通过盘槽以及相关光分析盘触发的方法和系统的制作方法

文档序号:6015287阅读:218来源:国知局
专利名称:通过盘槽以及相关光分析盘触发的方法和系统的制作方法
技术领域
本发明一般涉及从盘读出数据,具体涉及正确确定盘的角位置。更具体地说,本发明涉及通过中断槽以及相关光分析盘触发的方法和系统,但是不限于以下按照最佳实践模式描述的具体实施例。
背景技术
光生物盘,也称之为生物紧致盘(BCD),生物光盘,光分析盘或紧致生物盘,现在专业人员知道它能完成各种类型的生化分析。具体地说,这种光盘利用光存储装置的激光源检测盘自身工作面上或附近的生化反应。
读出光阅读器上特定的局部目标分析区要求,在盘的相继转动时从盘上相同的角位置捕获数据,或在数据捕获之后识别正确的区域。
二者都要求阅读器识别的角位置具有亚微米准确度,最好是在0.3μm以下。角位置的误差导致相继线的错位,从而在再现图像中出现噪声和畸变。
我们所讨论的盘有用于产生跟踪信号的槽,盘的转动使激光光斑落在每次转动后一个轨道间距的增大半径上。
为了确定每次转动后的角位置,在盘上制作标记,或制作在盘的工作层上,或制作在其他非工作面上。考虑标记是在工作面上被识别,虽然可以把信息写入到槽中,但是这些槽使反射光强度减小,并可以与减小光反射的其他原因混淆,例如,灰尘。所以,确定标记的精确位置存在不准确性,从而产生触发误差。

发明内容
本发明的目的是克服现有技术中的限制。
更具体地说,本发明涉及包括槽的光分析盘,这些槽限定盘上对应的激光可读轨道和适合于识别盘上各自目标区的触发标记。触发标记是槽的径向中断,它适合于产生增强的激光束反射。
最好是,盘上的每个目标区是由对应槽的第一中断和第二中断为界限。
按照本发明的另一个实施例,提供一种包括槽的光分析盘,这些槽限定盘上对应的激光可读轨道和适合于识别盘上各自目标区的触发标记。每个触发标记限定包括一系列中断的触发区,这些中断产生增强的激光束反射。这限定识别触发信号的中断槽编码数据图形。按照这个实施例,该数据重新生成时钟信号。
本发明的另一个目的是包括触发机构的光分析盘系统,该触发机构包含检测光分析盘槽中的触发检测器。
按照一个优选实施例的系统,触发检测器的目的是引导激光束到这些槽并检测反射的激光束,从而产生对应于反射激光束的电反射信号。
最好是,当激光束被连续槽反射时,该反射信号有第一强度值;而当激光束被槽的中断反射时,该反射信号有第二强度值。第二强度值大于第一强度值。
在一个具体实施例中,按照本发明的系统还包括加工反射信号的装置,为的是确定触发信号。
最好是,加工装置包括重新生成时钟信号的设备,例如,切片器/PLL型设备。
按照另一个实施例的系统,加工装置适合于完成编码数据的错误校正和/或确定对应于触发信号的时钟脉冲,利用计数器装置计数预定数目的时钟脉冲。
本发明的另一个方面是一种通过光分析盘中断槽的触发方法。这个方法包括以下步骤检测槽的中断,产生对应于所检测中断的电反射信号,和加工该反射信号以产生触发信号。
按照这个方法的优选实施例,检测步骤包括引导激光束到中断并检测反射的激光束。
最好是,当激光束被连续槽反射时,反射信号有第一强度值;而当激光束被槽的中断反射时,反射信号有第二强度值,其中第二强度值大于第一强度值。
最好是,该方法包括重新生成时钟信号的步骤和/或错误校正的步骤。
按照该方法的另一个实施例,加工阶段还包括步骤计数预定数目的时钟脉冲,用于确定对应于触发信号的脉冲。
本发明或它的不同方面可以容易地这样实施,它适合于或采用与以下共同转让和共同未决的专利申请中公开的盘,检定和系统进行组合1999年8月23日申请的美国专利申请序列号09/378,878,标题为“Methods and Apparatus for analyzing Operational andNon-operational Data Acquired from Optical Discs”;1999年8月23日申请的美国专利申请序列号60/150,288,标题为“Methods andApparatus for Optical Disc Data Acquisition Using PhysicalSynchronization Markers”;1999年10月26日申请的美国专利申请序列号09/421,870,标题为“Trackable Optical Disc with ConcurrentlyReadable Analyte Material”;2000年8月21日申请的美国专利申请序列号09/643,106,标题为“Methods and Apparatus for Optical DiscData Acquisition Using Physical Synchronization Markers”;2001年11月15日申请的美国专利申请序列号09/999,274,标题为“OpticalBiodiscs with Reflective Layers”;2001年11月20日申请的美国专利申请序列号09/988,728,标题为“Methods and Apparatus for Detectingand Quantifying Lymphocytes with Optical Biodiscs”;2001年11月19日申请的美国专利申请序列号09/988,850,标题为“Methods andApparatus for Blood Typing with Optical Bio-discs”;2001年11月20日申请的美国专利申请序列号09/989,684,标题为“Methods andApparatus for Separating Agglutinants and Disperse Particles”;2001年11月27日申请的美国专利申请序列号09/997,741,标题为“DualBead Assays Including Optical Biodiscs and Methods RelatingThereto”;2001年11月30日申请的美国专利申请序列号09/997,895,标题为“Apparatus and Methods for Separating Components ofParticulate Suspension”;2001年12月7日申请的美国专利申请序列号10/005,313,标题为“Optical Discs for Measuring Analytes”;2001年12月10日申请的美国专利申请序列号10/006,371,标题为“Methodsfor Detecting Analytes Using Optical Discs and Optical Disc Reader”;2001年12月10日申请的美国专利申请序列号10/006,620,标题为“Multiple Data Layer Optical Discs for Detecting Analytes”;2001年12月10日申请的美国专利申请序列号10/006,619,标题为“OpticalDisc Assemblies for Performing Assays”;2001年12月14日申请的美国专利申请序列号10/020,140,标题为“Detection System forDisk-Based Laboratory and Improved Optical Bio0Disc IncludingSame”;2001年12月21日申请的美国专利申请序列号10/035,836,标题为“Surface Assembly for Immobilizing DNA Capture Probes andBead-Based Assay Including Optical Bio-Discs and Methods RelatingThereto”;2002年1月4日申请的美国专利申请序列号10/038,297,标题为“Dual Bead Assays Including Covalent Linkages for ImprovedSpecificity and Related Optical Analysis Discs”;2002年1月10日申请的美国专利申请序列号10/043,688,标题为“Optical Disc AnalysisSystem Including Related Methods for Biological and MedicalImaging”;2002年1月14日申请的美国专利申请序列号60/348,767,标题为“Optical Disc Analysis System Including Related SignalProcessing Methods and Software”;2002年2月26日申请的美国专利申请序列号10/086,941,标题为“Methods for DNA ConjugationOnto Solid Phase Including Related Optical Biodiscs and Disc DriveSystems”;2002年2月28日申请的美国专利申请序列号10/087,549,标题为“Methods for Decreasing Non-Specific Binding of Beads inDual Bead Assays Including Related Optical Biodiscs and Disc DriveSystems”;2002年3月14日申请的美国专利申请序列号10/029,256,标题为“Dual Bead Assays Using Cleavable Spacers and/or Ligation toImprove Specificity and Sensitivity Including Related Methods andApparatus”;2002年3月14日申请的美国专利申请序列号10/099,266,标题为“Use of Restriction Enzymes and Other ChemicalMethods to Decrease Non-Specific Binding in Dual Bead Assays andRelated Bio-Discs,Methods,and Systems Apparatus for DetectingMedical Targets”;2002年4月11日申请的美国专利申请序列号10/121,281,标题为“Multi-Parameter Assays Including Analysis Discsand Methods Relating Thereto”;2002年5月16日申请的美国专利申请序列号10/150,575,标题为“Variable Sampling Control forRendering Pixelization of Analysis Results in a Bio-Disc Assembly andApparatus Relating Thereto”;2002年5月17日申请的美国专利申请序列号10/150,702,标题为“Surface Assembly for Immobilizing DNACapture Probes in Genetic Assays Using Enzymatic Reactions toGenerate Signals in Optical Bio-Discs and Methods RelatingThereto”;2002年7月12日申请的美国专利申请序列号10/194,418,标题为“Optical Disc System and Related Detecting and DecodingMethods for Analysis of Microscopic Structures”;2002年7月12日申请的美国专利申请序列号10/194,396,标题为“Multi-PurposeOptical Analysis Disc for Conducting Assays and Various ReportingAgents for Use Therewith”;2002年7月19日申请的美国专利申请序列号10/199,973,标题为“Transmissive Optical Disc Assemblies forPerforming Physical Measurements and Methods Relating Thereto”;2002年7月22日申请的美国专利申请序列号10/201,591,标题为“Optical Analysis Disc and Related Drive Assembly for PerformingInteractive Centrifugation”;2002年7月24日申请的美国专利申请序列号10/205,011,标题为“Methods and Apparatus for Bonded FluidicCircuit for Optical Bio-Disc”;2002年7月24日申请的美国专利申请序列号10/205,005,标题为“Magnetic Assisted Detection of MagneticBeads Using Optical Disc Drives”;2002年8月29日申请的美国专利申请序列号10/230,959,标题为“Methods for Qualitative andQuantitative Analysis of cells and Related Optical Bio-Disc Systems”;2002年8月30日申请的美国专利申请序列号10/233,322,标题为“Capture Layer Assemblies for Cellular Assays Including RelatedOptical Analysis Discs and Methods”;2002年9月6日申请的美国专利申请序列号10/236,857,标题为“Nuclear Morphology BasedIdentification and Qualification of White Blood Cell Types UsingOptical Bio-Disc Systems”;2002年9月11日申请的美国专利申请序列号10/241,512,标题为“Methods for Differential Cell CountsIncluding Related Apparatus and Software for Performing Same”;2002年10月24日申请的美国专利申请序列号10/279,677,标题为“Segmented Area Detector for Biodrive and Methods RelatingThereto”;2002年11月13日申请的美国专利申请序列号10/239,214,标题为“Optical Bio-Discs and Fluidic Circuits for Analysis of Cellsand Methods Relating Thereto”;2002年11月15日申请的美国专利申请序列号10/298,263,标题为“Methods and Apparatus for BloodTyping with Optical Bio-Discs”;2002年11月27日申请的美国专利申请序列号10/307,263,标题为“Magneto-Optical Bio-Discs andSystems Including Related Methods”;2003年1月13日申请的美国专利申请序列号10/xxx,xxx,标题为“Method and Apparatus forVisualizing Data”;2003年1月14日申请的美国专利申请序列号10/xxx,xxx,标题为“Method and Apparatus for Extracting Data Froman Optical Analysis Disc”;2003年1月15日申请的美国专利申请序列号10/xxx,xxx,标题为“Optical Discs Including Equi-Radial and/orSpiral Analysis Zones and Related Disc Drive Systems and Methods”;2003年1月17日申请的美国专利申请序列号10/xxx,xxx,标题为“Bio-Safe Dispenser and Optical Analysis Disc Assembly”;和2003年1月21日申请的美国专利申请序列号10/xxx,xxx,标题为“Processesfor Manufacturing Optical Analysis Discs with Molded MicrofluidicStructures and Discs Made According Thereto”。所有这些申请全文合并在此供参考。因此,它们提供的背景和有关公开内容作为对它的支持。
此处公开的按照本发明上述方法和设备可以有一个或多个优点,它包括简单和快速的在盘处理而不需要有经验技术员运行该测试,小的样本体积,使用廉价的材料,以及利用已知的光盘格式和驱动器制造技术,但不限于以上这些优点。参照以下结合附图和技术例子的详细描述,可以更好地明白这些和其他的特征和优点。


根据以下结合附图对本发明优选实施例的描述,本发明的其他目的以及附加特征和优点是显而易见的,在这些附图中相同的参考数字表示相同的元件,其中图1是生物盘系统的实物图;图2是反射型生物盘的分解透视图;图3是图2所示盘的顶视图;图4是图2所示盘的透视图,其切开部分展示盘的不同层;图5是透射型生物盘的分解透视图;图6是图5所示盘的透视图,其切开部分展示盘的半反射层功能特征;图7是金薄膜的厚度与透射率关系的曲线图;图8是图5所示盘的顶视图;图9是图5所示盘的透视图,其切开部分展示包括图6所示半反射层类型盘的不同层;图10是更详细地描述图1所示系统的透视和方框图;图11是取垂直于图2,3和4所示反射型光生物盘半径的部分剖面图,它展示其中形成的液流通路;图12是取垂直于图5,8和9所示透射型光生物盘半径的部分剖面图,它展示其中形成的液流通路和顶部检测器;
图13是图2,3和4所示反射型光生物盘的部分纵向剖面图,它展示其中形成的摆动槽;图14是图5,8和9所示透射型光生物盘的部分纵向剖面图,它展示其中形成的摆动槽和顶部检测器;图15是类似于图11的剖面图,它展示反射型盘的整个厚度及其初始的折射性质;图16是类似于图12的剖面图,它展示透射型盘的整个厚度及其初始的折射性质;图17是抽样的模拟信号变换成对应数字信号的曲线图表示,该数字信号存储为一维阵列;图18是具有所示部分放大细节的光盘透视图,它展示相对于生物盘轨道放置的捕获白血细胞,在与入射光束相互作用之后产生含信号的光束;图19A是相对于生物盘轨道放置的白血细胞图解表示;图19B是从图19A所示白血细胞导出的一系列签名踪迹;图20是图20A,20B,20C和20D之间关系的图解表示;图20A,20B,20C和20D一起构成从图19B中签名踪迹变换成数字信号的图解表示,该数字信号存储为一维阵列并组合成数据输出的二维阵列;图21是按照与本发明有关处理方法和计算算法的数据评价主要步骤的逻辑流程图;图22是按照本发明第一个实施例光分析盘的顶视图;图23是图22所示光分析盘提取的反射信号曲线图;图24是按照本发明第二个实施例光分析盘的部分顶视图;图25A是图24所示盘提取的反射信号曲线图;图25B是图25A所示反射信号产生的时钟信号曲线图;和图26是按照本发明光分析盘系统的透视和方框图。
具体实施例方式
本发明涉及盘驱动器系统,光生物盘,图像处理技术,分析方法,和相关的软件。以下更详细地讨论本发明这些特征中的每个特征。
驱动器系统和相关的盘图1是进行生化分析的光生物盘110的透视图,具体地是细胞计数和差分细胞计数。结合光盘驱动器112和显示监测器114展示光生物盘110。涉及这种类型盘驱动器和盘分析系统的更详细内容公开在2001年11月9日申请的共同转让和共同未决的美国专利申请序列号10/008,156其标题为“Disc Drive System and Methods for Use withBio-discs”,和在2002年1月10日申请的美国专利申请序列号10/043,688其标题为“Optical Disc Analysis System Including RelatedMethods for Biological and Medical Imaging”,把它们合并在此供参考。
图2是一个实施例光生物盘110中主要结构单元的分解透视图。图2是可用于本发明的反射区光生物盘110(以下称之为“反射型盘”)的例子。主要结构单元包括顶板部分116,粘合件或通路层118,和基片120。顶板部分116包含一个或多个进入孔122和一个或多个排出孔124。顶板部分116可以由聚碳酸酯制成,且最好是在从图2透视图观看的底部涂敷反射面146(图4所示)。在这个优选实施例中,触发标记126包含在反射层142(图4所示)的表面上。触发标记126可以在生物盘的所有三层中包含透明窗口,不透明区,或信息编码的反射或半反射区,它发送数据到图10所示的处理器166,而处理器166与询问光束或入射光束152的操作功能相互作用,如图6和图10所示。
图2所示的第二个单元是粘合件或通路层118,它在其中形成流路128或U形通路。流路128的形成是通过冲压或切割膜片以去除塑料薄膜并形成所示的形状。每条流路128包括液流通路130和返回通路132。图2所示的一些流路128包含混合室134。我们描述两种不同类型的混合室134。第一种是对称型混合室136,它相对于液流通路130是对称的。第二种是偏移型混合室138。偏移型混合室138形成在如图所示的液流通路130一侧。
图2所示的第三个单元是包括目标区或捕获区140的基片120。基片120最好是由聚碳酸酯制成,并在其顶部沉积上述的反射层142(如图4所示)。目标区140的制成是通过去除所示形状或任何所需形状的反射层142。或者,利用掩模技术可以制成目标区140,掩模技术是在形成反射层142之前掩蔽目标区140。可以利用金属材料制成反射层142,例如,铝或金。
图3是图2所示光生物盘110的顶视图,其中顶板部分116上的反射层146是透明的,为了显示位于盘内的流路128,目标区140和触发标记126。
图4是按照本发明一个实施例中反射区型光生物盘110的放大透视图。这个透视图包括盘各层的切开部分,为的是显示每个主要层,基片,涂层或薄膜的部分剖面图。图4展示涂敷反射层142的基片120。激活层144覆盖在反射层142上。在这个优选实施例中,激活层144可以由聚苯乙烯制成。或者,可以利用聚碳酸酯,金,活化玻璃,改良玻璃,或改良聚苯乙烯,例如,聚苯乙烯-聚马来酐。此外,可以利用水凝胶。或者,如这个实施例所示,塑料粘合件118覆盖在激活层144上。塑料粘合件118的暴露部分显示形成流路128的切开或冲压的U型形状。这个反射区实施例生物盘中最后的主要结构层是顶板部分116。顶板部分116包含其底部上的反射面146。反射面146可以由金属材料制成,例如,铝或金。
现在参照图5,图5表示透射型光生物盘110中主要结构单元的分解透视图。透射型光生物盘110的主要结构单元同样地包括顶板部分116,粘合件或通路层118,和基片120。顶板部分116包含一个或多个进入孔122和一个或多个排出孔124。顶板部分116可以由聚碳酸酯层构成。任选的触发标记126可以包含在薄的半反射层143的表面上,如图6和图9所示。触发标记126可以在的所有三层生物盘中包含透明窗口,不透明区,或信息编码的反射或半反射区,它发送数据到图10所示的处理器166,而处理器166与询问光束152的操作功能相互作用,如图6和图10所示。
图5所示的第二个单元是粘合件或通路层118,它在其中形成流路128或U形通路。流路128的形成是通过冲压或切割膜片以去除塑料薄膜并形成所示的形状。每条流路128包括液流通路130和返回通路132。图5所示的一些流路128包含混合室134。我们描述两种不同类型的混合室134。第一种是对称型混合室136,它相对于液流通路130是对称的。第二种是偏移型混合室138。偏移型混合室138形成在如图所示的液流通路130一侧。
图5所示的第三个单元是包含目标区或捕获区140的基片120。基片120最好是由聚碳酸酯制成,并在其顶部沉积上述薄的半反射层143,如图6所示。图5和6所示盘110中基片120相关的半反射层143与图2,3和4所示反射型盘110中基片120上的反射层142比较要薄很多。较薄的半反射层143允许一些询问光束152透射通过图6和12所示透射型盘的结构层。薄的半反射层143可以利用金属材料制成,例如,铝或金。
图6是图5所示透射型实施例的光生物盘110上基片120和半反射层143的放大透视图。薄的半反射层143可以由金属材料制成,例如,铝或金。在这个优选实施例中,图5和图6所示透射型盘中薄的半反射层143约为100-300厚,且不超过400。这个较薄的半反射层143允许部分的入射光束或询问光束152穿透通过半反射层143,并被图10和12所示的顶部检测器158检测,而一些光被反射或沿入射路径返回。如以下所示,表1给出金薄膜的反射和透射特性与膜厚度的关系。当薄膜厚度大于800时,金薄膜层是完全反射的。光透射通过金薄膜的阈值密度约为400。
除了表1以外,基于的金厚度,图7给出薄半反射层的反射性质和透射性质的反比关系曲线图。图7所示曲线图中的反射率值和透射率值是绝对值。
表1Au膜的反射率和透射率(绝对值)

参照图8,图8表示图5和图6所示透射型光生物盘110的顶视图,其中透明的顶板部分116显示该盘内的液流通路,触发标记126,和目标区140。
图9是按照透射型盘实施例中光生物盘110的放大透视图。盘110中各层的切开部分可以显示每个主要层,基片,涂层,或薄膜的部分剖面图。图9描述包含透明顶板部分116,基片120上薄半反射层143,和触发标记126的透射型盘形式。在这个实施例中,触发标记126包含顶板上部放置的不透明材料。或者,触发标记126可以由盘的薄半反射层143上蚀刻的透明非反射窗口形成,或吸收或不反射图10所示触发检测器160中信号的任何标记。图9还展示通过标记所示形状或任何所需形状指定区域形成的目标区140。指出目标区140的标记可以制成在基片120上薄的半反射层143或制成在基片120的底部(盘的下方)。或者,利用掩模技术制成目标区140,掩模技术包括掩蔽除了目标区140以外的整个薄半反射层143。在这个实施例中,可以利用丝网印刷油墨注入到薄的半反射层143上而形成目标区140。在图5,8和9所示透射型盘形式中,目标区140可以由盘上编码的地址信息限定。在这个实施例中,目标区140不包含实际可识别的边缘界限。
继续参照图9,激活层144覆盖在薄的半反射层143上。在这个优选实施例中,激活层144是10至200μm厚的2%聚苯乙烯层。或者,可以利用聚碳酸酯,金,活化玻璃,改良玻璃,或改良聚苯乙烯,例如,聚苯乙烯-聚马来酐。此外,可以利用水凝胶。如这个实施例中所示,塑料粘合件118覆盖到激活层144上。塑料粘合件118的暴露部分显示形成流路128的切开或冲压U型形状。
在这个透射型实施例的生物盘110中,最后的主要结构层是透明的非反射顶板部分116,它包含多个进入孔122和多个排出孔124。
现在参照图10,图10表示包括光学元件148,产生入射光束或询问光束152,返回光束154和透射光束156的光源150的透视和方框图。在图4所示反射型生物盘的情况下,返回光束154是从光生物盘110中顶板部分116的反射面146反射。在这个反射型实施例的光生物盘110中,返回光束154是被底部检测器156中存在的信号单元所检测和分析。另一方面,在透射型生物盘形式中,透射光束156是被上述顶部检测器158所检测,而且也被存在的信号单元所分析。在这个透射型实施例中,光电检测器可以作为顶部检测器158。
图10还展示包括盘上触发标记126和上述触发检测器160的硬件触发机构。硬件触发机构用于反射型生物盘(图4)和透射型生物盘(图6)。该触发机构允许处理器166仅当询问光束152是在各自目标区140上时收集数据,例如,在预定的反应现场。此外,在透射型生物盘系统中还可以利用软件触发。软件触发利用底部检测器给处理器166发送信号,在询问光束152入射到各自目标区140边缘时立刻收集数据。图10还展示用于控制光生物盘110转动的驱动器电机162和控制器164。图10还展示处理器166和分析器168,用于处理与透射型生物盘相关的返回光束154和透射光束156。
如图11所示,图11表示反射型盘实施例中光生物盘110的部分剖面图。图11展示基片120和反射层142。如以上所指出的,反射层142可以由诸如铝,金或其他合适的反射材料制成。在这个实施例中,基片120的上表面是光滑的。图11还展示覆盖到反射层142上的激活层144。如图11所示,目标区140的形成是通过去除所需位置上部分的反射层142或区域,或在形成反射层之前掩蔽所需的区域。如图11所示,塑料粘合件118覆盖到激活层144上。图11还画出顶板部分116以及与其相关的反射面146。因此,当顶板部分116覆盖到包含所需切口形状的塑料粘合件118上时,在其中形成液流通路130。如图11中箭头所示,入射光束152的路径最初是从盘110的下方引导到基片120。然后,入射光束聚焦到与反射层142相邻的点。因为这个聚焦作用发生在没有反射层142部分的目标区140,入射光束继续沿通过激活层144的路径前进,并进入液流通路130。然后,入射光束152继续向上传播通过液流通路,并最终入射到反射面146上。此时,入射光束152沿与入射路径相反的方向返回或反射,从而形成返回光束154。
图12是透射型实施例中生物盘110的部分剖面图。图12展示具有透明顶板部分116和基片120上薄的半反射层143的透射型盘形式。图12还展示薄的半反射层143上覆盖的激活层144。在这个优选实施例中,透射型盘有金属制成薄的半反射层143,例如,厚度约为100-300的铝或金,但不超过400。这个薄的半反射层143允许来自图10所示光源150的部分入射光束或询问光束152穿透并向上传播通过顶部检测器158所检测的盘,而一部分光沿与入射光束相同路径但相反方向反射回来。在这种安排中,返回光束或反射光束154是从半反射层143上反射。因此,按照这种方式,返回光束154没有进入到液流通路130。反射光束或返回光束154可用于跟踪半反射层143中形成的预记录信息轨道上入射光束152,如以下结合图13和14所详细描述的。在图12所示盘的实施例中,可以存在或没有实际限定的目标区140。通过在基片120的半反射层143上直接制作标记可以建立目标区140。可以利用丝网印刷或其任何相当的方法制成这些标记。在不采用物理标记限定目标区的另一个实施例中(例如,利用编码软件寻址方法),可以采用液流通路130作为限定的目标区,在该区域中进行调研特征的检测。
图13是生物盘实施例的反射型盘110中横切轨道的剖面图。这个剖面图是沿垂直于盘的半径和液流通路方向截取的。图13包括基片120和反射层142。在这个实施例中,基片120包含一系列槽170。槽170是从盘的中心附近向外部边缘延伸的螺旋形式。槽170的结构可以使询问光束152跟踪盘上的螺旋形槽170。这种类型的槽170称之为“摆动槽”。有波状或波纹形侧壁的底部形成槽170,而升高的部分隔开螺旋形中的相邻槽170。在这个实施例中,覆盖在槽170上的反射层142具有保形性质。图13还展示覆盖在反射层142上的激活层144。如图13所示,目标区140的形成是通过去除所需位置上部分的反射层142或区域,或在形成反射层之前掩蔽所需的区域。如图13所示,塑料粘合件118覆盖到激活层144上。图13还展示顶板部分116及其相关的反射面146。因此,当顶板部分116覆盖到包含所需切口形状的塑料粘合件118上时,可以形成液流通路130。
图14是透射型盘实施例的生物盘110中横切轨道的剖面图。如图12所描述的生物盘。这个剖面图是沿垂直于盘的半径和液流通路方向截取的。图14展示基片120和薄的半反射层143。这个薄的半反射层143允许来自光源150的入射光束或询问光束152穿透并传播通过顶部检测器158检测的盘,而一部分光以返回光束154的形式反射回来。薄的半反射层143厚度是由盘阅读器保持其跟踪能力所需的最小反射光量确定。在这个实施例中,如同图13中所讨论的,基片120包含一系列槽170。这个实施例中的槽170最好也是从盘的中心附近向外部边缘延伸的螺旋形式。槽170的结构可以使询问光束152沿螺旋形槽跟踪。图14还展示覆盖在半反射层143上的激活层144。如图14所示,塑料粘合件或液流通路118覆盖到激活层144上。图14还展示没有反射面146的顶板部分116。因此,当顶板部分116覆盖到包含所需切口形状的塑料粘合件118上时,可以形成液流通路130,并允许部分入射光束152基本不受影响地传播通过。
图15是类似于图11的剖面图,它展示反射型盘的整个厚度及其初始的折射性质。图16是类似于图12的剖面图,它展示透射型盘的整个厚度及其初始的折射性质。在图15和16中看不见槽170,因为剖面是沿槽170的方向切出的。图15和16展示窄的液流通路,它在这些实施例中的位置是垂直于槽170。图13,14,15和16展示反射型盘和透射型盘的整个厚度。在这些附图中,入射光束152最初与基片120相互作用,基片120有改变入射光束路径的折射性质,从而使光束152聚焦到反射层142或薄的半反射层143上。
计数方法和相关的软件通过所描述的背景,此处更详细地讨论利用光盘数据计算白血细胞数目的若干个方法和相关算法。这些方法和相关算法不局限于计算白血细胞数目,而且还可容易地计数任何类型特定物质,其中包括红血细胞,白血细胞,珠,和任何其他生物和非生物物质,但不受此限制,这些物质产生可以被光阅读器检测的类似光签名。
为了便于说明,以下参照图17-21描述涉及本发明的方法和算法是针对细胞计数。对它作一些改动,这些方法和算法可应用于与细胞大小类似的其他类型物质。此处描述关于细胞计数方法和算法的数据评价特征可以提供本发明方法和设备的相关背景。用于捕获和处理来自光生物盘调研数据的方法和算法有很广泛的应用,而且这些方法和算法在2001年5月16日申请的共同转让美国临时申请号No.60/291,233,其标题为“Variable Sampling Control For RenderingPixelation of Analysis Results In Optical Bio-Disc Assembly AndApparatus Relating Thereto”,它已合并在此供参考,以及以上包含的美国临时申请号No.60/404,921中,其标题为“Methods ForDifferential Cell Counts Including Related Apparatus And SoftwareFor Performing Same”中已详细地公开。在以下的讨论中,简要地解释这些方法和算法的基本特征。如图10所示,涉及生物测试样本属性的有关信息是从光生物盘110中检索,通过与测试样本的相互作用已改变或调制成电磁辐射光束的形式。在结合图2,3,4,11,13和15讨论的反射型光生物盘情况下,返回光束154携带生物样本的信息。如以上所讨论的,只有当入射光束是在液流通路130或目标区140内而与样本接触时,这种生物样本的信息基本包含在返回光束中。在反射型实施例的生物盘110中,返回光束154还可以携带编码到反射层142或图13和14所示摆动槽170中的信息。专业人员显然知道,只有当对应的入射光束与反射层142接触时,预记录的信息包含在具有目标区反射盘的返回光束154中。当入射光束152是在已去除携带反射层142信息或没有此信息的区域时,这种信息不包含在返回光束154中。在结合图5,6,8,9,12,14和16讨论的透射型光生物盘情况下,透射光束156携带生物样本的信息。
继续参照图10,有关生物测试样本的信息都被引导到处理器166进行信号处理,不管该信息是从反射型盘的返回光束154或透射型盘的透射光束156中得到。这种处理操作涉及把底部检测器157(反射型盘)或顶部检测器158(透射型盘)检测的模拟信号变换成离散的数字形式。
其次参照图17,信号变换操作涉及以固定的时间间隔212抽样模拟信号210,并把该信号的对应瞬时模拟幅度214编码成离散的二进制整数216。抽样是在某个开始时间218起动并在某个结束时间220停止。与任何模数转换过程相关的两个普通数值是抽样频率和位深度。抽样频率也称之为抽样率,它是每单位时间选取的样本数目。较高的抽样频率产生相继样本之间较小的时间间隔212,与原始的模拟信号210比较,它使数字信号222有较高保真度。位深度是每个样本点中用于编码模拟信号210抽样幅度214所使用的位数目。位深度越大,则二进制整数216越接近于原始的模拟幅度214。在这个实施例中,抽样率是8MHz和抽样率是每个样本12位,它允许的整数样本范围是从0至4095(0至2n-1),其中n是位深度。这种组合可以变化以适应其他实施例中所需的特定精确度。作为例子但不受此限制,在涉及计算通常小于细胞的珠数目方法实施例中,可能需要提高抽样频率。然后,把抽样的数据发送到处理器166中进行模数转换。
在模数转换期间,沿激光路径的每个相继样本点224相继存储到盘上或存储器中作为一维阵列。每个相继的轨道贡献独立的一维阵列,它产生与图像相似的二维阵列228(图20A)。
图18是具有部分放大详细透视图的光生物盘110透视图,它展示相对于光生物盘轨道232放置的捕获白血细胞230。此处使用的白血细胞230仅用于说明。如以上所指出的,可以利用其他的物质或调研特征,例如,珠或团聚物质。如图18所示,入射光束152与白血细胞230的相互作用产生含信号的光束,或是反射型盘的返回光束154形式,或是透射型盘的透射光束156形式,它们分别被检测器157或158检测。
图19A是相对于图18所示光生物盘110轨道232放置的白血细胞230的另一个图解表示。如图18和19A所示,白血细胞230大致覆盖4个轨道A,B,C和D。图19B表示从图18和19A中白血细胞导出的一系列签名踪迹210。如图19B所示,检测系统提供对应于轨道A,B,C和D的4个模拟信号A,B,C和D。如图19B所示,每个模拟信号A,B,C和D携带有关白血细胞230的具体信息。因此,对白血细胞230的扫描产生可以检测和处理不同的入射光束扰动。然后,把模拟签名踪迹(信号)210引导到处理器166,使它们转变成图20A和20C所示相似的数字信号222,以下更详细地给予讨论。
图20是图20A,20B,20C和20D之间关系的图解表示。图20A,20B,20C和20D是从图19B中签名踪迹转换成数字信号222的图解表示,这些数字信号作为一维阵列226进行存储,并组合成用于数据输入244的二维阵列228。
现在具体参照图20A,图20A表示来自图18和19A所示光生物盘中轨道A和B的抽样模拟信号210。然后,处理器166把模拟信号210的对应瞬时模拟幅度214编码成离散的二进制整数216(见图17)。形成的数据点系列是与抽样模拟信号210相似的数字信号222。
其次参照图20B,来自轨道A和B的数字信号222(图20A)存储为独立的一维存储器阵列226。每个相继的轨道贡献对应的一维阵列,当它与先前的一维阵列组合时,产生与图像相似的二维阵列228。然后,数字数据存储到存储器或盘上作为样本点224(图17)的二维阵列228,这些样本点224代表样本区中特定点的返回光束154或透射光束156(图18)的相对强度。然后,该二维阵列存储到存储器或盘上成为图20B中所示原始文件或图像文件240的形式。然后,检索图像文件240中存储的数据进入存储器,并用作数据输入244到图10所示的分析器168。
图20C表示来自图18和19A所示光生物盘中轨道C和D的抽样模拟信号210。然后,处理器166把模拟信号210的对应瞬时模拟幅度214编码成离散的二进制整数216(见图17)。形成的数据点系列是与抽样模拟信号210相似的数字信号222。
现在参照图20D,来自轨道C和D的数字信号222存储为独立的一维存储器阵列226。每个相继的轨道贡献对应的一维阵列,当它与先前的一维阵列组合时,产生与图像相似的二维阵列228。然后,如上所述,数字数据存储到存储器或盘上作为样本点224(图17)的二维阵列228,这些样本点224代表样本区中特定点的返回光束154或透射光束156(图18)的相对强度。然后,该二维阵列存储到存储器或盘上成为图20B中所示原始文件或图像文件240的形式。如上所述,检索图像文件240中存储的数据进入存储器,并用作数据输入244到图10所示的分析器168。
计算和处理算法存储到分析器168(图10)并应用于输入数据244以产生显示监测器114(图10)上可以显示的有用输出结果(图21)。
现在参照图21,图21表示按照与本发明相关的处理方法和计算算法的数据评价主要步骤的逻辑流程图。该处理方法的第一主要步骤涉及接收输入数据244。如上所述,数据评价是从0至4096范围内的整数阵列开始。
下一个主要步骤246是选取用于计数的盘区。一旦确定这个区域,其目的是实际计数确定区域内包含的所有白血细胞。步骤246的实施取决于盘的配置和用户的选择。通过例子但不受此限制,本发明实施例利用有窗口的盘,例如,图2和5所示的目标区140,软件识别该窗口并修剪其一部分进行分析和计数。在一个优选实施例中,如图2所示,目标区或窗口是1×2mm矩形形状,其中每个端部为半圆形剖面。在这个实施例中,软件在各个窗口内部修剪一个标准的1×2mm矩形区。在这个实施例的一个方面,阅读器可以取出几个相继的样本值以比较几个不同窗口中的细胞数目。
在本发明利用没有窗口的透射型盘实施例中,如图5,6,8和9所示,可以按照两个不同方法中的一个方法完成步骤246。选取标准矩形的位置,或通过放置它的中心相对于有固定坐标的点,或通过找到参考标记,该标记可以是黑暗染料的斑点。在采用参考标记的情况下,具有所需对比度的染料放置在相对于两族细胞的盘上特定位置。然后,控制光盘阅读器跳过一族细胞的中心,并使标准矩形放置到所选族的中心。
关于涉及步骤246的上述用户选择,通过与鼠标选择的直接相互作用,用户可以指定细胞计数的所需样本区形状,例如,矩形区。在本实施例的软件中,这涉及利用鼠标单击和拖动矩形到光盘导出图像的所需部分,该图像显示在监测器114上。与评价区的选择方法无关,评价各自矩形区用于下一个步骤248中的计数。
图21中第三主要步骤是步骤248,它的目的是背景照明均匀化。这个过程校正一些硬件配置中造成可能的背景均匀化起伏。背景照明均匀化偏移每个样本点的强度电平,使不是细胞的总体背景或部分图像接近于有任意背景值Vbackground的平面。虽然可以按照许多方法决定Vbackground值,例如,取标准矩形样本区上的平均值,但是在本实施例中,该值设定为2000。利用数值(Vbackground+(V-P邻域上的平均值))代替选取矩形样本区中每个点P的值V,且如果需要进行截尾,使它适合于本发明优选实施例中0至4095的实际可能值范围。选取的邻域尺寸必须充分大于细胞的大小和充分小于标准矩形的大小。
图21流程图中的下一个步骤是归一化步骤。在实施归一化步骤250时,利用标准矩形样本区中的数据完成线性变换,使平均值成为有标准偏差600的2000。如果需要,把平均值截尾使它适合于从0至4096的范围。这个步骤250以及背景照明均匀化步骤248可以使软件对于硬件改动和调谐较不灵敏。通过例子但不受此限制,检测电路中的信号增益,例如,顶部检测器158,(图18),可以变化而不严重影响产生的细胞计数结果。
如图21所示,其次完成滤波操作步骤252。对于标准矩形中的每个点P,计算P邻域中点的数目,其尺寸远远小于步骤248中所指出的,且其值与Vbackground有很大的不同。计算的点应当接近于图像中的细胞大小。若这个数值足够大,则P的值保持原有的值;否则,对它赋值Vbackground。完成这个滤波操作以去除噪声,而在图像中仅剩下细胞的最佳情况下,背景值一致地等于Vbackground。
如图21所示,可以完成去除不良分量的任选步骤254。诸如划痕,灰尘,气泡和其他类似不规则的缺陷可以通过滤波操作步骤252。这些缺陷可以直接造成细胞的计数误差,或影响图像直方图中总体分布。通常,这些缺陷的尺寸远远大于细胞的尺寸,并可以在以下的步骤254中去除。首先,形成与选取区域相同尺寸的二进制图像。若原始图像中对应点的数值等于Vbackground,则二进制图像中的A确定为白色,否则为黑色。其次,提取黑色点的连接分量。随后应用腐蚀或膨胀以调整各个分量外观。最后,去除大于预定阈值的各个分量。在这任选步骤的一个实施例中,通过给原始图像中的对应样本点赋值Vbackground,就从原始图像中去除这些分量。确定哪些分量构成可计数对象和应当去除哪些分量的阈值是用户定义值。这个阈值也可以随被计数的调研特征而发生变化,即,白血细胞,红血细胞,或其他的生物物质。在任选步骤254之后,最好是,重复步骤248,250和252。
图21中所示下一个主要步骤是步骤256,它的目的是计数明亮中心的细胞。计数步骤256是由几个子步骤构成。这些子步骤中的第一个子步骤包括完成卷积。在这个卷积子步骤中,形成称之为卷积形态的辅助阵列。P点处的卷积形态值是在P的圆形邻域中滤波操作之后形态的积分结果。更精确地说,在一个具体实施例中,积分的函数是,若v大于2000,则该函数等于v-2000;若v小于或等于2000,则该函数等于0。计数步骤256中完成的下一个子步骤是找到半径约为细胞大小的邻域中卷积形态的局部最大值。其次,避免每个互相接近邻域中具有相同值的重复局部最大值。在计数步骤256的最后一个子步骤中,宣告剩余的局部最大值以标记细胞。
在一些硬件配置中,某些细胞可能没有明亮的中心。在这种情况下,仅仅看到黑暗的轮廓,以下的两个任选步骤258和260是有用的。
步骤258的目的是去除从形态中找到的细胞。在步骤258,每个找到细胞中心周围的圆区域中填充数值2000,因此,不可能找到两次具有明亮中心和黑暗轮廓的细胞。
步骤260的目的是计数黑暗轮廓的附加细胞。在步骤258之后利用图像完成两次变换。在这个程序第一子步骤,即子步骤(a),每个点的v值是利用(2000-v)代替,若结果为负值,则利用0代替。在子步骤(b),把形成的形态分别与内半径R1和外半径R2的环进行卷积。R1和R2分别是细胞的最小和最大期望半径,随后在子步骤(d),使该环向左,右,上和下移位。在子步骤(c),对4个移位结果求和。在这个变换之后,黑暗边缘细胞的图像看上去像四个花瓣的花朵。最后,在子步骤(d),按照类似于计数步骤256中采用的方法,找到子步骤(c)中得到的函数最大值。宣告它们标记步骤256中省略的细胞。
在计数步骤256之后,或在任选采用的计数步骤260之后,图21中所示的最后主要步骤是结果输出步骤262。标准矩形中找到的细胞数目显示在图1和5所示的监测器114上,利用显示光生物盘导出图像上的叉号标记每个识别的细胞。
在2003年1月13日申请的共同转让的美国专利申请序列号No.10/xxx,xxx,其标题为“Methods and Apparatus for Visualizing Data”和2003年1月14日申请的美国专利申请序列号No.10/xxx,xxx,其标题为“Methods and Apparatus for Extracting Data From an OpticalAnalysis Disc”中讨论用于提取和观察生物盘和/或光分析盘数据的附加计算机科学方法和设备,这两个专利申请已合并在此供参考。
通过盘槽的触发现在参照图22,图22表示按照本发明第一个实施例的光分析盘310。
盘310有上述一个实施例的物理结构,并包含触发标记326。如以上所描述的,触发标记326用于确定盘在转动期间的角位置,为的是识别需要进行分析的特定目标区340。
按照这个实施例,盘310包括适合于限定盘上对应激光可读轨道的槽370。
如图22所示,每个这种触发标记326限定盘上槽370径向中断提供的各自触发区。第一中断和第二中断是为了界限特定的目标区340。
参照以上描述的制造细节(图4,11,13),可以容易地观察到,对应于这种中断的激光束反射电平是‘镜像’或反射层146直接反射系数的反射电平。
由于盘上没有意外的扰动可以导致增强的反射,因此,可以容易和唯一地识别这个信号是来自槽的中断。所以,反射的增强可以用于产生触发信号,为的是确定对应目标区340的开始。
按照本发明,提供一种通过光分析盘中断槽触发的方法。这个方法包括以下步骤检测槽的中断,产生对应于所检测中断的电反射信号,和加工该反射信号以产生触发信号。具体地说,按照本发明,把激光束引向中断并检测反射的激光束,从而完成检测阶段。
图23表示这种反射信号的一个例子。由于盘的反射特征,当激光束被连续槽反射时,形成的反射信号有第一强度值Vcg;而当激光束被所述槽的中断反射时,该反射信号有第二强度值Vig。具体地说,第二强度值Vig大于第一强度值Vcg。可以有利地利用这种强度增大以确定触发信号。
现在参照图24,图24表示按照本发明第二个实施例光分析盘410的部分顶视图。此处不再描述与盘有关的结构细节,因为它们与已公开的其他实施例是共同的。按照这第二个实施例光,分析盘410有槽470的一个或多个中断限定的触发区426,这种中断序列确定中断槽的图形。该图形编码适合于识别触发信号的信息,该触发信号确定触发区440的开始。
图25A是对应于图24图形的反射信号曲线图。按照这第二个实施例,中断槽的图形有利地用于编码阅读器读出信号中的数据,即,为了提取时钟信号。编码的数据用于唯一地识别哪个特定时钟脉冲是时钟信号(图25B)。这个方案的优点是,与单个转变比较,利用时钟脉冲序列可以更精确地确定触发信号,因为它取决于具有相关噪声减小的多个转变。此外,触发定时与盘上单个特征的读出精度没有太大关系,所以,它对于干扰读出信号(例如,灰尘,光像差等)的影响和触发标记的物理位置的很不灵敏。
任选地,数据编码可以利用标准的错误校正技术以改进稳健性。还可以优化槽中断的频率(或空间尺寸)以获得稳健的读出,因为高数据密度不是主要的目的。所以,只要时钟脉冲周期相对于所要求的触发精度是足够地短,各个特征可以大于标准EFM编码的T3长度,即,它们可以大于1微米。
图26表示按照本发明的光分析盘系统示意图。这种系统包括触发机构,触发机构包含适合于检测光分析盘310,410上触发标记326,426的触发检测器560。触发检测器560适合于引导激光束到触发标记并检测反射的激光束。反射的激光束有利地用于产生对应的电反射信号,有加工这种反射信号的处理器166可以获得该反射信号。
具体地说,这种加工装置可以包括重新生成从反射信号开始的时钟信号的设备,例如,切片器/PLL型设备。
计数器装置可以有利地用于计数预定数目的时钟脉冲,从而确定对应于触发信号的时钟脉冲。
此外,为了改进稳健性,利用标准的错误校正技术,这种加工装置可以任选地处理该编码数据。
结论这个说明书中提到的所有专利,临时申请,专利申请,技术标准,和其他出版物完整地合并在此供参考。
此外,虽然本发明的详细描述是参照某些优选的实施例,但是应当理解,本发明不局限于这些具体的实施例。而且,鉴于此处公开内容描述了实践本发明的当前最佳模式,在不偏离本发明范围和精神的条件下,本领域专业人员可以作出各种改动和变化。所以,本发明的范围是受以下权利要求书而不是以上描述的限定。在权利要求书意义和范围内的所有改变,改进和变化都属于本发明的范围。
此外,仅仅利用一些常规的实验方法,专业人员可以识别或能够确认与此处描述本发明具体实施例的许多相当内容。这些相当的内容也包含在以下的权利要求书中。
权利要求
1.一种包括槽的光分析盘,这些槽限定对应的激光可读轨道和识别盘上各自目标区的触发标记,所述触发标记是所述槽的径向中断,从而产生增强的激光束反射。
2.按照权利要求1的盘,其中每个目标区是以对应槽的第一中断和第二中断为界限。
3.一种包括槽的光分析盘,这些槽限定对应的激光可读轨道和识别盘上各自目标区的触发标记,每个所述触发标记限定包括一系列中断的触发区,这些中断产生增强的激光束反射,从而限定识别触发信号的中断槽编码数据的图形。
4.按照权利要求3的盘,其中所述数据适合于重新生成时钟信号。
5.一种包括触发机构的光分析盘系统,该触发机构包含适合于检测光分析盘槽中断的触发检测器。
6.按照权利要求5的系统,其中所述触发检测器适合于引导激光束到所述槽和检测反射的激光束,从而产生对应于所述反射激光束的电反射信号。
7.按照权利要求6的系统,其中当激光束被连续槽反射时,所述反射信号有第一强度值;而当激光束被所述槽的中断反射时,所述反射信号有第二强度值。
8.按照权利要求7的系统,其中所述第二强度值大于所述第一强度值。
9.按照权利要求6的系统,还包括加工所述反射信号的装置,所述加工装置适合于确定触发信号。
10.按照权利要求9的系统,其中所述加工反射信号的装置包括重新生成时钟信号的设备。
11.按照权利要求9的系统,其中所述加工反射信号的装置适合于完成编码数据的错误校正。
12.按照权利要求10的系统,其中重新生成时钟信号的所述设备是切片器/PLL型设备。
13.按照权利要求9的系统,其中所述加工反射信号的装置包括计数器装置,计数预定数目的时钟脉冲,用于确定对应于触发信号的时钟脉冲。
14.一种通过光分析盘中断槽的触发方法,包括以下步骤检测槽的中断;产生对应于所检测中断的电反射信号;和加工所述反射信号以产生触发信号。
15.按照权利要求14的方法,其中所述检测步骤包括引导激光束到所述中断的步骤和检测反射激光束的步骤。
16.按照权利要求15的方法,其中当激光束被连续槽反射时,所述反射信号有第一强度值;而当激光束被所述槽的中断反射时,所述反射信号有第二强度值。
17.按照权利要求14的方法,其中所述第二强度值大于所述第一强度值。
18.按照权利要求14的方法,其中所述加工步骤包括重新生成时钟信号的步骤。
19.按照权利要求14的方法,其中所述加工步骤包括错误校正的步骤。
20.按照权利要求18的方法,其中所述重新生成步骤是由切片器/PLL型设备完成的。
21.按照权利要求18的方法,其中所述加工步骤包括计数预定数目时钟脉冲的步骤,用于确定对应于触发信号的脉冲。
22.按照权利要求8的系统,还包括加工所述反射信号的装置,所述加工装置适合于确定触发信号。
全文摘要
一种包括槽的光分析盘,这些槽限定对应的激光可读轨道和识别盘上各自目标区的触发标记。触发标记是作为槽的径向中断,从而产生增强的激光束反射。还提供包括触发机构的光分析盘系统,该触发机构有适合于检测光分析盘槽中断的触发检测器。一种通过光分析盘中断槽触发的相关方法,包括检测槽的中断,产生对应于所检测中断的电反射信号,和加工所述反射信号以产生触发信号。
文档编号G01N35/00GK1625689SQ03803047
公开日2005年6月8日 申请日期2003年1月23日 优先权日2002年1月31日
发明者詹姆斯·霍华德·库姆斯, 凯文·罗伯特·麦金太尔, 马克·奥斯卡·沃辛顿 申请人:长冈实业株式会社, 伯斯坦技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1