具有液化天然气再气化的动力循环的制作方法

文档序号:5819700阅读:481来源:国知局
专利名称:具有液化天然气再气化的动力循环的制作方法
技术领域
本发明的领域为气体处理,具体涉及液化天然气的再气化及处理。
背景技术
随着美国天然气需求的增加,液化天然气(LNG)的进口受到了相当大的关注。然而由于不同来源的LNG化学成分不同,天然气经常需要附加处理步骤,以满足工业和环境标准,特别是在美国市场内。因而,大部分进口的LNG进行再气化,以便进一步处理(例如,分馏或者用氮气稀释),这需要大量的能量,但也提供了明显的制冷含量(Content)。公知的许多工艺将再气化与其它工艺结合,以减小能耗和/或利用LNG内的制冷含量。
例如,如Child等人在美国专利No.5,295,350和No.5,394,686中所描述的,LNG的再气化可以与部分氧化设备热连接,其中至少一部分再气化的LNG用于冷却并作为燃烧器的燃料。尽管在这种配置中,废热的来源相对有限,通常无法实现用于生产大量天然气的LNG再气化。在其它实例中,如Mandrin和Griepentrog相应的美国专利No.4,036,028和No.4,231,226、Keller的美国专利申请公开2003/0005698、Johnson等人的专利申请EP0683847以及Keller的WO02/097252中分别描述的,通过热交换液体来提供LNG再气化的热量,该热交换液体与轮机排气和组合式循环动力设备进行热交换。尽管这些配置使LNG再气化的能耗明显减少,但是仍然存在限制完全利用LNG制冷剂含量的若干困难。
最明显的,并且在其它困难中,在至少某些这种配置中的热传递受到热传递介质的冰点的限制。此外,尽管至少在某些程度上使用了LNG的制冷含量,但没有从这种配置中提取能量。令人感兴趣的是,欧洲专利申请EP0496283描述了一种系统,在该系统中由被气体轮机排气加热并被LNG再气化回路冷却的工作流体(水)驱动的蒸气膨胀轮机生成动力。尽管这种配置至少在某种程度上增加了设备效率,但是仍然存在若干问题。例如,由于水(或者水乙二醇混合物)的冰点相对较高,有用的LNG低温制冷含量无法使用。
因而,尽管在本领域中已知许多用于LNG利用和再气化的工艺和配置,但所有或几乎所有的工艺和配置都受到一种或多种缺陷的影响。因而,仍需要提供一种用于LNG利用和再气化的改进配置和方法。

发明内容
本发明针对在设备中处理LNG的配置和方法,在该设备中,热源(例如,与该设备一体式或者热连接)蒸发加压的LNG,该LNG随后在开放式动力循环中膨胀作功。具体说来,优选的配置还包括封闭式动力循环(优选利用甲烷作为工作流体进行工作),该封闭式动力循环使用LNG制冷含量对由分离工艺生产的工作流体进行冷凝(这种情况是优选的)。这种配置可以有利地从动力循环中进一步生产用于LNG和CNG(压缩天然气)运输燃料市场的浓缩甲烷燃料。
因而,在本发明主题的一方面中,再气化设备包括使液化天然气的过程产品膨胀以便进行作功的膨胀器。特别地,优选的过程产品包括脱甲烷塔塔顶蒸气,并且还可以包括来自封闭式动力循环的再循环气体(最好甲烷浓度为至少95体积百分比)。在特别优选的设备中,在热交换器中使用液化天然气作为制冷剂来液化脱甲烷塔塔顶蒸气和再循环蒸气,其中热交换器位于膨胀器的上游。随后对以这种方式生成的蒸气进行加热和蒸发,以形成在膨胀器中膨胀的过热超临界气体。
考虑的设备还可以包括膨胀至少一部分液化天然气的第二膨胀器,其中在第二膨胀器中进行膨胀之前,在热源(例如,脱甲烷塔塔顶热交换器、脱乙烷塔回流(reflux)冷凝器、轮机燃烧进气冷却器、来自气体轮机的烟道排气、废热回收单元、空气分离设备、海水热交换器和/或火焰加热器)中对液化气体进行压缩并加热。此外,应该意识到,可以从设备中提取部分过程产品作为压缩天然气,并且/或者从设备提取部分液化蒸气作为液化燃气。
在本发明主题的另一方面中,液态天然气再气化设备可以包括接收天然气并生产塔顶气体产品的脱甲烷塔以及对该气体产品进行冷却以生产液体产品的第一热交换器。进一步考虑到,在这种设备中利用泵增加至少一部分液体产品的压力,以形成加压的液体产品,利用第二热交换器蒸发加压的液体产品并使其过热,以形成过热的压缩气体产品并利用膨胀器膨胀至少一部分压缩气体产品来进行作功。优选地,压缩气体产品处于过热超临界区域。
这种设备可以有利地包括在天然气进入脱甲烷塔之前从天然气提取功的第二膨胀器,其中使用与第二膨胀器操作性连接的压缩机将部分塔顶气体产品压缩到管道压力。在这种配置的又一优选方面中,膨胀的压缩气体产品与塔顶气体产品结合并且/或者脱甲烷塔接收加热的液化天然气作为脱甲烷塔回流,其中第一热交换器加热液化天然气,以形成加热的液化天然气。此外,应该意识到,可以从设备中提取部分压缩气体产品作为压缩天然气,并且可以从设备中提取部分液体产品作为液化天然气燃料。这些压缩天然气和液化天然气是甲烷超过99%的优质产品,这作为运输燃料以及减小排放物和污染物是有利的。
因而,在又一考虑的方面中,液化天然气的再气化设备可以包括使加热且蒸发的液化天然气膨胀的第一膨胀器以及将加热且压缩的脱甲烷塔塔顶产品膨胀到第一压力的第二膨胀器。选择性的第三膨胀器进一步将膨胀的脱甲烷塔塔顶产品膨胀到低于第一压力的第二压力,其中第一、第二和选择性的第三膨胀器彼此流体连接并通过液化天然气的至少一种成分作功。在这种配置中,一般优选使用第一泵增加至少一部分液化天然气的压力,其中由热源(例如,脱甲烷塔塔顶热交换器、脱乙烷塔回流冷凝器、轮机燃烧进气冷却器、来自气体轮机的烟道排气、废热回收单元、空气分离、海水热交换器和/或火焰加热器)对该部分液化天然气进行加热,以形成加热且蒸发的液化天然气。此外或者作为备选方案,这种配置中的第一热交换器液化脱甲烷塔塔顶产品,第二泵增加液化的脱甲烷塔塔顶产品的压力,并且第二热交换器加热并蒸发加压的液化脱甲烷塔塔顶产品,以形成加热且加压的脱甲烷塔塔顶产品。第一热交换器优选使用以制冷剂形式送入的液化天然气冷却脱甲烷塔塔顶产品,同时第二热交换器优选使用膨胀的脱甲烷塔塔顶产品加热加压的液化脱甲烷塔塔顶产品。还进一步考虑到,第一压力是大约700磅/平方英寸(psi)和1500磅/平方英寸之间的管道压力,而第二压力是大约300磅/平方英寸和750磅/平方英寸之间的脱甲烷塔工作压力。
通过对本发明优选实施例的后续详细描述以及结合所附附图,本发明的各种目的、特征、方面以及优点会更加显而易见。


图1是根据本发明主题的一个示范性动力循环配置的示意图;图2是根据本发明主题的一个示范性设备配置的示意图;图3根据本发明主题的另一个示范性设备配置的示意图;图4是列举了根据图2的示范性一体式设施的计算总体平衡的表格。
具体实施例方式
本发明人已经公开了可以通过有效利用LNG内的制冷含量来处理LNG。更具体地,本发明人公开了一种能够泵浦到期望压力并分流成第一和第二部分的LNG流,其中第一部分作为工作流体而第二部分作为用于脱甲烷塔的回流。在这种配置中,LNG在封闭式甲烷兰金(Rankine)动力循环中提供冷凝负载,其中从脱甲烷塔内的LNG中生成甲烷。
在图1中示意性描述了示范性的封闭式动力循环,其中封闭式动力生成循环操作性连接到LNG再气化/处理设备上。此时,以给料形式向再气化/处理设备提供LNG并且LNG的制冷含量用来冷凝封闭循环(以及连接到未图示的组合循环动力设备上的动力生成)中的工作流体。
更特别地,来自储存罐或其它来源的LNG由泵P1泵浦到预定压力。随后将这种方式加压的LNG分流成第一部分和第二部分,这两部分用来分别作为热交换器E3和E4中的冷却介质(第二部分还可以由泵P2进一步加压)。最后,将这两部分都送入脱甲烷塔(例如,一部分作为回流,另一部分作为脱甲烷塔给料),产生脱甲烷塔塔顶产品(管道气体,通常包括90体积百分比和99体积百分比的甲烷)。以这种方式生产的脱甲烷塔塔顶产品的一部分用作在交换器E3中冷凝的工作流体,同时另一部分可以作为液化车辆燃料(“LNG车辆燃料”)输出。随后使用泵P4将作为工作流体的那部分产品泵浦到一定压力并在交换器E5、E6和/或E7中蒸发。随后在膨胀器轮机中使以这种方式产生的加热且压缩的超临界气体的至少一部分膨胀以产生动力,同时另一部分作为压缩燃气(“CNG”)输出。随后在与脱甲烷塔塔顶产品结合之前,在交换器E5和E4中冷却膨胀的气体,从而完成封闭式动力生成循环。
图2更详细地显示了再气化设备的一个示范性配置。在此配置中,对LNG进行泵浦并分成两部分。通过在封闭式甲烷动力循环中提供一部分冷凝负荷(Duty)来加热第一部分,并随后由脱乙烷塔中的冷凝回流负荷进一步加热,接着由来自用于在开放的膨胀器循环中产生动力的组合循环动力设备的废热进行加热。第二部分也在用作脱甲烷塔内的冷回流之前在封闭式甲烷动力循环中提供部分冷凝负荷。
在图2的示范性配置中,LNG进入设备的流速等于天然气的1.2BSCFD,在下表1中显示了天然气的典型气体成分。来自储存器(或其它适当来源)的LNG流1的压力为大约15绝对压强(psia)并且温度通常为约-260°F到-255°F。流1由LNG泵101泵浦到适当压力,通常是大约400到500磅/平方英寸(psig),以形成加压的LNG流2,如进入脱甲烷塔114所需要的。随后加压的LNG流2分流成流4和流3,优选比例在0.4到0.7之间(术语“比例”是指流4的体积流量除以流3的体积流量)。在交换器104中将流3加热到通常-210°F到-180°F,在封闭式回路的甲烷兰金循环中提供制冷负荷以便冷凝甲烷蒸气流19,形成液态流20。如本申请所使用的,结合数值使用的术语“大约”是指从该数值的绝对值以下10%开始到该数值绝对值以上10%的数值范围,其中包括10%。例如,术语“大约100磅/平方英寸”是指从90磅/平方英寸到110磅/平方英寸的范围。
应该知道,流3的流量比例较高将增加进入脱甲烷塔114的回流并增加C2+成分的去除。例如,对于0.5到0.6的分流比,乙烷的去除等级为大约90%而丙烷为大约99%。当分流比降低到0.4到0.5时,乙烷的去除等级相应地降低至10%到50%。回流比的变化通常仅对丙烷的回收起到较小的影响,丙烷的回收可以保持在90%或更高等级,这是所希望的,因为液化石油气体是更有价值的产品。因而,应该意识到,通过改变分流比可以控制产出气体中的C2+成分的量,以满足特定的市场需求。尽管分流比一般优选在0.4和0.7之间,但适当的分流比还包括0.3到0.39以及0.71到0.9之间。
流4在泵102中进一步泵浦到大约2000磅/平方英寸到3000磅/平方英寸(超临界区域),形成流5,并在若干步骤中加热。流5在交换器105中加热形成流7,通常在-210°F到-180°F,提供制冷负荷以便在封闭式回路的甲烷兰金循环中将甲烷蒸气流30冷却成部分冷凝的流18。通过在脱乙烷塔塔顶冷凝器115中提供必要的回流冷却进一步加热流7形成流11,通常在-80°F到-50°F。在交换器117中使用来自组合循环动力设备的废热(废热优选包括烟道排气,废热回收单元,燃气轮机进气等)对流11又进一步加热到通常150°F到350°F,形成流14。随后在膨胀器112中使高压下超临界加热的天然气流膨胀。部分膨胀器动力可用于驱动残留气体压缩机113,并且多余动力用于在发电机111中产生电力。
处于40°F到-40°F的膨胀器排出流8送入到在400磅/平方英寸到500磅/平方英寸工作的脱甲烷塔114中。应该特别注意,流8如果无法提供全部脱甲烷塔所需的再沸器热量,其应提供至少一部分再沸器热量。用于脱甲烷塔114的回流负荷由流6提供。应该特别注意,这种回流/分离配置是自给型的,并且通常不需要任何燃料消耗。然而,当希望时,可以使用底部再沸器118以补充加热需求(例如,使用来自组合循环设施的废热)。
来自脱甲烷塔114的底部产品流10送入到脱乙烷塔116,其中使用LNG流7作为冷却剂在塔顶冷凝器115中提供塔顶回流负荷。塔顶冷凝器115优选是设计成向脱乙烷塔提供内部回流的整体式冷凝器。利用LNG将脱乙烷塔塔顶流冷却到通常0°F到40°F。应该注意,整体式交换器消除了传统系统中使用的外部交换器、分离器以及泵,并因而明显减小了配置布局以及设备成本。脱乙烷塔在再沸器119中再沸(优选使用来自组合循环的废热),产生期望的乙烷和丙烷比例的且通常为大约150°F到250°F的C3+底部产品。该流12可以作为液态产品(“LPG”)输出。脱乙烷塔可产生能够用作石化设备给料或燃气的塔顶乙烷流13。
大约为-120°F和450磅/平方英寸的脱甲烷塔塔顶流9分流成流15和流16,由压缩机113对流15进行压缩形成通常处于管道压力的流17。处于24MMscfd典型流速(或者运输燃料市场所需流速的)的流16通过在封闭式回路的兰金循环中与流18结合形成流19而进入甲烷动力循环,随后在交换器104中冷却并完全冷凝,形成大约-150°F的流20。在该点可以分流出大约12MMscfd的流21或每天约200,000加仑的LNG车辆燃料的等同物并输出到设施外。
通常为大约500MMscfdis的剩余流,即流22在大约-150°F由动力循环泵103泵浦到大约2,000到3,000磅/平方英寸,形成流23,在交换器106中,利用膨胀器109排出流29提供的热量进一步加热该流23。使用来自组合循环动力设备的废热在交换器107中进一步加热以这种方式产生的流24,形成流25。可以从该位置提取大约12MMscfd的高压天然气的流26,以满足CNG车辆燃料需求。使用废热加热系统在交换器108中进一步将大部分蒸气(流27)过热到大约300°F形成流29。高压且高温的超临界甲烷随后膨胀穿过膨胀器109,利用发电机110产生电力。膨胀器排出120°F的流29,利用引入的冷蒸气在交换器106中进行冷却,并利用来自LNG泵102的LNG制冷剂含量在交换器105中进行部分冷凝。随后这种两相混合物与来自脱甲烷塔塔顶的分流混合并且重复该循环。
在该示范性配置中,当高压高温的超临界天然气膨胀到大约400到500磅/平方英寸时在开放式循环中生成大约22,000kW的动力。该动力的大约50%用于驱动需要将脱甲烷塔塔顶产品从440到490磅/平方英寸压缩至大约1100磅/平方英寸(典型的管道压力)所需的残留气体压缩机113。多余的11,000kW可以用于在发电机111中生成动力,以便内部使用和/或输出。应该知道,在所有或几乎所有这种配置中,封闭式回路的甲烷动力循环不需要任何燃料消耗,除了来自动力设备的作为热源的废热之外。封闭式动力循环产生的净动力为大约15,000kW。因而,开放式回路和封闭式回路动力循环的总动力生成为大约26,000kW。
在表1中(参见实例)显示了1,200MMscfd的LNG分馏工艺的总体质量平衡。除了生产LNG和CNG之外,该工艺每天生产用于输出气体管道的37,100桶乙烷产品、51,000桶LPG产品以及1,046MMscfd低含量(lean)气体。
作为备选方案,当希望组合式循环动力设备的直接热联合时(与图2配置中的通过交换器107和117进行热联合形成对比),以及希望在封闭式循环中使用第二动力生成膨胀器时,可以使用根据图3的示范性配置,其中相同的附图标记表示图2所示的配置中的相同部件。
此时,来自储存器(或其它适当来源)的LNG流1的压力大约为15绝对压强,温度通常为大约-260°F到-255°F。流1由LNG泵101泵浦到管道压力以上的压力(通常为大约1500到3000磅/平方英寸),以便形成加压的LNG流2,该流2在交换器104A作为制冷剂,以便至少部分冷凝与来自封闭式动力循环的甲烷工作流体结合的脱甲烷塔塔顶流9。随后,加压的LNG流2分流成流4和流3,优选比例为0.4到0.7之间。流3的压力下降到脱甲烷塔工作压力(通常在大约350磅/平方英寸到大约500磅/平方英寸之间,优选使用JT阀3A)并随后以脱甲烷塔回流形式送入到脱甲烷塔114。流4用来作为各种交换器中的制冷剂流4在交换器104B冷却脱甲烷塔塔顶,并在使冷却器117A和热回收单元117B中的燃气轮机进气冷却之前进一步提供脱乙烷塔的塔顶冷凝器负荷(在交换器115A中)。随后,以这种方式加热、压缩并蒸发的LNG在膨胀器112中膨胀作功(优选使用发电机产生电能)并作为约处于脱甲烷塔压力的流8引入到脱甲烷塔114中。
应该意识到,在这种配置中,由于在进入膨胀器之前流4的压力明显较大,开放式动力循环的膨胀器112通常提供比图2所示的配置更大的动力输出。同样以图3所示的方法类似地在封闭式动力循环中产生较高压力。此时,泵103将冷凝的脱甲烷塔塔顶和甲烷工作流体的压力增加到管道压力以上的压力(例如,大约1500磅/平方英寸和3000磅/平方英寸之间),随后在交换器106(例如,使用膨胀的工作流体中的热量)和HRSG117B中进行加热和蒸发。以这种方法产生的高压力甲烷蒸气在膨胀器109A中的膨胀可以用于作功并选择性地使甲烷产品达到管道压力。随后,至少一部分以这种方式产生的低含量气体可以以产品17的形式输出。随后,剩余工作流体(现在是蒸气形式)可在膨胀器109B进一步膨胀(优选大约膨胀到脱甲烷塔压力)并与脱甲烷塔塔顶混合,因而完成封闭式循环回路。
与图2类似,脱乙烷塔116接收脱甲烷塔底部产品10并生产乙烷塔顶产品13,该产品在脱乙烷塔塔顶冷凝器中至少部分冷凝(利用LNG提供的冷却负荷)。随后,流13′中的液态部分以回流形式送入到脱乙烷塔,蒸气部分13″可以作为用于与再气化设备热连接的组合循环动力设备中的气体轮机的燃料。脱乙烷塔底部产品12可以作为如LPG(液化石油气体)的商品输出。
因而,应该意识到所考虑的设备使用LNG或其部分作为开放式动力循环和封闭式动力循环至少一个或最好全部中的工作流体。适当的热源具体包括气体轮机燃气、用于表面冷凝器的冷却水和/或来自气体轮机的烟道排气。然而,还考虑了多种其它热源,并且应该知道除组合设备之外的其它单元也适于作为热源。例如,适当的备选热源包括多种LNG冷却空气或其它气体的低温工艺(例如,空气分离设备)、提供烟道排气的工艺(例如,燃气轮机、转化炉烟道排气等)以及作为冷却散热的其它工艺(例如,二氧化碳液态生产设备、淡化设备或食物冷冻设施)。
然而,适当的设备一般优选包括LNG再气化设施以及LNG接收终端,并且特别优选的配置包括那些在至少部分LNG作功的工艺中对LNG进行再气化的设备。John Mak、Curt Graham以及DaveSchulte的标题为“液化天然气再气化配置以及方法”的共同拥有且共同未决的国际专利申请中描述了示范性的适当配置,该专利申请大约在2003年8月13日递交并通过引用结合在本申请中。由此并取决于特定热源,应该意识到,LNG再气化所需的能量可以全部或仅部分地由考虑的热源提供。当热源提供的热量不够完全气化LNG时,应该意识到可以提供补充热量。适当的补充热源包括来自蒸气轮机排出物的废热、来自烟道排气的冷凝负荷、利用空气(通过向建筑提供空调)、海水或燃气的外界加热。由此,应该知道,考虑的配置以及工艺可用于改进现有的再气化设备,以改善动力生成效率以及灵活性,或者用于新的安装设施。
因而,应该意识到,使用根据本发明主题的配置可以实现许多优点。例如,考虑的配置提供一种能够与传统组合循环动力设备连接的高效LNG动力生成循环。此外,在大多数配置中不需要外部加热,并因而消除了目前在传统LNG再气化中用燃气或海水来加热LNG的需求。在又一个特别优选的方面中,应该知道考虑的配置(由于改变压缩LNG流的分流比)允许处理具有不同成分以及热容量的LNG,同时生产用于北美市场或其它排放敏感市场的“符合标准”的天然气和/或LNG运输燃料。此外,考虑的配置可生产高纯度乙烷作为商品或作为用于组合循环动力设备的能源。
实例选定流中成分的示范性计算。
在图2所示的设备的示范性配置中,计算了选定流的各种成分的摩尔百分比,并在下表中列举了结果,其中“LPG”是指脱乙烷塔的C3+底部产品百分比,“管道气体”是指脱甲烷塔塔顶产品,而“乙烷”是指脱乙烷塔塔顶产品。从脱甲烷塔塔顶产品中提取CNG和LNG发动机燃料。图4的表1列举了计算结果。可以清楚看到,管道气体中的甲烷浓度可以明显增加,同时可特别抵制C2成分进入乙烷产品流中并将C3+成分分离到LPG流内。
因此,如从一方面观察到的,本发明人考虑了液化天然气的再气化设备,其中膨胀器膨胀液化天然气的过程产品、最好包括脱甲烷塔塔顶蒸气和/或再循环蒸气,以便进行作功。本申请所使用的术语“再循环蒸气”是指至少处于部分蒸发形式的封闭式循环动力循环的工作流体,其中工作流体最好是低含量天然气(即,甲烷至少为90体积百分比的气体)。
在另一方面中,发明人考虑了一种包括接收天然气并生产塔顶气体产品的脱甲烷塔的再气化设备。适合的设备还包括冷却气体产品以生产液体产品的第一热交换器、增加至少一部分液体产品的压力以形成加压的液体产品的泵,以及蒸发加压的液体产品以形成压缩超临界气体产品的第二热交换器。随后膨胀器膨胀至少一部分压缩超临界气体产品以便进行作功。如上文进一步描述的,考虑的设备还可以额外地包括在天然气进入脱甲烷塔之前从天然气提取功的第二膨胀器(其中使用与第二膨胀器操作性连接的压缩机将部分塔顶气体产品压缩至管道压力)。
在本发明主题的又一方面中,液化天然气的再气化设备可以包括使加热且蒸发的液化天然气膨胀的第一膨胀器、将加热且压缩的脱甲烷塔塔顶产品膨胀到第一压力(例如,大约700磅/平方英寸和1500磅/平方英寸之间的管道压力)的第二膨胀器,以及进一步将膨胀的脱甲烷塔塔顶产品膨胀到低于第一压力的第二压力(例如,大约300磅/平方英寸和750磅/平方英寸之间的脱甲烷塔工作压力)的选择性第三膨胀器,其中第一、第二和选择性的第三膨胀器彼此流体连接,并通过液化天然气的至少一种成分作功。在这种设备中,一般优选使用第一泵增加至少一部分液化天然气的压力,并且其中该部分液化天然气由热源(例如,脱甲烷塔塔顶热交换器、脱乙烷塔回流冷凝器、轮机燃烧进气冷却器、来自气体轮机的烟道排气、废热回收单元、空气分离设备、海水热交换器和/或火焰加热器)加热以形成加热且蒸发的液化天然气。此外或者作为备选方案,第一热交换器液化脱甲烷塔塔顶产品,第二泵增加液化脱甲烷塔塔顶产品的压力,并且第二热交换器加热并蒸发加压的液化脱甲烷塔塔顶产品以形成加热且压缩的脱甲烷塔塔顶产品。
因而,已经公开了液化天然气再气化配置以及工艺的特定实施例及应用。然而,对于本领域技术人员显而易见,在不脱离本发明概念的情况下,除已描述的内容外可以进行许多其它修改。因而,本发明的主题仅限于后附权利要求的精神内。此外在解释说明书和权利要求时,应以与上下文一致的尽可能宽的范围解释所有术语。具体说来,术语“包括”应解释为以不排它的方式参照元件、成分或步骤,其表示所参照的元件、部件或步骤也与其它没有明确参照的元件、部件或步骤同时存在、使用或组合。
权利要求书(按照条约第19条的修改)1.一种用于液化天然气的再气化设备,其包括从所述液化天然气中形成过程产品的液化天然气分馏单元,其中,所述分馏单元的至少一个部件使用所述液化天然气的制冷含量,其中膨胀器可使所述过程产品膨胀以便进行作功。
2.根据权利要求1所述的再气化设备,其特征在于,所述过程产品包括脱甲烷塔塔顶蒸气。
3.根据权利要求2所述的再气化设备,其特征在于,所述过程产品还包括再循环蒸气。
4.根据权利要求3所述的再气化设备,其特征在于,使用所述液化天然气作为制冷剂在热交换器中液化所述脱甲烷塔塔顶蒸气以及所述再循环蒸气,其中所述热交换器位于所述膨胀器的上游。
5.根据权利要求4所述的再气化设备,其特征在于,将所述液化蒸气加热并蒸发以形成在所述膨胀器内膨胀的超临界过程产品。
6.根据权利要求3所述的再气化设备,其特征在于,所述再循环蒸气包括在所述膨胀器内膨胀之后的过程产品。
7.根据权利要求1所述的再气化设备,其特征在于,所述再气化设备还包括膨胀所述液化天然气的至少一部分的第二膨胀器,其中,在所述第二膨胀器中进行膨胀之前,在热源中压缩并加热所述液化天然气。
8.根据权利要求7所述的再气化设备,其特征在于,所述热源是脱甲烷塔塔顶热交换器、脱乙烷回流冷凝器、轮机燃烧进气冷却器、来自气体轮机的烟道排气、热回收单元、空气分离设备、海水热交换器以及火焰加热器中的至少一种。
9.根据权利要求4所述的再气化设备,其特征在于,从所述设备提取所述过程产品的一部分作为压缩天然气,并且其中从所述设备中提取所述液化蒸气的一部分作为液化燃气。
10.一种液态天然气再气化设备,包括接收天然气并产生塔顶气体产品的脱甲烷塔,以及冷却所述气体产品以便产生液体产品的第一热交换器;增加所述液体产品的至少一部分的压力以形成加压的液体产品的泵;蒸发所述加压的液体产品以形成超临界压缩气体产品的第二热交换器;以及使所述超临界压缩气体产品的至少一部分膨胀以便进行作功的膨胀器。
11.根据权利要求10所述设备,所述的设备还包括在所述天然气进入所述脱甲烷塔之前从所述超临界天然气中提取功的第二膨胀器。
12.根据权利要求11所述的设备,其特征在于,使用与所述第二膨胀器操作性连接的压缩机将所述塔顶气体产品的一部分压缩到管道压力。
13.根据权利要求10所述的设备,其特征在于,所述膨胀的压缩气体产品与所述塔顶气体产品结合。
14.根据权利要求10所述的设备,其特征在于,所述脱甲烷塔接收加热的液化天然气作为脱甲烷塔回流。
15.根据权利要求14所述的设备,其特征在于,所述第一热交换器加热液化天然气以形成所述加热的液化天然气。
16.根据权利要求10所述的设备,其特征在于,从所述设备提取所述压缩气体产品的另一部分作为压缩天然气,并且其中从所述设备提取所述液体产品的另一部分作为液化天然气燃料。
17.一种用于液化天然气再气化的设备,包括使加热的且超临界的液化天然气膨胀的第一膨胀器;将加热且压缩的脱甲烷塔塔顶产品膨胀到第一压力的第二膨胀器;进一步将所述膨胀的脱甲烷塔塔顶产品膨胀到低于所述第一压力的第二压力的选择性第三膨胀器;以及其中所述第一膨胀器、所述第二膨胀器和所述选择性第三膨胀器彼此流体连接并通过所述液化天然气的至少一种成分进行作功。
18.根据权利要求17所述的设备,其特征在于,第一泵增加所述液化天然气的至少一部分的压力,并且其中通过热源加热所述部分液化天然气,以形成所述加热且蒸发的液化天然气。
19.根据权利要求18所述的设备,其特征在于,所述热源是脱甲烷塔塔顶热交换器、脱乙烷塔回流冷凝器、轮机燃烧进气冷却器、来自气体轮机的烟道排气、热回收单元、海水热交换器以及火焰加热器中的至少一种。
20.根据权利要求17所述的设备,其特征在于,第一热交换器液化脱甲烷塔塔顶产品,第二泵增加所述液化的脱甲烷塔塔顶产品的压力,并且其中第二热交换器加热并蒸发所述加压的液化脱甲烷塔塔顶产品以形成所述加热且压缩的脱甲烷塔塔顶产品。
21.根据权利要求20所述的设备,其特征在于,所述第一热交换器使用作为制冷剂送入的液化天然气冷却所述脱甲烷塔塔顶产品。
22.根据权利要求21所述的设备,其特征在于,所述第二热交换器使用所述膨胀的脱甲烷塔塔顶产品加热所述加压的液化脱甲烷塔塔顶产品。
23.根据权利要求17所述的设备,其特征在于,所述第一压力是在大约700磅/平方英寸和1500磅/平方英寸之间的管道压力,并且其中所述第二压力是在大约300磅/平方英寸和750磅/平方英寸之间的脱甲烷塔工作压力。
权利要求
1.一种用于液化天然气的再气化设备,其中膨胀器使所述液化天然气的过程产品膨胀,以便进行作功。
2.根据权利要求1所述的再气化设备,其特征在于,所述过程产品包括脱甲烷塔的塔顶蒸气。
3.根据权利要求2所述的再气化设备,其特征在于,所述过程产品还包括再循环蒸气。
4.根据权利要求3所述的再气化设备,其特征在于,使用所述液化天然气作为制冷剂在热交换器中液化所述脱甲烷塔塔顶蒸气和所述再循环蒸气,其中,所述热交换器位于所述膨胀器的上游。
5.根据权利要求4所述的再气化设备,其特征在于,加热并蒸发所述液化的蒸气,以便形成在所述膨胀器内膨胀的超临界过程产品。
6.根据权利要求3所述的再气化设备,其特征在于,所述再循环蒸气包括在所述膨胀器内膨胀之后的过程产品。
7.根据权利要求1所述的再气化设备,其特征在于,所述再气化设备还包括膨胀所述液化天然气的至少一部分的第二膨胀器,所述液化天然气在所述第二膨胀器内进行膨胀之前在热源内压缩并加热。
8.根据权利要求7所述的再气化设备,其特征在于,所述热源是脱甲烷塔塔顶热交换器、脱乙烷塔回流冷凝器、轮机燃烧进气冷却器、来自气体轮机的烟道排气、热回收单元、空气分离设备、海水热交换器,以及火焰加热器中的至少一种。
9.根据权利要求4所述的再气化设备,其特征在于,从所述设备提取所述过程产品的一部分作为压缩天然气,并且其中从所述设备中提取所述液化蒸气的一部分作为液化燃气。
10.一种液态天然气再气化设备,包括接收天然气并产生塔顶气体产品的脱甲烷塔,以及冷却所述气体产品以便产生液体产品的第一热交换器;增加所述液体产品的至少一部分的压力以形成加压的液体产品的泵;蒸发所述加压的液体产品以形成超临界压缩气体产品的第二热交换器;以及使所述超临界压缩气体产品的至少一部分膨胀以便进行作功的膨胀器。
11.根据权利要求10所述的设备,所述设备还包括在所述天然气进入所述脱甲烷塔之前从所述超临界天然气提取功的第二膨胀器。
12.根据权利要求11所述的设备,其特征在于,使用与所述第二膨胀器操作性连接的压缩机将所述塔顶气体产品的一部分压缩到管道压力。
13.根据权利要求10所述的设备,其特征在于,所述膨胀的压缩气体产品与所述塔顶气体产品结合。
14.根据权利要求10所述的设备,其特征在于,所述脱甲烷塔接收加热的液化天然气作为脱甲烷塔回流。
15.根据权利要求14所述的设备,其特征在于,所述第一热交换器加热液化天然气以形成所述加热的液化天然气。
16.根据权利要求10所述的设备,其特征在于,从所述设备提取所述压缩气体产品的另一部分作为压缩天然气,并且其中从所述设备提取所述液体产品的另一部分作为液化天然气燃料。
17.一种用于液化天然气再气化的设备,包括使加热的且超临界的液化天然气膨胀的第一膨胀器;将加热且压缩的脱甲烷塔塔顶产品膨胀到第一压力的第二膨胀器;进一步将所述膨胀的脱甲烷塔塔顶产品膨胀到低于所述第一压力的第二压力的选择性第三膨胀器;以及其中所述第一膨胀器、所述第二膨胀器和所述选择性第三膨胀器彼此流体连接并通过所述液化天然气的至少一种成分作功。
18.根据权利要求17所述的设备,其特征在于,第一泵增加所述液化天然气的至少一部分的压力,并且其中通过热源加热所述部分液化天然气,以形成所述加热且蒸发的液化天然气。
19.根据权利要求18所述的设备,其特征在于,所述热源是脱甲烷塔塔顶热交换器、脱乙烷塔回流冷凝器、轮机燃烧进气冷却器、来自气体轮机的烟道排气、热回收单元、海水热交换器以及火焰加热器中的至少一种。
20.根据权利要求17所述的设备,其特征在于,第一热交换器液化脱甲烷塔塔顶产品,第二泵增加所述液化的脱甲烷塔塔顶产品的压力,并且其中第二热交换器加热并蒸发所述加压的液化脱甲烷塔塔顶产品以形成所述加热且压缩的脱甲烷塔塔顶产品。
21.根据权利要求20所述的设备,其特征在于,所述第一热交换器使用作为制冷剂送入的液化天然气冷却所述脱甲烷塔塔顶产品。
22.根据权利要求21所述的设备,其特征在于,所述第二热交换器使用所述膨胀的脱甲烷塔塔顶产品加热所述加压的液化脱甲烷塔塔顶产品。
23.根据权利要求17所述的设备,其特征在于,所述第一压力是在大约700磅/平方英寸和1500磅/平方英寸之间的管道压力,并且其中所述第二压力是在大约300磅/平方英寸和750磅/平方英寸之间的脱甲烷塔工作压力。
全文摘要
在液化天然气(LNG)再气化设备的动力产生循环中将LNG或其成分用作工作流体。特别优选的设备配置能够处理不同成分的LNG,同时可产生符合规定的管道气体、CNG、LNG车辆燃料以及LPG。
文档编号F17C9/02GK1820163SQ03826879
公开日2006年8月16日 申请日期2003年8月26日 优先权日2003年6月5日
发明者J·马克 申请人:弗劳尔科技公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1