器10朝向输出轴2引导而该转矩的较大的第二部分经由离合器k1和第五轴5引导到第二行星齿轮组rs2中。因此,在变速比范围v2中功率流以功率分流方式实现。

在挂入用于后退行驶的变速比范围r1时,整个经由驱动轴1导入传动设备100中的转矩经由变速器10朝向输出轴2在没有功率分流的情况下引导,由此第三变速比范围r1同样呈现所谓的直接行驶范围,其传动比范围对应于变速器10的传动比范围。

传动设备100的变速比可以在行驶范围v1、v2和r1之内经由变速器10分别无级地改变。

图3示出了另一实施形式中的传动设备100。该传动装置100具有正行星齿轮组,其中,在图3中第二行星齿轮组rs2构造为正行星齿轮组。

对于正行星齿轮组适用如下命名:第一元件是太阳轮,第二元件是齿圈和第三元件是行星齿轮架或行星架。于是,同时更换行星架接驳和齿圈接驳,并且将定轴变速比(standardübersetzung)的数值提高了一。

这样,在图3中,第二行星齿轮组rs2具有同样的太阳轮so2,内行星齿轮架和外行星齿轮pr21或pr22,这些行星齿轮能转动地支承在行星齿轮架pt2(第三元件e23)上,并且第二行星齿轮组rs2具有齿圈ho2(第二元件e22)。通过交换,第二行星齿轮组rs2的行星齿轮架pt2与第一行星齿轮组rs1的齿圈ho1抗相对转动地连接。第二行星齿轮组rs2的齿圈ho2能与制动器b2且能与离合器k1连接或耦联。

此外,输出部2通过第一行星齿轮组rs1的第二元件e12形成。

对于根据图3的实施形式,图2中所阐述的切换示意图是适用的。

图4至图6示出了呈混合应用的传动装置100的三个实施形式。尤其是驱动轴1适合于接驳电机em。

根据图4的传动装置具有电机em,其定子s固定在抗相对转动的构件gg上,而电机em的转子r与驱动轴1连接。此外,驱动轴1可以在联接部位1-a处经由在其间的分离离合器k0与联接轴an抗相对转动地连接,分离离合器在此构造为多片式切换元件,联接轴又与驱动机的曲轴连接(未示出)。由于转子r与驱动轴1的抗相对转动的连接,电机em与驱动轴1同轴地放置。

经由电机em在此可以实现纯电动行驶,其中,在此情况下分离离合器k0被断开,以便驱动轴1与联接轴an脱离并且并未一同牵引内燃机。所有无级的行驶范围也可以以电的方式使用。接入到内燃机的行驶范围中始终是可能的。另外,根据图4的实施形式对应于根据图1的变型方案,从而参考针对此的描述。

此外,图5示出了根据本发明的另一设计可能性的传动装置100的示意性视图,其在此基本上对应于在前的根据图4的变型方案。不同在此是,电机em并不与驱动轴1同轴地布置而是相对于驱动轴1轴向错开地布置。随后,电机em的在此未详细示出的转子和驱动轴1并不抗相对转动地彼此连接,而是经由在其间的正齿轮级srs彼此耦联。在此,正齿轮级srs的正齿轮sr1抗相对转动地放置在驱动轴1上并且与正齿轮sr2啮合,所述正齿轮sr2抗相对转动地布置在电机em的输入轴ew上。输入轴ew于是在电机em之内建立对转子的连接。另外,根据图5的实施形式对应于根据图4的变型方案,从而参考针对此的描述。

此外,在图6中示出了根据本发明的另一实施形式的传动装置100的示意图,该传动装置同样又基本上对应于根据图4的变型方案。如已经在根据图5的设计方案中那样,但在此电机em并不与驱动轴1同轴地放置,而是相对于驱动轴1轴向错开地放置。在驱动轴1与电机em的未示出的转子之间的抗相对转动的耦联在此经由牵引传动机构zt实现,其优选作为链条传动装置存在。牵引传动机构zt在此将驱动轴1与电机em的输入轴线ew耦联。另外,根据图6的变型方案对应于根据图4的实施形式,从而参考针对此的描述。

借助根据本发明的设计方案,可以实现具有紧凑的结构和良好的效率的传动装置。

附图标记

1驱动轴

2输出轴

3第三轴

4第四轴

5第五轴

10变速器单元、变速器、纽芬奇变速器

100功率分流式无级传动设备,无级行星传动装置

an联接轴

b1第一切换元件,制动器

b2第三切换元件,制动器

e11第一元件

e12第二元件

e13第三元件

e21第一元件

e22第二元件

e33第三元件

em电机

ho1第一齿圈

ho2第二齿圈

k0分离离合器

k1第二切换元件,离合器

rs1第一行星齿轮组

pr2第二行星齿轮组

so1第一太阳轮

so2第二太阳轮

pr1行星齿轮

pr2行星齿轮

pr21内行星齿轮

pr22外行星齿轮

pt1第一行星齿轮架,行星架

pt2第二行星齿轮架,行星架

r1第三行驶范围,后退

r转子

s定子

srs正齿轮级

sr1正齿轮

sr2正齿轮

zt牵引传动机构

v1第一行驶范围,前进

v2第二行驶范围,前进

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1