表面形状识别传感器及其制造方法

文档序号:6070316阅读:479来源:国知局
专利名称:表面形状识别传感器及其制造方法
技术领域
本发明涉及一种表面形状识别传感器及其制造方法,该传感器用于识别具有诸如人类指纹或动物鼻型的精密三维图案的表面形状。
背景技术
随着信息社会的发展,在现代社会环境中,安全技术得到了很大关注。例如,在信息社会中,用于建立一种系统例如一种电子金融系统的个人验证技术已经成为一个关键。为了防止盗用或未授权使用信用卡,验证技术也得到了空前的研究与发展。(参考文献1,Yoshimasa Shimizu等,“带有持卡人身份验证功能的智能卡的结构研究”,IEICE的技术报告,OFS92-32,25-30页(1992))。
现有各种验证方案例如指纹验证和声音验证。特别是,迄今为止许多指纹验证技术已经得到了发展。指纹读取方案包括一具有诸如透镜和光源的光学系统的光学方案,一应用压片的压力方案和一利用其在半导体衬底上形成传感器的半导体方案。在这些方案中,半导体方案易于微型化和通用化。半导体传感器的一个例子是利用LSI制造技术的电容指纹传感器。(参考文献2Marco Tartagni和Robert Guerrieri,“基于电容反馈探测系统的390dpi的实时指纹成像仪”,1997年IEEE国际固体电路会议,200-201页(1997))。这一指纹传感器利用电容反馈系统,其中通过具有二维排列在LSI上的小电容传感器的传感器芯片来探测皮肤的三维图案。
这种电容传感器将参照图14的剖面图在下文得以阐述。该传感器包括通过层间介电层1402形成于半导体衬底1401上的敏感电极1403,和覆盖所述敏感电极1403的钝化膜1404。尽管未在图14中示出,位于层间介电层1402下的半导体衬底1401上形成有传感电路,该传感电路是一个具有多个MOS晶体管和一个相互连接结构的集成电路。当手指作为指纹传感的对象接触到具有上述结构的传感器芯片的钝化膜1404(传感表面)时,敏感电极1403和手指皮肤作为电极以形成电容。
该电容通过与敏感电极1403的内连接(未示出)由上述的传感电路来检测。但是,因为电容指纹传感器利用皮肤作为电极,传感器芯片的内置集成电路被指尖产生的静电静电地破坏。
为防止上述电容指纹传感器的这种静电破坏,提出了一种具有电容传感器的表面形状识别传感器,其剖面结构如图15所示。图15所示的传感器的结构将在下文阐述。该传感器包括通过层间介电层1502形成于半导体衬底1501上的敏感电极1503,跟敏感电极1503有一定预定距离的应变板型可动电极1504,和支撑部件1505,其形成在敏感电极1503周围支撑以与敏感电极1503绝缘并分离,并支撑可动电极1504。
当手指作为指纹传感的对象接触到可动电极1504时,来自手指的压力使可动电极1504下压到敏感电极1503,结果提高了敏感电极1503和可动电极1504之间形成的电容。该电容通过与敏感电极1503的内连接(未示出)由半导体衬底1501上的传感电路来感知。在这种表面形状识别传感器中,当可动电极1504通过支撑部件1505接地时,即使指尖产生的静电释放到了可动电极1504上,也会通过支撑部件1505流入地下。这样保护了结合在敏感电极1503下的内置传感电路免受静电破坏。
除了图15所示的表面形状识别传感器外,又提出了一种具有图16所示的立体突起的结构1601。(参考文献3日本专利公开号2002-328003),在该结构中,来自手指1602的力比图15所示的结构能更有效地传输到可动电极1504上。
不幸的是,上述传统的指纹传感器具有的问题是无法获得期望的高灵敏度。例如,在具有图14所示结构的指纹传感器中,灵敏度根据手指表面的状态变化很大,因此不易稳定地得到高灵敏度。同时,在具有图15所示结构的指纹传感器中,上电极不能获得大的变化,这使得它不可能获得高灵敏度。
而且,在图16所示的结构中,突起1601很容易被施加在旁侧可动电极1504上的力所损坏,例如,刮擦产生的力,这降低了机械强度。另外,在图16所示的结构中,如果手指柔软,突起1601将没入手指1602中,力便分散在可动电极1504的支撑部件1505的区域内,因此降低了灵敏度。

发明内容
本发明用于解决上述问题,目的在于提供一个表面形状识别传感器以高灵敏度探测如指纹的形状并具有高机械强度。
依据本发明的表面形状识别传感器包括具有多个下电极的多个电容传感器部件,这些下电极位于衬底的同一平面上以使它们彼此相互绝缘分离,和形成于下电极上金属制造的保持预定间隔的应变板型上电极,和形成于下电极周围以绝缘分离于下电极并支撑上电极的支撑部件,和形成于上电极上的构件,该构件在每个下电极的上部区域内并与下电极一一对应,该构件包括突起部分和基本支撑突起部分中心的支撑部分,支撑部分的面积在上电极的二维方向上小于突起部分的面积。
在具有上述构造的表面形状识别传感器中,表面形状传感的对象例如指尖接触到该构件的突起表面,与传感对象接触的突起构件的支撑部件将部分上电极下推到下电极,由此使得上电极变形。
上述的表面形状识别传感器还可以包括形成于所述构件突起之上并延伸到多个构件上的弹性薄膜,由此阻止了对象从相邻构件间的间隔入侵。传感器也可以包括形成在突起周边下的周边支撑部分,该支撑部分由弹性材料制成,由此防止了构件的下落。
在上面的表面形状识别传感器中,衬底可以是其上形成集成电路的半导体衬底,下电极可以放置到形成于半导体衬底上的层间介电层,集成电路可以包括用以感知形成于下电极电容的传感电路。
依据本发明的表面形状识别传感器的制造方法的包括步骤在半导体衬底上形成层间介电层,在介电层上形成第一金属膜,形成在第一金属膜上具有第一开口部的第一掩膜图形,通过在暴露于第一掩膜图形中的第一开口部的底部的第一金属膜表面上进行电镀以形成第一金属图形,移除第一掩膜图形,和在第一金属膜和第一金属图形上形成具有环绕第一金属图形的第二开口部的第二掩膜图形,通过在暴露于第二掩膜图形中的第二开口部底部的第一金属膜表面上进行电镀以形成比第一金属图形厚的第二金属图形,移除第二掩膜图形,和利用第一和第二金属图形作为掩膜刻蚀掉第一金属膜,由此形成由第一金属膜和第一金属图形制成的下电极和由第一金属膜和第二金属图形制成的支撑部件,在层间介电层上形成第一牺牲膜以覆盖下电极和暴露支撑部件的上部,在第一牺牲膜和支撑部件上形成具有多个第三开口部的上电极,在上电极形成后通过第三开口部选择性移除第一牺牲膜,第一牺牲膜被移除后在上电极上形成密封膜,在密封膜上形成具有小于下电极之上区域内被支撑部件围绕区域的面积的第四开口部的第二牺牲膜,在第二牺牲膜上形成厚于第四开口部深度的层以填充第四开口部,在位于支撑部件上的厚层区域内形成沟槽,在每个下电极上的区域内的密封膜上形成构件与下电极一一对应,通过相邻构件间的沟槽移除第二牺牲膜,其中形成有包括下电极和上电极的多个电容传感部件。
在这种制作方法中,该构件包括突起和基本支撑突起中心的支撑部件,其形成于每个下电极上部区域的上电极上,其中支撑部分的面积在上电极的二维方向上小于突起的面积。
在上面的表面形状识别传感器制作方法中,第一牺牲膜可以通过热压方法形成于半导体衬底上,介电材料通过涂布预先形成在基质上以覆盖支撑部件和下电极中的介电材料,并从介电材料上剥落基质,由此在半导体材料上形成具有平面的薄膜,并通过回刻蚀薄膜以暴露支撑部件。
在上面的表面形状识别传感器制作方法中,可以通过用光敏感树脂涂布第四开口部的底部和第二牺牲膜的上表面形成薄膜,应用沟槽形图形经曝光和显影移除部分薄膜以形成沟槽,并热固化薄膜而形成构件。
在上面的表面形状识别传感器制作方法中,形成构件的步骤可以包括在第四开口部的底部上和第二牺牲膜上形成第二金属膜的步骤,在第二金属膜上形成具有开口部的第三掩膜图形,通过在暴露于第三掩膜图形底部的第二膜表面上进行电镀以形成第三金属图形,移除第三掩膜图形以获得沟槽的部分,利用第三金属图形作为掩膜通过刻蚀掉暴露于沟槽的部分的底部的第二金属膜以形成沟槽,和通过沟槽刻蚀掉第二牺牲膜的步骤。
上面的表面形状识别传感器制作方法可以进一步包括在密封膜上形成金属制成的刻蚀终止膜的步骤,和利用光敏感材料在刻蚀终止膜上形成第二牺牲膜。
依据本发明的另一种表面形状识别传感器制作方法包括步骤在半导体衬底上形成层间介电层在层间介电层上形成第一金属膜,通过在暴露于第一掩膜图形中的第一开口部的底部的第一金属膜表面上进行电镀形成第一金属图形,移除第一掩膜图形,和在第一金属膜和第一金属图形上形成具有环绕第一金属图形的第二开口部的第二掩膜图形,通过在暴露于第二掩膜图形中的第二开口部底部的第一金属膜表面上进行电镀以形成比第一金属图形厚的第二金属图形,移除第二掩膜图形,和利用第一金属图形和第二金属图形作为掩膜刻蚀掉第一金属膜,由此形成由第一金属膜和第一金属图形制成的下电极和由第一金属膜和第二金属图形制成的支撑部件,在层间介电层上形成第一牺牲膜以覆盖下电极和暴露支撑部件的上部,在第一牺牲膜和支撑部件上形成具有多个第三开口部的上电极,在上电极形成后通过第三开口部选择性移除第一牺牲膜,第一牺牲膜被移除后在上电极上形成密封膜,在上电极上的预定区域内形成柱形图形,在柱形图形上压合与密封膜相分离的光敏感树脂膜,通过移除部分薄膜形成由柱形图形和薄膜组成的网格形构件,其中形成有包括下电极和上电极的多个电容传感部件。
上面的表面形状传感器的制作方法可以进一步包括在构件上粘附橡胶薄膜的步骤。该方法可以进一步包括在构件上放置薄膜,和在末端区域固定薄膜的步骤,其中在末端区域中形成有多个电容传感部件。


图1A是显示根据本发明实施例的一种表面形状识别传感器的结构的截面示意图;图1B是显示根据本发明实施例的一种表面形状识别传感器的结构的截面示意图;图1C是显示表面形状识别传感器的整体结构的透视图;图2A至2P是解释根据本发明的实施例的表面形状识别传感器的一种制造方法的步骤图;图3A至3E是解释根据本发明的实施例的表面形状识别传感器的另一例制造方法的步骤图;图4A至4F是解释根据本发明的实施例的表面形状识别传感器的另一例制造方法的步骤图;图5A至5D是解释根据本发明的实施例的表面形状识别传感器的另一例制造方法的步骤图;图6是解释根据本发明的实施例的表面形状识别传感器的另一例制造方法的步骤图;图7是解释根据本发明的实施例的表面形状识别传感器的另一例制造方法的步骤图;图8是根据本发明实施例的表面形状识别传感器的另一例结构的截面示意图;图9A是根据本发明实施例的表面形状识别传感器的另一例结构的截面示意图;图9B是根据本发明实施例的表面形状识别传感器的部分平面的结构示意图;图10A至10I是解释根据本发明的实施例的表面形状识别传感器的另一例制造方法的步骤图;图11A至11F是解释根据本发明的实施例的表面形状识别传感器的另一例制造方法的步骤图;图12是用以解释传统表面形状识别传感器的识别状态的图;图13是解释根据本发明实施例的表面形状识别传感器的识别状态的图;图14是传统表面形状识别传感器结构的一例的截面示意图;图15是传统表面形状识别传感器结构的一例的截面示意图;以及图16是传统表面形状识别传感器结构的一例的截面示意图。
具体实施例方式
下面将参照附图对本发明的实施例进行描述。
首先,将参照附图1A、1B和1C在下面描述根据本发明第一实施例的一种表面形状识别传感器。图1A和1B是该传感器结构的一例的截面示意图,其中图1A主要举例说明了作为表面形状识别传感器构成单元的传感器部件(传感单元)100。例如多个传感器部件100在衬底上排成矩阵,以形成该传感器的传感表面。图1B给出了指尖作为表面形状传感对象与该传感器的传感表面接触的状态。同时,图1C的透视图中示出了表面形状识别传感器的整体结构。
传感器部件100的结构将在下文作详细解释。在由单晶硅或类似物制成的衬底101上,下电极105a经层间介电层102形成。下电极105a基本上位于传感器部件100的中心区域。支撑部件107a围绕下电极105a形成,并且支撑部件107a支撑上电极110b。
例如,支撑部件107a为一网格形部件,在每一正方形网格的中心形成下电极105a。因此,网格形支撑部件107a的每一正方形就是一个传感器部件100的区域。由于上电极110b是整体形成在支撑部件107a上的,因此一个上电极110b是为多个下电极105a形成的。而且上电极110b可以变形,并且相对下电极105a的部分是可弹性形变的,从而可以向下电极105a弯曲。
上电极110b具有一个通过密封膜111形成于其上的构件113b。构件113b由直接与其上部接触的支撑部分和从该支撑部分向外延伸的突起组成。彼此相邻的构件113b彼此相互分离,例如,每一构件113b与下电极105a是成对的。同时,如图1B所示,该构件113b形成于每一传感器部件100中。
构件113b的突起形成为在上电极110b延伸方向上不超过传感器部件100的区域。相反,构件113b的支撑部分制作得尽可能小使得能够支撑突起。
构件113b的突起仅需具有基本呈正方形平面形状。例如,当传感器部件100以50μm的间距排列时,仅需形成边长为45μm的正方形的构件113b的突起,以及将与密封膜111相接触的支撑部分形成为5μm边长的正方形。
在如图1B所示的该表面形状识别传感器中,当手指1602接触时下压构件下的上电极110b向下形变,这改变了上电极110b和下电极105a形成的电容。在这种情况下,下推力施加到构件113b的大面积突起上,该力通过构件113b的小面积支撑部分被传送到上电极110b。因此,在上电极110b上施加到每单位面积上的力增加。
如上所述,在该实施例中,当手指1602接触时施加到几乎整个传感器部件100表面上的力被集中到构件113b的支撑部分,并传送到上电极110b。因此,在该实施例中,能够增加表面形状识别传感器的灵敏度。另外,在该实施例中,相邻构件113b的间距窄,因此有可能避免构件113b没入手指1602而分散作用力。
下面将对这种表面形状识别传感器的操作进行简要解释。当手指接触排列有多个构件113b的传感表面,并下推一个构件113b时,被下推的构件113b下的传感器部件100的上电极110b下压。这种下压改变了上电极110b和下电极之间形成的电容。指纹形状可以通过形成根据在下电极105a上的电容改变的连续性特性数据来重新形成,其中电容改变与指纹形状相对应。
应当指出,当上电极110b形变时的每一个传感器单元中的传感电容和连续性特性数据的转换由例如,形成在衬底101上的集成电路(未示出)完成。需要说明的是,例如,当上电极110b接地时,即使该静电放电到上电极110b,对象内产生的静电流入地下。通过将上电极110b接地,集成电路就能受到保护而免于静电破坏。
依据上述实施例的表面形状识别传感器的制作方法将在下文进行解释。首先,如图2A所示,由氮化硅或类似物制成的层间介电层102形成在例如硅的半导体材料制成的衬底101上。尽管未示出,例如传感电路的集成电路和具有多处内连接的连接构件形成在位于层间介电层102下的衬底101上。在层间介电层102形成之后,晶种层(第一金属层)103是个两层膜,由0.1μm厚的钛膜和0.1μm厚的金膜制成,该晶种层通过气相沉积或类似方法形成。应当注意到,层间介电层102也可以由二氧化硅制成,但是当考虑到以HF-基的刻蚀程序(将在后文说明)时应优选氮化硅制成。
因此,如图2B所示,具有开口部104a厚度约5μm的抗蚀图形(第一掩膜图案)104形成在晶种层103上。抗蚀图形104由公知的光刻法制成。当抗蚀图形104形成时,由金镀膜制成的约1μm厚的金属图案(第一金属图案)105经电镀形成在暴露于开口部104a的晶种层103上。因为该膜由电镀形成,因此金镀膜不在抗蚀图形104上形成,并且金属图案105选择性地形成在暴露于开口部104a的晶种层103上。
如图2C所示,抗蚀图形104被移除后,具有开口部106a厚度为5μm的抗蚀图形(第二掩膜图案)106形成。抗蚀图形106形成以使其覆盖金属图案105,并使开口部106a位于图1所示的支撑部件107a的预定区域。当抗蚀图形106形成时,由金镀膜制成的约3μm厚的金属图案(第二金属图案)107通过电镀形成在暴露于开口部106a的晶种层103上。
当抗蚀图形106被移除后,金属图案105和107作为掩膜使用,以选择性地刻蚀晶种层103。在这种刻蚀中,包含碘、碘化胺、水和乙醇的刻蚀剂被首先用于选择性地除去作为晶种层103的上层金膜。然后,使用HF基刻蚀剂以选择性地除去作为晶种层103的下层的钛。应当注意,金的湿刻蚀的刻蚀速率是0.05μm/min。
然后,如图2E所示,具有上层金的下电极105a和绝缘并分离于下电极105a的支撑部件107a形成在衬底101上。如图1所示,支撑部件107a支撑上电极110b。并且,如图2D的平面图所示,支撑部件107a在衬底101上形成网格状。多个下电极105a排列在由网格状支撑部件107a环绕的中心区域内。
如图2E所示,当下电极105a和支撑部件107a的形成如上所述时,牺牲膜108(第一牺牲膜)形成为以覆盖下电极105a,并暴露支撑部件107a的上表面。牺牲膜108的形成将在下面进行简述。首先,在衬底101上通过旋转涂布形成光敏感性树脂膜,从而覆盖下电极105a和支撑部件107a。树脂膜具有正光敏性,例如,通过添加正光敏试剂到诸如聚酰胺、聚酰胺酸、聚苯并恶唑(或其前体)的碱性树脂(聚酰亚胺)而形成。
在加热程序(预烤烘)进行后,通过使用已知的光刻技术使支撑部件107a上的区域暴露出来,接着进行显影以暴露支撑部件107a的上部。然后,树脂膜通过加热过程固化,并通过化学机械抛光再蚀刻(etch back),因此如图2E所示使支撑部件107a和牺牲膜108基本上相平。
图2F所示,在牺牲膜108如上所述形成在牺牲膜108上之后,其中支撑部件107a的上表面变平而暴露,由0.1μm厚的钛膜和0.1μm厚的金膜形成的具有两层膜的晶种层109通过气相沉积或类似方法形成。
接着,如图2G所示,在晶种层109上形成柱形的抗蚀图形201,并且在抗蚀图形201没有形成的暴露的晶种层109的区域内,形成由约1.0μm厚的金镀层通过电镀制成的金属层110。
在抗蚀图形201被移除后,形成的金属膜110被用作掩膜,以选择性刻蚀掉晶种层109。因此,如图2H所示,形成了具有多个开口部110a的上电极110b。开口部110a具有边长为4μm的正方平面形,并且排列在支撑部件107a的四角内。
因此,如图2I所示,经过在上电极110b内的开口部110a使牺牲膜108移除,以在上电极110b下形成一个空间。通过它们之间形成的空间,使得下电极105a的上表面与上电极110的下表面以预定的距离相对。应当注意到,上电极110b受到支撑部件107a的支撑。也应当注意到,通过将衬底101暴露到主要包含氧气的等离子体中,并将等离子产生的刻蚀物质经开口部110a带入接触牺牲膜108,使牺牲膜108被移除。
如图2J所示,密封膜111被压合并且黏附到上电极110b以关闭开口部110a,而保持上电极110b和下电极105a之间的距离。压合形成的密封膜111通过使用STP(旋转涂布膜转换和热压技术)技术实现。该技术将在下文作简要解释。首先,通过涂布预先形成在表层膜上的树脂膜是在真空下被热压到上电极110b上。然后,将表层膜从树脂膜上剥落,并且通过在300℃保持1小时的热处理方法固化压合在上电极110b上的树脂膜。结果,在上电极110b上形成了由树脂膜制成的密封膜111。树脂膜由诸如聚酰胺、聚酰胺酸、聚苯并恶唑(polybenzoxazole)(或其前体)的碱性树脂(聚酰亚胺)制成。
如图2K所示,当密封膜111如上所述形成后,通过溅射将厚度约1.5μm的二氧化硅膜112沉积在密封膜111上。然后,具有边长约5μm的正方形开口部、主要在上电极110b中心、厚度约3μm的抗蚀图形通过已知的光刻技术形成。在该抗蚀图形开口部底部上的二氧化硅膜112通过HF-基的刻蚀剂刻蚀掉,然后除去抗蚀图形。结果,如图2L所示,形成了由二氧化硅膜制成并具有开口部112a的牺牲膜112b(第二牺牲膜)。
如下文所述,牺牲膜112b中的开口部112a是一个用以形成支撑构件113b的支撑部分的模子。因此,开口部112a形成以具有一个至少小于支撑部件107a围绕的部件区域的面积,优选的是小于下电极105a。同时,开口部112a位于主要是下电极105a中心以上的区域。开口部112a的深度是构件113b的支撑部分的高度。因此,牺牲膜112b的厚度设置成大致与所期望的构件113b的形状一致。
如图2M所述,厚度约10μm的光敏感性膜113通过在牺牲膜112b和密封膜111上旋转涂布形成。树脂膜具有正光敏感性,并且通过添加正光敏试剂到诸如聚酰胺、聚酰胺酸、聚苯并恶唑(或其前体)的碱性树脂(聚酰亚胺)而形成。
树脂膜113通过涂布和加热(预烤烘)形成后,主要与支撑部件107a的上部相对应的区域通过已知的光刻技术被暴露。如图2N所示,接下来进行显影以形成沟槽113a和构件113b。沟槽113a的宽度大约5μm。然后构件113b通过在300℃保持1小时的热处理方法进行固化。
然后,通过HF-基的刻蚀试剂作用于沟槽113a,牺牲膜112b被刻蚀掉。结果,如图20所示,构件113b具有了与密封膜111的上表面直接接触的支撑部分和从支撑部件延伸出去的突起。构件113b具有一个T型部分,其顶部面积大于粘附于密封膜111的部分。同时,构件113b与下电极105a一一对应形成,相邻构件113b的突起相距约5μm。
在该实施例中,构件113b的下部(支撑部分)窄于它的上部(突起),并粘附于基本位于上电极110b的中心。同时,通过构件113b的存在,位于构件113b和密封膜111之间的粘附部分正下方的上电极110b的厚度明显增加,使得上电极110b不易形变。但是,围绕粘附部分的上电极110b具有上电极110b和密封膜111的厚度,其容易形变。
构件113b和密封膜111之间的粘附部分位于上电极110b的中心,在该部分上电极110b的形变最大。因此,构件113b将来自手指的力有效地传送到上电极110b上,这有可能增加上电极110b的形变。
应当注意到,在上述实施例中二氧化硅膜被用于第二牺牲膜(牺牲膜112b)HF-基刻蚀剂被用作该膜的刻蚀剂,但本发明并不局限于该实施例。也可能由钛膜形成第二牺牲膜,并利用HF-基的蚀刻剂去除该膜。可选择地,同样可能通过电镀获得的铜膜形成第二牺牲膜,并利用含有硝酸或类似物的蚀刻剂去除该膜。
进一步,通过利用旋转涂布形成光敏感性树脂膜并利用化学机械抛光回刻蚀膜以形成平整的表面来形成牺牲膜108,但也可能借助STP技术而不使用任何化学机械抛光以利用光敏感性膜填充支撑部件107a和下电极105a,并且当需要时通过回刻蚀曝光支撑部件107a来形成平整的表面。
除上面构件之外,如图2P所示,在构件113b上也可以形成一薄膜120。对于薄膜120,例如,可以利用STP技术将约2μm厚的树脂膜粘附到构件113b的上表面。也可能粘附10μm厚的橡胶到构件113b的上表面。这避免了对象的部分进入到构件113b周围的沟槽113a中。并且,因为膜由橡胶制成,所以彼此相邻的构件113b相互间没有完全相互锁定,而是可以独立移动。
可选择地,约10μm厚的有机材料制成的膜可以制作薄膜120,并固定在排列有多个构件113a的传感表面的末端部分。在该结构中,沟槽113a完全与外界封闭,并且没有膜粘附到构件113b的上表面,因此相邻的构件113b相互间可以独立移动。
本发明的另一个实施例将在下面进行描述。
首先,如图2A到2J所示,依照同样的程序,形成下电极105a,上电极110b和类似物,上电极110b利用密封膜111进行覆盖。
然后,利用溅射或类似的方法在密封膜111上形成二氧化硅膜,利用已知的光刻技术或类似技术形成图形,由此形成了如图3A所示,具有开口部301a的牺牲膜301(第二牺牲膜)。
如图3B所示,如上所述在牺牲膜301形成后,利用气相沉积或类似的方法形成包括0.1μm厚的铬膜和0.1μm厚的金膜的两层膜的晶种层302(第二金属膜)。然后,如图3C所示,形成抗蚀图形303(第三掩膜)。抗蚀图形303是网格形图形,并在形成支撑部件107a的区域内形成。
此外,为了部分地填充抗蚀图形的正方形,在晶种层302上形成约10μm厚的金属图形(第三金属图形)304。金属图形304仅需选择性的电镀在暴露的晶种层302上。
如上所述金属图形304形成后,当抗蚀图形303被移除时,形成了如图3D所示的具有开口部304a的金属图形304。
然后,金属图形304被用作掩膜以选择性地刻蚀暴露于开口部304a底部的晶种层302。在该刻蚀过程中,包含碘、碘化胺、水和乙醇的刻蚀剂首先用以选择性除去作为晶种层302的上层的金。然后,用含有铁氰化钾和氢氧化钠的刻蚀剂选择性除去作为晶种层302(图3D)的下层的铬。
随后,经开口部304a刻蚀掉牺牲膜301。在该刻蚀过程中,使用HF-基的刻蚀剂。结果,如图3E所示,形成了上部大于下部的金属图形304的构件。
在该实施例中,使用二氧化硅作为第二牺牲膜,HF-基的刻蚀剂用作该膜的刻蚀剂,但本发明并不局限于该实施例。例如,也可能用钛作第二牺牲膜,并使用HF-基的刻蚀剂除去该膜。
也可以采用如下方法。在密封膜111上通过气相沉积(图4A)形成0.2μm厚的钛膜401(刻蚀终止膜)。然后,通过涂布形成树脂膜制成的第二牺牲膜402,并采用已知的刻蚀技术制作开口部402a。牺牲膜402具有正光敏性,例如,通过添加正光敏试剂到诸如聚酰胺、聚酰胺酸、聚苯并恶唑(或其前体)的碱性树脂(聚酰亚胺)而形成。
然后,利用气相沉积或类似方法(图4B)形成由包括0.1μm厚的钛膜和0.1μm厚的金膜的两层膜构成的晶种层403(第二金属膜)。如图4C所示,形成框架形的抗蚀图形404,并被用作掩膜图形以利用电镀在晶种层403上形成厚度约10μm的平整金膜。当移除抗蚀图形404后,如图4D所示,在抗蚀图形404移除的部分形成具有开口部的金属图形405(第三金属图形)。
之后,金属图形405用作掩膜以选择性刻蚀掉晶种层403。然后衬底101被暴露到主要包含氧气的等离子体,并将等离子产生的刻蚀物质带入接触牺牲膜402,由此移除牺牲膜402(图4E)。通过此种方式,形成了上部大于下部结构的金属图形405。
如果需要,如图4F所示,也可能使用HF-基的刻蚀剂除去密封膜111上的部分钛膜401或除去作为晶种层403的下层的钛膜,由此暴露密封膜111的表面。
在下文对本发明的另一个实施例作描述。
首先,如图2A到2J所示,依照同样的程序,形成下电极105a,上电极110b和类似物,上电极110b利用密封膜111进行覆盖(图5A)。
然后,如图5B所示,利用树脂膜在密封层111上形成构件下部501(柱形图形)。构件下部501具有边长约5μm的基本正方形平面图形。树脂具有正光敏性,例如,通过添加正光敏试剂到诸如聚酰胺、聚酰胺酸、聚苯并恶唑(或其前体)的碱性树脂(聚酰亚胺)而形成。
此后通过旋转涂布在密封膜111上形成厚度约5μm的树脂膜,如图5B所示,除了上电极的中心部分边长约5μm的正方形区域外,利用已知的光刻技术通过曝光和显影将树脂膜从其它区域除去。此后,通过在300℃保持1小时的热处理方法固化树脂膜。由此形成树脂膜制成的构件下部501。
然后,使用STP技术通过热压对树脂膜502进行压合。树脂膜502具有正光敏性,例如,通过添加正光敏试剂到诸如聚酰胺、聚酰胺酸、聚苯并恶唑(或其前体)的碱性树脂(聚酰亚胺)而形成。在该压合中,通过涂布在薄膜上形成的树脂膜被热压并压合到构件下部501,使得树脂膜进入并与构件下部501接触,而不与密封膜111接触。此后,如图5C所示,仅薄膜被剥落以形成树脂膜502。
如上所述在树脂膜502形成后,使用已知的光刻技术将树脂膜502图形化。在该图形化中,支撑部件107a上周边上的树脂膜502通过框架形图形被曝光并被显影。通过该图形化,如图5D所示,形成开口部502a和构件上部502b。此后具有开口部502a的构件上部502b通过在300℃保持1小时的热处理方法被固化。由此,形成了由构件下部501和构件上部502b构成的构件503。
在参照图5A到5D进行解释的该实施例中,STP技术被用以形成具有上部大于下部的构件。因此,该实施例省去了形成和刻蚀掉牺牲膜的步骤,使得制造表面形状识别传感器的步骤减少成为可能。
在该实施例中,如图5A所示,具有均匀厚度的膜被用作密封膜111,但本发明并不局限该实施例。例如,如图6所示,也可能使用集成有与构件下部相对应的突起601a的密封膜601。
密封膜601可以按如下方法制成。首先,通过STP技术将6μm厚的树脂膜压合并粘附到上电极110b上,由此,封闭开口部110a。然后,如图6所示,对除相应于构件下部的部分之外的区域进行曝光和显影以使其变薄,由此形成具有突起601a的密封膜601。
虽然在图5D中树脂膜502在与构件下部501的上表面接触时形成,但本发明并不局限于这种结构。
例如,如图7所示,密封膜601的突起601a的上部也可以装配于上构件701的下部,只要上构件701的下表面不与密封膜601的下构件之外的区域接触。
在前文的描述中,形成构件下部的支撑部分由一个部件组成,但本发明并不局限该结构。例如,如图8所示,构件801的支撑部分也可以由多个柱802制成。应当注意如图8所示的其它结构与图1A到1C相同,因此属于它的解释将被省略。
而且,如上所述,作为构件上部的突起由基本形成在突起中心的支撑部分进行支撑,但是本发明并不局限于该结构。如图9A和9B所示,由弹性材料构成的周边支撑部分902可以形成在具有长方形平面形状的构件901的突起四角,其中构件901由基本形成于中心的支撑部分901a所支撑。周边支撑部分902可以由例如橡胶或线圈弹簧制成。周边支撑部分902可以防止构件901的下落。
当将构件901下推到下电极105a时,由弹性材料制成的周边支撑部分902弹性形变并挤压,通过形成于中心的支撑部分901a将密封膜111和上电极110b下推。即使如上所述当周边支撑部分902形成时,力通过构件901到上电极110b的传输不会受到阻碍,因为周边支撑部分902是由弹性材料制成。
下文将对利用不同材料制成的作为构件下部的支撑部分和作为构件上部的突起的结构作解释。
首先,如图2A到2J所示,依照同样的程序,形成下电极105a,上电极110b和类似物,上电极110b利用密封膜111进行覆盖。随后,在密封膜111上利用气相沉积溅射或类似方法形成由包括0.1μm厚的钛膜和0.1μm厚的铜膜的两层膜构成的晶种层1001,利用已知的光刻技术为每一传感部件(图10A)形成抗蚀图形1002。抗蚀图形1002是一具有形成在作为构件下部的部分内(将在下文进行描述)的长方形平面形状的图形。
如图10B所示,铜通过电镀被沉积在暴露于抗蚀图形1002周围的晶种层1001上,由此形成铜牺牲膜1003。
然后,如图10C所示,抗蚀图形1002被移除,牺牲膜1003被用作掩膜以除去抗蚀图形1002下的晶种层1001,如图10C所示,由此暴露下电极105a上的密封膜111的上表面到开口部1003a。
然后,光敏感性聚酰胺膜形成在牺牲膜103上,并通过光刻技术形成图形,由此形成如图10D所示的由聚酰胺(树脂)制成的构件下部1004。
如图10E所示,形成晶种层1005以覆盖构件下部1004和牺牲膜1003的表面,然后形成抗蚀图形1006。晶种层1005是两层膜包括由0.1μm钛膜形成的上层和0.1μm金膜形成的下层。而且,抗蚀图形1006是网格形图形,并形成于支撑部件107a形成的区域。
如图10F所示,在晶种层1005上形成大约5μm厚的金膜1007以部分填充抗蚀图形1006的正方形。通过电镀在曝光的晶种层1005上镀金以形成金膜1007。
然后,如图10G所示,抗蚀图形1006被除去,以在每个传感器部件内形成金制的构件上部1008。
如图10H所示,通过湿刻蚀使用构件上部1008作为掩膜以除去晶种层1005。例如,可以使用包含碘、碘化胺、水和乙醇的刻蚀剂以刻蚀作为晶种层1005的上层的金。而且,通过使用HF-基的刻蚀试剂刻蚀作为晶种层1003的下层的钛。结果,将牺牲膜1003的上表面暴露到构件上部1008的周围。
最后,如图10I所示,在暴露于构件上部1008周围的区域内,由铜制成的牺牲膜1003通过含有硝酸的刻蚀剂进行刻蚀,作为晶种层1001的下层的钛由HF-基的蚀刻剂进行刻蚀。由此形成了由聚酰胺制成的构件下部1004和由金制成的构件上部1008组成的构件。该构件具有一作为构件上部1008的突起,和一基本上支撑构件上部1008中心的构件下部1004。构件在每个传感器芯片内的下电极105a的位置形成。
在如图10I所示的表面形状识别传感器中,上电极110b上形成的构件突起由金属制成。因此,突起是一具有高杨氏模量的刚体,并不容易变形,当指纹形状被探测时几乎不会受到上电极变形的干扰。而且与由合成树脂制成的突起相比较,即使厚度减小,刚性也可以得到保证,因此如图10I所示的表面形状识别传感器可以在短期内制成。
由不同材料制成的作为构件下部的支撑部和作为构件上部的突起的另一例结构将在下文进行解释。
依照如图2A到2J所示同样的过程,形成下电极105a,上电极110b和类似物,并用密封膜111覆盖上电极110b。随后在密封膜111上通过例如气相沉积或溅射形成钛制的0.1μm厚的粘附层,在粘附层1101上形成聚酰胺层1102,在聚酰胺层1102(图11A)上形成晶种层1103。通过旋转涂布和聚酰胺树脂的热固化形成聚酰胺层1102。并且,晶种层是一双层膜,其包括由0.1μm厚的钛膜制成的下层和由0.1μm厚的金膜制成的上层。在晶种层1103内,钛下层改善了对聚酰胺层1102的粘附。
随后,如图11B所示,利用已知的光刻技术在晶种层1103上形成抗蚀图形1104。抗蚀图形1104是网格形图形,并在支撑部件107a形成的区域内形成。
如图11C所示,厚度约5μm的金膜1105在晶种层1103上形成以部分地填充抗蚀图形1104的正方形。通过电镀在曝光的晶种层1103上镀金以形成5μm厚的金膜1105。
然后,如图11D所示,抗蚀图形1104被移除以在每个传感部件内形成金制的构件上部1106。而且,通过把构件上部1106作为掩膜应用湿刻蚀移除晶种层1103。例如,可以使用包含碘、碘化胺、水和乙醇的刻蚀剂除去作为晶种层1103的上层的金。而且,通过使用HF-基的刻蚀试剂刻蚀作为晶种层1103的下层的钛。结果,聚酰胺层1102的上表面被暴露于构件上部1106的周围。
最后,如图11E所示,在暴露于构件上部1106周围的区域内,采用氧等离子体通过干刻蚀法刻蚀预定数量的聚酰胺层1102,由此形成了由聚酰胺制成的构件下部1107。在该状态下,构件下部1107的下表面经粘附层1101被连接并被固定在密封膜111上,构件下部1107的上表面经晶种层1103被连接并被固定到构件上部1106。
应当注意到,如图11F所示,也可能通过湿刻蚀移除与构件下部1107接触的粘附层1101和晶种层1103之外的部分。
在如前所述的本发明中,由一突起和一个基本上支撑突起中心的支撑部分组成的构件形成在每个下电极上部区域内的上电极上,其中在上电极的二维方向上支撑部分的面积小于突起的面积。在具有这种结构的表面形状识别传感器中,表面形状传感对象例如指尖接触构件突起的表面,突起与传感对象接触的构件的支撑部分下推部分上电极到下电极,由此使上电极变形。
该构件能有效的将来自指尖的力传送到上电极,增加上电极的形变,由此提高了这种传感器的传感灵敏度。
例如,图12所示,在没有突起的传统构件中如果作为指纹传感对象的手指是柔软的,即使当手指的推力增加,传感器的输出也不会大量增加。相反,在具有突起的本发明的结构中即使手指的表面是柔软的,可以通过增加指尖的力来获得与硬手指相等的传感器输出。
同时,在本发明的结构中,相邻构件的间距窄,每个构件的上表面基本上是个平面,因此可以获得一个显著的结构而不易损坏传感器,即使传感对象例如具有高机械强度的指力被施加到旁侧。
如上所述,依据本发明的表面形状识别传感器适于高准确性感知指纹。
权利要求
1.一种表面形状识别传感器,其特征在于包括多个电容传感部件,其包含排列在衬底的同一个平面上的多个下电极,以使其相互间彼此绝缘分离,以及形成在彼此间具有预定距离的所述下电极上的应变板形上电极,并由金属制成;支撑部件,其形成于所述下电极周围以使其彼此绝缘和分离,并支撑所述上电极;和在每个所述下电极的上部区域内的所述上电极上形成并与所述下电极一一对应的构件,其中所述构件包括突起和基本上支撑所述突起的中心的支撑部分,和所述支撑部分的面积在所述上电极的二维方向上小于所述突起的面积。
2.根据权利要求1的表面形状识别传感器,其特征在于进一步包括弹性薄膜,其在所述构件的所述突起上形成并延伸到多个所述构件上。
3.根据权利要求1的表面形状识别传感器,其特征在于进一步包括周边支撑部分,其在所述突起周边下形成并由弹性材料制成。
4.根据权利要求1的表面形状识别传感器,其特征在于所述衬底是一集成电路形成于其上的半导体衬底,所述下电极置于形成于所述半导体衬底上的层间介电层上,所述集成电路包括一探测形成于所述下电极上的电容的传感电路。
5.一种表面形状识别传感器制造方法,包括步骤在半导体衬底上形成层间介电层;在介电层上形成第一金属膜;在第一金属膜上形成具有第一开口部的第一掩膜图形;通过在暴露于第一掩膜图形中的第一开口部的底部的第一金属膜表面上进行电镀以形成第一金属图形;移除第一掩膜图形,并在第一金属膜和第一金属图形上形成具有环绕第一金属图形的第二开口部的第二掩膜图形;通过在暴露于第二掩膜图形中的第二开口部的底部的第一金属膜表面上进行电镀以形成比第一金属图形厚的第二金属图形;移除第二掩膜图形,并利用第一金属图形和第二金属图形作为掩膜刻蚀掉第一金属膜,由此形成由第一金属膜和第一金属图形制成的下电极,和由第一金属膜和第二金属图形制成的支撑部件;在层间介电层上形成第一牺牲膜以覆盖下电极和暴露支撑部件的上部;形成具有在第一牺牲膜上有多个第三开口部和支撑部件的上电极;在上电极形成后通过第三开口部选择性地移除第一牺牲膜;第一牺牲膜被移除后在上电极上形成密封膜;在密封膜上形成具有小于下电极之上区域内被支撑部件围绕区域的面积的第四开口部的第二牺牲膜;在第二牺牲膜上形成厚于第四开口部的深度的层以填充第四开口部;在位于支撑部件上的区域内形成厚层的沟槽,在每个下电极上的区域内的密封膜上形成构件并与下电极一一对应;通过相邻构件间的沟槽移除第二牺牲膜;其中形成有包括下电极和上电极的多个电容传感部件。
6.根据权利要求5的表面形状识别传感器的制造方法,其特征在于通过热压方法在半导体衬底上形成第一牺牲膜,介电材料通过涂布预先形成在基质上以覆盖支撑部件和下电极中的介电材料,并从介电材料上剥落基质,由此在半导体材料上形成具有平面的薄膜,以及通过回刻蚀薄膜以暴露支撑部件。
7.根据权利要求5的表面形状识别传感器的制造方法,其特征在于通过用光敏感树脂涂布第四开口部的底部和第二牺牲膜的上表面以形成一层薄膜,应用沟槽形图形通过曝光和显影移除部分薄膜以形成沟槽,以及热固化薄膜而形成构件。
8.根据权利要求5的表面形状识别传感器的制造方法,其特征在于形成构件的步骤包括步骤在第四开口部的底部上和第二牺牲膜上形成第二金属膜;在第二金属膜上形成具有开口部的第三掩膜图形;通过在暴露于第三掩膜图形的底部的第二膜的表面上进行电镀以形成第三金属图形;移除第三掩膜图形以获得沟槽的部分;利用第三金属图形作为掩膜通过刻蚀掉暴露于沟槽的部分的底部的第二金属膜以形成沟槽;以及通过沟槽刻蚀掉第二牺牲膜。
9.根据权利要求5的表面形状识别传感器的制造方法,其特征在于进一步包括步骤在密封膜上形成金属制成的刻蚀终止膜;和利用光敏感材料在刻蚀终止膜上形成第二牺牲膜。
10.一种表面形状识别传感器的制造方法,包括步骤在半导体衬底上形成层间介电层;在层间介电层上形成第一金属膜;通过在暴露于第一掩膜图形中的第一开口部的底部的第一金属膜表面上进行电镀以形成第一金属图形;移除第一掩膜图形,以及在第一金属膜和第一金属图形上形成具有环绕第一金属图形的第二开口部的第二掩膜图形;通过在暴露于第二掩膜图形中的第二开口部的底部的第一金属膜表面上进行电镀以形成比第一金属图形厚的第二金属图形;移除第二掩膜图形,以及利用第一金属图形和第二金属图形作为掩膜刻蚀掉第一金属膜,由此形成由第一金属膜和第一金属图形制成的下电极,和由第一金属膜和第二金属图形制成的支撑部件;在层间介电层上形成第一牺牲膜以覆盖下电极和暴露支撑部件的上部;形成具有在第一牺牲膜上有多个第三开口部和支撑部件的上电极;在上电极形成后通过第三开口部选择性地移除第一牺牲膜;第一牺牲膜被移除后在上电极上形成密封膜;在上电极上的预定区域内形成柱形图形;在柱形图形上压合与密封膜相分离的光敏感树脂膜;以及通过移除薄膜的部分形成由柱形图形和薄膜组成的网格形构件,其中形成有包括下电极和上电极的多个电容传感部件。
11.根据权利要求5的表面形状识别传感器的制造方法,其特征在于进一步包括在构件上粘附橡胶薄膜的步骤。
12.根据权利要求5的表面形状识别传感器的制造方法,其特征在于进一步包括在构件上放置薄膜,以及在末端区域固定薄膜的步骤,其中末端区域中形成有多个电容传感部件。
全文摘要
一种包括突起和基本支撑突起中心的支撑部分的构件(113b),其形成在每个下电极的上部区域内的上电极(110a)上,并与下电极(105a)一一对应,其中支撑部分的面积在上电极(110b)的二维方向小于突起部分的面积。表面形状传感对象例如指尖(1602)接触到该构件(113b)的突起表面,与传感对象接触的突起构件(113b)的支撑部件将部分上电极(110a)下推到下电极(105a),由此使得上电极(110a)变形。
文档编号G01B7/28GK1697960SQ20048000016
公开日2005年11月16日 申请日期2004年2月13日 优先权日2003年2月17日
发明者佐藤升男, 町田克之, 重松智志, 森村浩季 申请人:日本电信电话株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1