荧光偏振法、其中使用的试剂盒以及生物传感器的制作方法

文档序号:6014099阅读:239来源:国知局
专利名称:荧光偏振法、其中使用的试剂盒以及生物传感器的制作方法
技术领域
本发明涉及一种对样品中的被检测物质进行分析的方法。
背景技术
免疫测定方法是利用抗原抗体反应进行测定的方法。到目前为止,已报道了源于各种各样测定原理的免疫测定方法。例如,酶免疫测定法、荧光测定法、发光测定法等需要将免疫复合物和未反应物质进行分离(BF分离BF是Binding/Free的缩写)的测定方法,以及比濁法、散射测浊法、胶乳凝集法等不需要进行BF分离的测定法。无论哪一种方法都是要对抗原抗体反应进行光学检测的测定法。
免疫测定方法中象酶免疫测定法、荧光测定法、发光测定法等需要进行BF分离的测定方法,为了除去没有参与抗原抗体反应的游离的抗原和抗体,需要清洗操作。而通过将该清洗操作整合到装置的系统中进行自动化操作,可以提高操作性,但装置价格高。
免疫测定方法中象比濁法、散射测濁法、胶乳凝集法等不需要进行BF分离的测定法,与上述需要进行BF分离的测定法相比,其操作性好。然而,由于要利用散射光或透射光对通过抗原抗体反应生成的由抗原抗体构成的复合物进行检测,所以不适宜用于需要高灵敏度的测定项目。
近年来,利用荧光偏振对抗原抗体反应进行检测的免疫测定方法(以下称之为荧光偏振法)受到人们的关注。荧光偏振法由于不需要进行BF分离,所以省去了清洗操作。另外由于基本上是进行荧光测定,灵敏度也高。因此与上述测定法相比有优点。
称之为荧光偏振(也称之为荧光偏振消除)的现象在1950年以后开始应用于生物体高分子的研究,而从1970年代后半个年代开始真正已经涉及到生物化学或生物学等范围广泛的领域的应用研究。
用于测定荧光偏振的专用的测定装置(以下称之为荧光偏振测定装置),简单地讲,是在与以往的荧光光度计同样的构成的基础上,再追加2片偏振板的装置。荧光偏振测定装置,作为检测部的杯子可以使用与通常荧光测定同样的四面透明的石英杯。在进行可见光区域的测定时可以使用用玻璃制造的杯子。
在荧光偏振测定装置中,利用滤片或狭缝可以得到从来自光源发出的光中的单色波(单色光),利用偏振器使该单色光偏振,可以得到激发光。当通过该偏振器的激发光接触到杯子时,溶液中只有带有荧光色素的分子吸收该激发光。在荧光偏振测定装置中,如果能够检测到在荧光色素的特性荧光弛豫时间内发出的荧光的垂直成分和平行成分时,可以通过Perrin公式算出荧光偏振度。荧光偏振度值从原理上讲,依赖于与分子大小有关的分子旋转运动的速度的差。因此,尽管存在着妨碍荧光检测的杂质等的影响,但荧光强度的数值并不是直接由抗原浓度决定的。所以,除了完全不能检测荧光的状况以外,对样品不进行前处理就可以进行测定,而且也没有进行BF分离的必要性。就象上述所了解的那样,荧光偏振法是简易的免疫测定方法。
到目前为止,作为利用荧光偏振的免疫测定技术有特开平11-813332号公报记载的方法。在这些方法中,使用可与被检测物质结合的用荧光色素标记的抗体。通常在临床检查中,可以利用上述那样的各种各样的免疫测定方法。
然而,上述以往的荧光偏振法,由于是算出分子量在抗原抗体反应前后的变化量的方法,当在抗原抗体反应前后分子量变化小时,或当荧光色素的荧光弛豫时间过短或过长时,以高灵敏度进行测定比较困难。

发明内容
本发明是是借鉴上述事情而做成的发明,可以提供能够高灵敏度进行测定的荧光偏振法、以及方法中使用的试剂盒和生物传感器。
本发明的荧光偏振法是测定被检测物质的荧光偏振法,包括准备固定了与上述被检测物质特异结合的结合物质的第一个固体支持体,和与上述被检测物质特异结合的用荧光色素标记的荧光标记物质的工序(a);使上述荧光标记物质和上述结合物质与上述被检测物质接触的工序(b)以及对起因于上述荧光标记物质的荧光偏振度进行测定的工序(c)。
在上述的以往的方法中,与上述被检测物质特异结合的结合物质没有固定在固体支持体上。因此,在由被检测物质和荧光标记物质构成的复合物中产生旋转运动。由于这一原因,尽管照射荧光偏振光,荧光偏振光也会被消除。因此有时荧光偏振度没怎么变化。就是说,在测定中,有时S/N比增大,灵敏度降低。而在本发明的荧光偏振法中,当样品中存在被检测物质时,在工序(b)中,荧光标记物质和被检测物质特异结合,形成由被检测物质和荧光标记物质和结合物质构成的复合物。因此,荧光标记物质的旋转运动被抑制或被静止。这样一来,荧光偏振度变大,其变化的量可以以大的测定值表示。
上述被检测物质即使包含在溶液中也可以。
上述工序(c)可以作为对上述工序(b)前后的起因于上述荧光标记物质的荧光偏振度进行测定的构成。
其构成也可以为在上述工序(b)前,可以还含有使不含有上述被检测物质的溶液与上述荧光标记物质和上述结合物质接触的工序(f),其中,在上述工序(c)对上述工序(b)和上述工序(f)后的起因于上述荧光标记物质的荧光偏振度进行测定。
最好是还包括求出上述工序(b)和上述工序(f)后的起因于上述荧光标记物质的各荧光偏振度与上述被检测物质的浓度之间的相关性的工序(g)。
其构成也可以还包括准备没有固定上述结合物质的第2个固体支持体,和与上述被检测物质特异结合用荧光色素标记的荧光标记物质的工序(d);使上述荧光标记物质与上述被检测物质接触的工序(e),其中,上述第2个固体支持体是用与除去上述结合物质的上述第1个固体支持体同样的材料做成的,在上述工序(c)中可以对上述工序(b)和上述工序(e)后的起因于上述荧光标记物质的荧光偏振度进行测定。
上述第1个固体支持体可以是微量滴定板。
上述第1个固体支持体可以是微粒子。
上述荧光标记物质最好是用荧光弛豫时间为1毫微秒以上的荧光色素标记的物质。
上述荧光色素可以是与上述结合物质的一级~三级氨基、羧基、巯基、苯基、酚基或羟基结合的色素。
上述结合物质可以是抗体、受体、核酸或抑制剂中的任一种。
上述结合物质也可以是多克隆抗体、单克隆抗体、嵌合抗体、Fab抗体、F(ab2)抗体、或Fv抗体中的任一个。
上述被检测物质可以是生物体内物质、微生物、或病毒。
其构成可以为上述结合物质是第1个抗体,上述荧光标记物质是荧光色素标记的第2个抗体,上述第1个抗体和上述第2个抗体分别识别不同抗原决定簇。
本发明的试剂盒是在对被检测物质进行测定的荧光偏振法中使用的试剂盒,备有固定了与上述被检测物质特异结合的结合物质的固体支持体,和与上述被检测物质特异结合的用荧光色素标记的荧光标记物质。
利用本发明的试剂盒,当样品中存在被检测物质时,荧光标记物质和被检测物质特异结合,进而被检测物质和固定在固体支持体上的结合物质特异结合,从而形成由被检测物质和荧光物质以及结合物质构成的复合物。因此,荧光标记物质的旋转运动被抑制或被静止。这样一来,荧光偏振度变大,其变化的量可以以大的测定值表示。
本发明的生物传感器备有含有被检测物质的溶液移动的流路,上述流路备有用于导入含有被检测物质的溶液的样品导入部;以及连接在上述样品导入部的、与上述被检测物质特异结合的用荧光色素标记的荧光标记物质以可洗脱到上述溶液中的状态而填充的荧光标记物质保持部;与上述荧光标记物质保持部连接的、与上述被检测物质特异结合的结合物质被固定在固体支持体上的结合物质保持部。
利用本发明的生物传感器,当样品中存在被检测物质时,在荧光标记保持部中荧光标记物质和被检测物质特异结合,而在结合物质保持部中被检测物质和固定在固体支持体上的结合物质特异结合,形成由被检测物质和荧光标记物质以及结合物质构成的复合物。因此,荧光标记物质的旋转运动被抑制或被静止。这样一来,荧光偏振度变大,其变化的量可以以大的测定值表示。
上述溶液可以作为利用毛细管力、离心力、或电位差驱动通过上述流路内的构成。
上述流路在上述固体支持体中形成,上述固体支持体可以是毛细管。
上述毛细管可以作为充填了载体的构成。
上述毛细管可以作为溶液自由流过内部的构成。
上述固体支持体可以作为浸有含有上述被检测物质的溶液的溶剂的材料。
可以作为至少备有两个流路的构成。


图1(a)~(c)是表示本发明原理的模式示意图。
图2是本发明的荧光偏振法的流程图。
图3是表示本发明一个实施方式的生物传感器示意图。
图4表示本发明的生物传感器以及使用该传感器的荧光偏振测定装置的一构成例。
图5(a)和(b)是表示图4表示的构成例中的荧光偏振测定装置的检测部的模式图。
图6是表示基于本发明的人绒毛性性腺刺激激素的测定结果的图。
具体实施例方式
本发明涉及为了对样品中的被检测物质进行测定而在固定了与被测定物质特异结合的物质的固相上进行的荧光偏振法。以下边参照图1和图2边对本发明的实施方式进行说明。图1是表示本发明原理的模式示意图。图2是本发明的荧光偏振法的流程图。
一般来说,荧光偏振法利用由于溶液中的分子旋转运动而荧光偏振消除的现象。即,由于分子越小,在溶液中的旋转运动越快,所以荧光偏振被大大地消除,荧光偏振度的值自然就变小了。相反,分子越大,在溶液中的旋转运动越慢,所以荧光偏振基本没有被消除,荧光偏振度的值自然就变大了。
就象图1所表示的那样,在本实施方式中,使用固定了与被检测物质14特异结合的结合物质12的固体支持体11,和与被检测物质14特异结合的用荧光色素标记的荧光标记物质13。通过固定于固体支持体11上的结合物质12捕捉结合了荧光标记物质13的被检测物质14,抑制荧光标记物质13和被检测物质14的复合物的旋转运动,或使其静止。这样做意味着通过特异结合反应将溶液中的荧光标记物质13和被检测物质14的复合物的「动」的状态捕捉到固相上,使其处于「静」的状态,可以使荧光偏振度变大。荧光偏振度的变化量成为表示通过特异结合反应,结合于被固定的结合物质12的被检测物质14的浓度的值。
本实施方式的荧光偏振法是测定被测定物质14的方法,就象图2所表示的那样,包括准备固定了与被检测物质14特异结合的结合物质12(代表性的物质是抗体)的固体支持体11,和与被检测物质14特异结合的用荧光色素标记的荧光标记物质13的工序St1;使荧光标记物质13和结合物质12与被检测物质14接触的工序St2以及对起因于荧光标记物质13的荧光偏振度进行测定的工序St3。
以下对各个工序进行详细地说明。
在工序St1中,就象图1(a)所表示的那样,在不存在被检测物质14的状态下,荧光标记物质13以没有被结合物质12(代表性的物质是抗体)捕捉的状态存在于溶液中。此时,由于荧光标记物质13在溶液中进行旋转运动,所以即使照射荧光偏振光,荧光偏振光也会被消除。所以荧光偏振度值小。
在工序St2中,就象图1(b)所表示的那样,添加含有被检测物质14的样品。由于添加样品,由被检测物质14和荧光标记物质13以及结合物质12形成夹层型的复合物。而该工序也可以在上述工序St1以前进行。
在工序St3中,就象图1(c)所表示的那样,样品中存在被检测物质14时,在工序St1中准备的荧光标记物质13和被检测物质14特异结合,而被检测物质14再与固定于固体支持体固体支持体11上的结合物质12特异结合,形成由被检测物质14和荧光标记物质13以及结合物质12构成夹层型的复合物。由于形成复合物,荧光偏振度变大,可以将其变化的量以大的测定值表示。这里,样品中的被检测物质14的浓度,与被检测物质14不存在时的荧光偏振度的值以及被检测物质14存在时的荧光偏振度的值的差有关。
象上述那样,在以往方法(例如特开平11-813332号公报记载的方法)中,与被检测物质特异结合的结合物质不固定在固体支持体上。因此,在由被检测物质和荧光标记物质形成的复合物中会产生旋转运动。因此荧光偏振度往往没怎么变化。就是说,在测定中,有时S/N比增大,而灵敏度降低。
然而,在本发明的荧光偏振法中,就象图1(c)所表示的那样,样品中存在被检测物质14时,在工序St1中准备的荧光标记物质13和被检测物质14特异结合,而被检测物质14再与固定于固体支持体固体支持体11上的结合物质12特异结合,形成由被检测物质14和荧光标记物质13以及结合物质12构成夹层型的复合物。因此,荧光标记物质13的旋转运动被抑制或被静止。由此,荧光偏振度变大,可以将其变化的量以大的测定值表示。
本实施方式虽然可以作为工序St2前后的对起因于荧光标记物质13的荧光偏振度进行测定的构成,但本发明并不限定于此构成。例如,在工序St2之前,再含有使不含有被检测物质14的溶液与荧光标记物质13和结合物质12接触的前工序,所以工序St3也可以作为对工序St2以及前工序后的起因于荧光标记物质13的荧光偏振度进行测定的构成。
另外,例如,准备固定了结合物质12的固体支持体11以及与被检测物质14特异结合的用荧光色素标记的荧光标记物质13,开始对起因于上述荧光物质的荧光偏振度进行测定。然后一边继续进行荧光偏振度的测定,一边在荧光偏振度的测定开始的任意时间后使含有被检测物质14的样品溶液与荧光标记物质13和结合物质12接触。此时,可以监测从荧光偏振度测定开始后的荧光偏振度随时间的变化。
另外,准备没有固定结合物质12的固体支持体11(没有图示)以及与被检测物质14特异结合的用荧光色素标记的荧光标记物质13,使没有固定了结合物质12的固体支持体和荧光标记物质与含有被检测物质的样品溶液接触后,对起因于荧光标记物质13的荧光偏振度进行测定,也可以作为对工序St2后的起因于荧光标记物质13的荧光偏振度进行测定的构成。
在本实施方式的荧光偏振法中,使用备有固定有与被检测物质14特异结合的结合物质12的固体支持体11和与被检测物质14特异结合的荧光标记物质13的试剂盒。
固体支持体11具体来说是测定杯。作为测定杯可以是预先含有荧光标记物质13的杯。通过使用该试剂盒,在测定时,将测定杯放置在荧光偏振测定装置内,只是向测定杯内导入样品就可以很简易地进行测定。
作为本实施方式的荧光测定法以及试剂盒中使用的固体支持体,适合使用浸渍含有被检测物质样品溶液的溶剂的材料。例如可以使用硝酸纤维素膜、醋酸纤维素膜、玻璃纤维滤纸等。
另外作为本发明使用的固体支持体,适合使用微量滴定板。作为微量滴定板可以使用由聚苯乙烯、聚乙烯、聚碳酸酯、聚丙烯、硅系、玻璃系、葡聚糖系材料形成的微量滴定板。
另外作为本发明使用的固体支持体,也可以使用微粒子。作为微粒子,如无机胶体、胶乳粒子、磁性粒子等。
利用本领域公知的手法通过物理吸附或化学结合使与被检测物质特异结合的结合物质固定在本发明中使用的固体支持体上。将本领域公知的衬垫(spacer)等配体导入到固体支持体上,也可以固定上述物质。作为衬垫可以使用具有任意长度碳链的化合物。另外,与抗生物素蛋白形成复合物的生物素等配体在本领域是公知的。
在本实施方式中,作为固定在固体支持体上的物质(结合物质),只要是与被检测物质特异结合的,可以使用任意的抗体、受体、核酸、抑制剂等。另外作为被荧光色素标记的物质只要是与被检测物质特异结合的,也可以使用任意的抗体、受体、核酸、抑制剂等。
作为本实施方式中使用的抗体可以是多克隆抗体、单克隆抗体、嵌合抗体、Fab抗体、F(ab)2抗体、Fv抗体。
在本实施方式中,可测定的被检测物质可以是生物体内物质、微生物、病毒等。生物体内物质指的是例如肽、蛋白质、脂质、糖类或核酸类物质等。微生物包括大肠杆菌、沙门氏(杆)菌、肠炎弧菌、衣原体、幽门螺杆菌等细菌。病毒包括流感病毒、C型肝炎病毒、HIV病毒等。
在本实施方式中使用的荧光标记物质只要是能与被检测物质特异结合,而且被荧光色素标记的物质,无论什么样的物质都可以使用。在本实施方式中,在结合物质中虽然可以使用用荧光色素标记的物质,但并不限定于这样的物质。可以根据需要准备识别各个不同抗原决定簇的第1抗体和第2抗体,用荧光色素对其中的任一个进行标记,而分别作为结合物质和荧光标记物质使用。
另外,在本实施方式的荧光偏振法中,荧光标记物质的浓度很重要。假如,测定体系内存在高浓度的荧光标记物质,与通过被固定在固体支持体上的结合物质借助于被检测物质捕捉的荧光标记物质相比,没有被捕捉的(游离的)荧光标记物质的量变多。在这样状态下,进行荧光偏振测定时,由于游离的荧光标记物质的量多,所以不能获得荧光偏振度的大的变化。因此通过本实施方式的荧光偏振法在测定被检测物质上,最好是对荧光标记物质的浓度进行最适化。
作为最适化的方法,例如将任意量的被检测物质固定于微量滴定板,分别添加针对上述量制作稀释系列的荧光标记物质溶液,测定荧光偏振度。一般来说,荧光标记物质浓度越高,荧光偏振度变得越小。而如果被固定的被检测物质的量变多,荧光偏振度开始减少的荧光标记物质的浓度变大。假如在必须保证测定的被检测物质浓度的范围内,可以得到如图3所表示的那样结果,此时如果将荧光标记物质的浓度设定在图中线41表示的浓度以下和线43表示的浓度以上,就看不到荧光偏振度的变化。因此最好是将荧光标记物质的浓度设定在图中线42表示的浓度附近,这样可以使荧光偏振度随着被检测物质的量而变化。
标记本实施方式中使用的荧光标记物质的荧光色素是以荧光偏振法为原理进行测定上的重要的材料。荧光色素一般用激发波长、荧光波长、斯托克斯漂移(stoke’s shift)、荧光弛豫时间等参数表示其特性。在本实施方式中使用的荧光色素,具有代表性的是其特性用荧光弛豫时间规定的,通常具有约0.1毫微秒到约1,000毫微秒范围的荧光弛豫时间的荧光色素比较好。最好使用具有约1毫微秒以上荧光寿命的荧光色素。在本实施方式中使用的荧光色素,是考虑了通过与被检测物质结合引起变化的荧光标记物质的分子量之后选择的。由与被检测物质结合的荧光标记物质放出的荧光的偏振度与分子的大小、即分子的旋转运动速度成比例关系。在本实施方式中,适合使用能够得到分子量小、即在溶液中旋转运动速度大的荧光标记物质的那样的荧光色素,利用该荧光色素可以增大捕捉前后的荧光偏振度的变化。作为这样的荧光色素的例子如荧光素衍生物、丹酰衍生物、芘衍生物、金属螯合物。
另外在本实施方式使用的荧光色素,代表的是与被检测物质特异结合的物质中含有的一级~三级氨基、羧基、巯基、苯基、酚基或羟基反应,对上述物质进行标记。为此目的,例如可以使用通过公知的方法向上述列举的荧光色素中导入异硫氰基、琥珀酰亚胺基、磺酰氯基、迭氮基、硫代基、马来酸酐缩亚胺基等官能团的色素。
以下一边参照图4,一边对使用上述本实施方式的荧光偏振法的生物传感器进行说明。图4是表示本实施方式的生物传感器和使用该传感器的荧光偏振测定装置的一构成例。
本实施方式的生物传感器20就象图4所表示的那样,是由被固定的固体支持体21(本实施方式中是毛细管)构成的。固体支持体21含有样品导入部22;充填了荧光标记物质13的荧光标记物质保持部23a以及固定了结合物质12的结合物质保持部23b。样品导入部22、荧光标记物质保持部23a和结合物质保持部23b成了含有被检测物质的样品溶液流通的流路。
对生物传感器20中荧光偏振度的变化进行计算的荧光偏振测定装置30备有收容生物传感器20的收容部(没有图示),而且备有激发光26一侧的偏振板24、以及荧光27一侧的偏振板25,在对荧光偏振度的变化进行测定时,具有使荧光27一侧的偏振板25旋转的功能。
图5(a)和图5(b)是表示图4所示构成例子中的荧光偏振测定装置的检测部的模式图。在图5(a)和图5(b)是将生物传感器20的结合物质保持部23b表示为杯28的模式图。就象图5(a)所示那样,荧光27一侧的第2偏振板25在对偏振度的变化进行测定时,象箭头指示那样旋转,在旋转期间,由杯子发出的荧光的平行成分和垂直成分依次被监测,以此为基础算出荧光偏振度。也可以取而代之,就象图5(b)所示那样,作为算出荧光偏振度的变化的装置,使用不备有使偏振板旋转功能的检测器。此时,由杯子28发出的荧光,其平行成分30以及垂直成分31通过使用配置在荧光一侧的2个偏振板25、25’可以同时分别进行监测,以此为基础算出荧光偏振度。另外,图5中用20、24和26表示的参照号与图4一样分别表示入射光、激发一侧的偏振板和激发光。
在本实施方式的荧光偏振测定装置30内,还可以集聚用于调整进行抗原抗体反应的温度条件的反应部、向荧光标记物质保持部23a供给荧光标记物质13的机构以及算出荧光偏振度变化的机构。不用说,其构成可以为荧光偏振测定装置30备有多个反应部,测定荧光偏振度的机构同时对发自多个反应部的荧光偏振度进行测定。其构成可以为还备有算出同时测定的荧光偏振度的差的机构。
另外,在集聚了反应部、供给荧光标记物质13的机构以及算出荧光偏振度变化的机构荧光偏振测定装置30内,通过进一步集聚生物传感器20,也可以做成生物芯片。
由样品导入部导入的样品中含有的被检测物质,通过荧光标记物质保持部23a后,与荧光标记物质13结合,再与固定于固体支持体21(图4中的毛细管)上的结合物质12(本实施方式中为抗体)结合。荧光偏振测定装置30检测发自结合物质保持部23b的荧光偏振度的变化。
以往,作为简易的检查法,有利用干式化学的检查法。所谓干式化学是指对以干燥状态保存在滤纸或试纸那样的展开层基质的试剂,点上液体状的样品,对样品中被检测物质进行测定的方法。作为装置,有使试剂负载到单层的展开层基质上的单层式,以及作为展开层基质使展开层、反应层、试剂层等层状叠起来的多层式。作为利用干式化学的检查法的特征,例如由于试剂已经负载到展开层基质上,因此有不需要进行试剂的调配、可以保存在小的空间内、被检测样品量少等优点。
作为代表性的通过干式化学的检查法有免疫层析法(例如,专利号2890384号公报报道)。所谓免疫层析法是利用抗原抗体反应和毛细管现象的检查法,在装置中,将固定后的第1抗体和作为检测试剂的被标记的第2抗体分别以干燥的状态负载到以膜滤片为代表的载体上。进行检查时,向上述装置上添加含有被检测物质(抗原)的检体样品,通过毛细管现象使其展开,通过利用夹层型的抗原抗体反应使反应部位发色,进行抗原的鉴定、确认有无抗原或对抗原量进行测定。
免疫层析法通过一个操作可以进行反应、清洗清洗、检测工序。因此存在着操作简便的优点,另外还可以进行迅速地判定。就象妊娠诊断药所代表的那样,由于其简便,也成了可适用于在临床检查领域近年来引入注目的即时检验(POCT)中的检查法。
作为临床检查的简易测定法已为人们了解的免疫层析法有通过一个操作进行反应、清洗、检测工序的优点。然而,进行抗原抗体反应需要时间,由于将液体样品在固相上展开需要的时间加长,只能使用由膜那样的多孔质构成的材料。而且,在免疫层析法中使用的由膜等多孔质构成的材料价格高,装置的费用高。
而在本实施方式的生物传感器20中,用作固体支持体21的材料并不限定于由膜那样的多孔质构成的材料。因此以低成本制造本实施方式的生物传感器是可能的,适用于临床检查,特别适用于POCT。
在本实施方式的生物传感器中作为固体支持体21可以使用毛细管。在本实施方式中,在毛细管内备有荧光标记物质保持部23a和结合物质保持部23b,结合物质保持部23b用例如可进行荧光偏振测定的石英玻璃、塑料那样的透明的材料制成。而作为在毛细管内展开液体样品的驱动力,可以利用毛细管力、离心力、电位差等物理力。另外根据需要,也可以将载体充填到毛细管内。作为可利用的载体如玻璃棉、聚丙烯酰胺凝胶、微粒子等。不用说,也可以将毛细管内做成无载体的溶液自由流动的状态。
另外,作为本实施方式的生物传感器20的固体支持体21使用的材料,可以是以硝酸纤维素膜、醋酸纤维素膜、玻璃滤纸等多孔质材料为基础的矩形形态(即,试验片)。在由这样的多孔质构成的材料中,作为使液体样品展开的驱动力利用毛细管力。其展开方向无论是矩形形态的纵方向,还是向横方向都可以。
而在本实施方式中虽然对备有一个流路的生物传感器进行了说明,但不用说,也可以作成备有多个流路,同时进行多个测定的构成。
实施例以下,用实施例对本发明进行详细地说明。以下实施例是说明本发明的例子,对本发明并没有限制。
按照以下顺序对作为被检测物质的尿中物质人绒毛膜促性腺素(hcg分子量37,000)进行测定。
1.芘标记抗hcg-β单克隆抗体的制备使用抗hcg-β单克隆抗体和芘丁酸琥珀酰亚胺基酯(SPB)(无论哪一种都是购自Molecular Sieve公司)象以下所示那样制备芘标记抗hcg-β单克隆抗体。
将含有2.0mg/ml的抗hcg-β单克隆抗体的磷酸缓冲生理盐水(PBS)(pH7.4)溶液(1000μl)和使终浓度为1.00mg/ml的芘丁酸琥珀酰亚胺基酯(SPB)(是抗体量的10倍)溶解在DMSO中后的溶液(20μl)进行混合。通过一边使该混合液搅拌4小时,一边于25℃下进行温育,使抗hcg-β单克隆抗体和芘丁酸琥珀酰亚胺基酯(SPB)反应。将得到的反应液通过SephadexG-25凝胶过滤柱(Pharmacia)(柱子大小10×60mm、流速约2ml/分),除去未反应的SPB,回收含有芘标记抗hcg-β单克隆抗体。
首先就回收的级分对制备的芘标记抗hcg-β单克隆抗体的标记量以及荧光特性进行评价。
当使用紫外和可见分光光度计(岛津制造,RF-1600PC)进行测定时,回收的级分由于1ml含有约0.8mg的抗体,而且从芘330nm的吸光度可知其浓度为0.88mg/ml,所以可以确认每一分子抗hcg-β单克隆抗体标记了大约1.1个芘。另外使用荧光分光光度计(岛津制造,RF-5300PC)对回收的级分发出的荧光特性进行测定,结果结合抗hcg-β单克隆抗体的芘在用330nm的波长光激发后发出397nm波长的荧光,该荧光的寿命为100毫微秒。
2.抗hcg-α单克隆抗体固定化杯的制备作为测定杯使用用聚苯乙烯制造的杯。向该杯中加入700μl的抗hcg-α单克隆抗体1mg/ml溶液,放置过夜。然后,将杯内的溶液通过抽滤除去后,将杯清洗。再向杯内添加1%BSA溶液,通过放置过夜,用BSA对杯内壁进行封闭。抗体被固定在杯内壁可通过向杯内添加酶标记hcg,通过发色进行确认。
3.荧光偏振度的测定作为荧光偏振度测定装置使用日本分光制造的FP715(测定条件测定温度35℃,激发波长330nm,荧光波长397nm,Gfactor0.942)。
将象上述2那样制备的抗hcg-α单克隆抗体固定化杯放置在荧光偏振装置内,作为样品,分别制备含有的hcg分别为0、50、100、200、300、500、600、800和1000IU/l的溶液。将上述的hcg溶液上述芘标记抗hcg-β单克隆抗体的混合液(700μl)与上述各个浓度的hcg溶液(60μl)进行混合,于35℃下搅拌0.5分钟后,在上述测定条件下,对0.5分钟内,上述各个浓度的hcg溶液进行荧光偏振度的测定。结果如图6所示。就象图6所示的那样,荧光偏振度大致与hcg的浓度成比例。
本发明在环境测定、食品管理和医疗诊断领域中是有用的。
权利要求
1.一种荧光偏振法,是测定被检测物质的荧光偏振法,包括准备固定了与上述被检测物质特异结合的结合物质的第1固体支持体,和与上述被检测物质特异结合的用荧光色素标记的荧光标记物质的工序(a);使上述荧光标记物质和上述结合物质与上述被检测物质接触的工序(b);以及对起因于上述荧光标记物质的荧光偏振度进行测定的工序(c)。
2.根据权利要求1所述的荧光偏振法,其中,上述被检测物质包含在溶液中。
3.根据权利要求1所述的荧光偏振法,其中,在上述工序(c)中测定上述工序(b)前后的起因于上述荧光标记物质的荧光偏振度。
4.根据权利要求1所述的荧光偏振法,其中,在上述工序(b)前,还含有使不含有上述被检测物质的溶液与上述荧光标记物质和上述结合物质接触的工序(f),在工序(c)中,测定上述工序(b)和上述工序(f)后的起因于上述荧光标记物质的荧光偏振度。
5.根据权利要求4所述的荧光偏振法,其中,还包括求出上述工序(b)和上述工序(f)后的起因于上述荧光标记物质的各荧光偏振度和上述被检测物质的浓度之间相关性的工序(g)。
6.根据权利要求1所述的荧光偏振法,其中,还包括准备没有固定上述结合物质的第2固体支持体以及与上述被检测物质特异结合的用荧光色素标记的荧光标记物质的工序(d);以及使上述第2固体支持体和上述荧光标记物质与上述被检测物质接触的工序(e),上述第2固体支持体是用与除去了上述结合物质的上述第1固体支持体同样的材料做成,在上述工序(c)中,对上述工序(b)和上述工序(e)后的起因于上述荧光标记物质的荧光偏振度进行测定。
7.根据权利要求1所述的荧光偏振法,其中,上述第1固体支持体可以是微量滴定板。
8.根据权利要求1所述的荧光偏振法,其中,上述第1固体支持体可以是微粒子。
9.根据权利要求1所述的荧光偏振法,其中,上述荧光标记物质用荧光弛豫时间为1毫微秒以上的荧光色素标记。
10.根据权利要求9所述的荧光偏振法,其中,上述荧光色素与上述结合物质的一级~三级氨基、羧基、巯基、苯基、酚基或羟基结合。
11.根据权利要求1所述的荧光偏振法,其中,上述结合物质是抗体、受体、核酸或抑制剂中的任一种。
12.根据权利要求1所述的荧光偏振法,其中,上述结合物质是多克隆抗体、单克隆抗体、嵌合抗体、Fab抗体、F(ab2)抗体、或Fv抗体中的任一个。
13.根据权利要求1所述的荧光偏振法,其中,上述被检测物质是生物体内物质、微生物、或病毒。
14.根据权利要求1所述的荧光偏振法,其中,上述结合物质是第1抗体,上述荧光标记物质是用荧光色素标记的第2抗体,上述第1抗体和上述第2抗体分别识别不同抗原决定簇。
15.一种试剂盒,是在对被检测物质进行测定的荧光偏振法中使用的试剂盒,备有固定了与上述被检测物质特异结合的结合物质的固体支持体以及与上述被检测物质特异结合的用荧光色素标记的荧光标记物质。
16.一种生物传感器,备有含有被检测物质的溶液移动的流路,上述流路备有用于导入含有被检测物质的溶液的样品导入部;连接在上述样品导入部的、与上述被检测物质特异结合的用荧光色素标记的荧光标记物质以可洗脱到上述溶液中的状态填充的荧光标记物质保持部;以及与上述荧光标记物质保持部连接的、与上述被检测物质特异结合的结合物质被固定在固体支持体上的结合物质保持部。
17.根据权利要求16所述的生物传感器,其中,上述溶液通过毛细管力、离心力、或电位差驱动而在上述流路内流动。
18.根据权利要求16所述的生物传感器,其中,上述流路在上述固体支持体中形成,上述固体支持体是毛细管。
19.根据权利权利要求18所述的生物传感器,其中,上述毛细管充填了载体。
20.根据权利要求18所述的生物传感器,其中,对于上述毛细管,溶液可以在内部自由流动。
21.根据权利要求16所述的生物传感器,其中,上述固体支持体是浸渍含有上述被检测物质的溶液的溶剂的材料。
22.根据权利要求16所述的生物传感器,其中,至少备有两个流路。
全文摘要
本发明的荧光偏振法是测定被检测物质的荧光偏振法,包括准备固定了与上述被检测物质特异结合的结合物质的第1固体支持体以及与上述被检测物质特异结合的用荧光色素标记的荧光标记物质的工序(a);使上述荧光标记物质和上述结合物质与上述被检测物质接触的工序(b)以及对起因于上述荧光标记物质的荧光偏振度进行测定的工序(c)。
文档编号G01N33/536GK1522367SQ03800590
公开日2004年8月18日 申请日期2003年3月27日 优先权日2002年3月27日
发明者北胁文久, 河村达朗, 朗 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1