延时受控无条纹光谱相位干涉脉冲测量方法及其测量装置的制作方法

文档序号:6098933阅读:139来源:国知局
专利名称:延时受控无条纹光谱相位干涉脉冲测量方法及其测量装置的制作方法
技术领域
本发明涉及一种用于超短激光脉冲的测量方法,以及能够实施这个方法的测量装置。该测量方法是一种延时受控的无条纹的光谱相位干涉法。
背景技术
目前,飞秒激光技术得到了极大的发展,飞秒脉冲的产生、整形和应用要求精确测量脉冲的形状和相位结构。传统的自相关法只能对脉冲的宽度进行估算,已不能适应实际的需要。而频率分辨光学开关法(FROG)和光谱相位相干电场重构法(SPIDER)因相对简单和实用,能够给出脉冲的全部信息,已成为评价飞秒脉冲的标准方法。
相对于FROG方法,SPIDER需要采集的数据量少,反演算法较简单,速度快,能实时监测,并能实现单个脉冲的测量。遗憾的是它难以准确测量相位和光谱结构比较复杂的脉冲,以及宽度长于1皮秒的脉冲,限制了其应用的普遍性。例如,由于脉冲整形技术容易合成出比较复杂的脉冲,目前很少采用SPIDER来监测脉冲整形的效果,而主要使用FROG。由于FROG重构脉冲的速度较慢,因而脉冲整形的速度受到了一定的限制。
我们发现,SPIDER的局限性,来源于它所采用的光学结构。它用两个共线传播的相互延时为τ的待测脉冲的复制脉冲,分别与一个啁啾长脉冲的频率差为Ω的单色成分进行和频,从而产生一对相互延时为τ的频谱剪切的和频脉冲,发生光谱干涉。其干涉光谱的强度分布表示为D(ω)=D1(ω)+D2(ω)+2D1(ω)D2(ω)×cos[Δφ(ω)+ωτ]---(1)]]>其中,D1(ω)和D2(ω)分别表示单个和频脉冲的光谱强度;Δφ(ω)=φ(ω+Ω)-φ(ω)是待测脉冲的间隔为Ω的频谱成分之间的相位差。将求得的各个频率的Δφ(ω)值串连起来,就可重构脉冲的光谱相位φ(ω)。
对于绝大多数的脉冲,只要频谱剪切量Ω不太大,在任一频率ω,都可满足-π/2<Δφ(ω)<π/2。但传统SPIDER的结构决定了τ是一个很大的量(一般为1-5ps),在待测脉冲的整个频谱范围内,ωτ的值分布在几十个乃至上百个余弦函数的单值区间,于是干涉频谱图呈现稠密的条纹。这样cos[Δφ(ω)+ωτ]是周期函数,而不是单值函数。在ωτ~nπ(n为整数)对应的频率位置上,就不能由cos[Δφ(ω)+ωτ]的值导出唯一的Δφ(ω),因为无法确定Δφ(ω)的正负甚至幅值。而这些存在非唯一解的频率位置,可能有近百个之多。
为了实现脉冲相位的重构,SPIDER假定D1(ω)、D2(ω)和Δφ(ω)随ω的变化比ωτ缓慢许多,于是将公式(1)等号右边的项划分为直流和交流两个部分,并进行傅里叶变换滤波处理,来求解Δφ(ω)曲线。这实际上是假定待测脉冲相邻频率的Δφ(ω)是连续缓慢变化的,因而可借助它们在符号和幅值上的关联性,来消除某些频率位置上因余弦函数的周期性引起的歧异性。不幸的是,上述假定只能适用于简单脉冲,而不适用于光谱或/和相位结构存在突变的复杂脉冲。若对复杂脉冲的干涉频谱进行傅里叶变换滤波,则脉冲的D1(ω)、D2(ω)和Δφ(ω)曲线中的瞬变信息必将导致原来所谓的直流和交流成分发生部分的重叠,而且会存在某些超高延时的成分,远离位于t=+τ的傅里叶变换滤波的窗口。这样,一部分Δφ(ω)的瞬变信息就容易丢失,而一部分D1(ω)和D2(ω)的瞬变信息却混入滤波窗口内,使得滤波窗口内所包含的,并非是全部的、纯粹的Δφ(ω)的信息,从而会导致脉冲相位的重构出现明显的偏差。
另外,若要测量脉宽较大的脉冲,就需调节更大的延时τ,才能确保分别与两个复制脉冲发生和频的啁啾脉冲的两个频率成分的单色性,这样将导致干涉频谱的条纹更加稠密。一般来说,当要测量的脉冲宽度大于1皮秒时,其干涉频谱的条纹将因为过于稠密,而无法被光谱仪分辨。

发明内容
本发明的目的是提供一种超短脉冲的测量方法,该方法能够实时地、准确地重构各种光谱和相位结构的脉冲,得到脉冲的形状和相位结构。
本发明方法采用了经改进的光学结构,如图1所示。该光学结构由分束镜1、光栅2、直角反射镜3、安装在精密平移台上的反射镜4、带单缝的望远镜扩束器5、双缝光阑6、玻璃薄片7、反射镜8、可将脉冲的偏振方向旋转90°的潜望镜9、安装在精密平移台上的直角反射镜10、凹面反射镜11、二类匹配和频晶体12、由压电驱动的反射镜13、反射镜14、凹面反射镜15、光栅光谱仪16依照被测量脉冲传播路径排列而成。被测量的脉冲的传播路径分两路进行一路由分束镜1透射进入光栅2,经光栅2、直角反射镜3、光栅2、反射镜4反射进入带单缝的望远镜扩束器5、双缝光阑6、玻璃薄片7,形成两个准单色长脉冲,再经反射镜(8)、凹面反射镜(11)反射进入二类匹配和频晶体(12);另一路由分束镜(1)反射进入可将脉冲的偏振方向旋转90°的潜望镜(9)、经直角反射镜(10)反射,在反射镜(8)的上方通过,由凹面反射镜(11)反射进入二类匹配和频晶体(12)的同一位置。由三个脉冲相互作用而同时生成的两个和频脉冲,经由压电驱动的反射镜(13)、反射镜(14)、凹面反射镜(15)反射进入光栅光谱仪(16)。反射镜13和反射镜14可用一块落差合适的阶梯反射镜代替。
本发明测量方法的基本理论1.改变SPIDER的光学结构,将延时τ大大缩小,消除干涉频谱的稠密条纹。
本方法采用如图1的测量光学结构。待测脉冲经分束片分成两路,一路经色散器件(由一个光栅和一个直角反射镜,或者一对光栅组成)将其光谱横向展开,再由双缝光阑选取出两个频率差为Ω(频谱剪切量)的准单色的长脉冲,并用合适厚度的玻片补偿两脉冲之间因色散引起的光程差;另一路由潜望镜将其偏振面旋转90°。这样,可得到三个相互平行的同时传播的脉冲单个复制脉冲和两个准单色长脉冲。把它们聚焦到二类匹配和频晶体上,将同时生成一对频谱剪切的和频脉冲。这时延时τ=0,干涉频谱图将呈现无条纹的特征。但这时cos[Δφ(ω)+ωτ]=cos[Δφ(ω)],并不能确定Δφ(ω)的正负。
2.对延时τ进行精确控制,使cos[Δφ(ω)+ωτ]成为单值函数。
利用压电陶瓷驱动单个反射镜,在和频脉冲对之间精确地引入小量的延时τ,使得对应于和频脉冲的某个频率ωa,有ωaτ=mπ+π/2(m为某个很小的整数),则cos[Δφ(ω)+]ωτ=cos[Δφ(ω)+(ω-ωa)τ+ωaτ]]]>=sin[Δφ(ω)+a(ω)](m=±1,±3,±5,...)-sin[Δφ(ω)+a(ω)](m=0±,2,±4,...)---(2)]]>其中a(ω)=(ω-ωa)τ。一般情况下,由于脉冲的频谱宽度Δω<<ω,所以|a(ω)|<<π/2。结合公式(1)和(2),可得Δφ(ω)=±sin-1{[D(ω)-D1(ω)-D2(ω)]/2D1(ω)D2(ω)}-a(ω)---(3)]]>从上式可知,只要任一频率ω的Δφ(ω)的实际值,落在{-π/2-a(ω),π/2-a(ω)}的范围内,cos[Δφ(ω)+ωτ]就是单值的,能够从中求得唯一的Δφ(ω)。而对大多数的脉冲来说,这个单值范围是十分足够的。所以,用光谱仪录得D1(ω)、D2(ω)和D(ω)三条数据曲线,就可利用公式(3),逐点计算各个频率的Δφ(ω),无需采用傅里叶变换滤波的处理。
具体做法是1)先将一个待测脉冲用分束镜分成两路,一路光束经光栅加直角反射镜将其光谱横向展开,并利用双缝光阑选取出两个频谱稍有差别的准单色长脉冲;另一路光束经潜望镜将偏振旋转90°,作为单一的复制脉冲;2)将这三个脉冲聚焦入射和频晶体的同一位置,可同时产生两个频谱剪切的和频脉冲;并通过压电驱动单个反射镜,或者使用一个落差合适的阶梯反射镜的措施,在这两个和频脉冲之间精确地引入合适的小量延时τ,使ωτ值约等于±π/2,±3π/2,±5π/2的其中之一;这样两个脉冲的干涉光谱D(ω)将不呈现明显的干涉条纹;3)结合测得的单个和频脉冲的光谱D1(ω)和D2(ω),可直接由公式Δφ(ω)=±sin-1{[D(ω)-D1(ω)-D2(ω)]/2D1(ω)D2(ω)}-a(ω),]]>逐点计算脉冲的光谱相位差Δφ(ω)曲线,最终实现脉冲的重构。
结合本发明的测量装置,具体测量步骤如下1)让待测脉冲入射到图1所示的光学系统的分束镜1;2)调节光学系统的双缝光阑9的宽度和间距,获得两个频率稍有差别的准单色长脉冲;3)调整待测脉冲与步骤2所得到的两个准单色长脉冲的同步调节直角反射镜10的平移台,可调整复制待测脉冲与两个准单色长脉冲之间的时差;调节玻璃薄片7的转角(或插入不同厚度的玻片),可调整两个准单色长脉冲之间的时差。一般以和频脉冲的强度达到最大值作为依据,来判定三个脉冲是否同步入射晶体。
通常准单色长脉冲的宽度远大于待测脉冲,所以对脉冲同步精度的要求不高,而且不会影响脉冲测量的准确度,只会影响和频效率,即影响测量的灵敏度。
4)调节和校正延时τ将望远镜扩束器5推入光路,同时移开玻片7,则双缝光阑6选取的两个准单色长脉冲的频率没有差别(即频谱剪切量Ω=0)。这样生成的和频脉冲对就无光谱剪切,所以Δφ(ω)≡0,其干涉光谱强度只与τ有关。用光谱仪16测量单个和频脉冲的光谱D1(ω)和D2(ω),及其干涉频谱D(ω),就可利用公式(1)确定延时τ值。如果这时不满足ωτ~mπ+π/2的条件(m为某个很小的整数,如0,±1,±2等),就用压电驱动反射镜13来改变延时,并记录相应的D(ω)来计算延时τ。需反复调节,直至上述条件满足为止。
5)用光谱仪记录待测脉冲的单个和频脉冲的光谱D1(ω)、D2(ω)和干涉频谱D(ω)将望远镜扩束器5移开,并将玻片7推回原位置,由光谱仪记录单个和频脉冲的光谱D1(ω)和D2(ω),及其干涉频谱D(ω)。
6)校正频谱剪切量Ω分别测量两个准单色长脉冲的中心频率并直接相减,可得到频谱剪切量Ω值;也可由D1(ω)和D2(ω)频谱的相对平移量来确定。
7)待测脉冲的重构利用公式Δφ(ω)=±sin-1{[D(ω)-D1(ω)-D2(ω)]/2D1(ω)D2(ω)}-a(ω),]]>计算待测脉冲的Δφ(ω)曲线,然后将它们串连起来,就得到脉冲的光谱相位φ(ω)曲线。结合另外测得的待测脉冲的光谱曲线,经傅里叶变换,就可得到脉冲的时域表示式,即得到待测脉冲的形状和相位结构。
以上方法的实验条件(1)与传统SPIDER一样,新的测量系统必须保持高度的机械稳定性,否则和频脉冲的干涉光谱会因震动、空气流动等因素发生变化,就不能得到正确的结果。
(2)待测脉冲必须是相干性较好的激光脉冲,这样才有稳定的干涉光谱。该方法一般不适用于荧光脉冲的测量。
这里需要说明的是(1)在测量系统调好之后,要测量其它的脉冲,如果没有震动等因素使延时τ改变,又不需要改变Ω值,可以直接执行步骤1)、5)和7),就可完成脉冲的重构。若不能保证延时τ在长时间内不发生改变,则可执行步骤1)、4)、5)和7)对脉冲进行测量。
(2)尽管两个和频脉冲在晶体内是同时生成的,但由于它们的传播方向略有差异,而和频晶体的厚度不一定十分均匀,所以两个和频脉冲出射晶体时,可能存在一个初始延时τ0,其大小与两个脉冲的传播路径有关。执行步骤4)的操作,测得的延时τ是综合的延时,是反射镜13和14之间产生的延时与初始延时τ0之和。
(3)若通过选取不同间距的双缝来改变频谱剪切量Ω,则至少有一个和频脉冲的传播方向会发生改变,初始延时τ0的值也可能改变。这时要重新执行步骤4),来校正和调整总的延时τ,使之满足测量条件。
(4)为提高系统的机械稳定性,可用单个落差合适的阶梯反射镜,代替反射镜13和14,作为延时τ的引入机制。这样做的好处是,一旦延时τ值调整到合适的值,就不易发生改变,为以后测量其它脉冲带来极大的方便。延时τ值的校正可采用类似于步骤4)的操作,可通过转动阶梯镜来获得合适的延时量,但需要相应地调整凹面反射镜15的方向,才能使光束入射光谱仪16。
采用本方法的优点,在于每一个Δφ(ω)的值都是独立求得的,无需借助相邻频率的Δφ(ω)的关联性来确定其符号和幅值。所以,就算相邻频率的Δφ(ω)之间有较大的差异,也不影响整个Δφ(ω)曲线的求解。这就对复杂脉冲的测量非常有利。此外,由于D1(ω)、D2(ω)直接参与Δφ(ω)曲线的计算,所以它们中的瞬变信息,并不会影响求解Δφ(ω)的准确性。
另外,新系统中延时τ的引入,与待测脉冲的宽度无关,因而新方法可消除对长脉冲测量的限制。理论上,新方法应具有与FROG相近的普适性,可以测量从几个fs到近百ps的任意脉冲。


图1为本发明的新的光学系统的结构图。虚线表示和频脉冲的传播路径。
图2为待测脉冲的光谱强度(实线)和相位曲线(虚线)。
图3为光谱剪切量Ω=2π×1.5THz时,对应的两个和频脉冲的光谱,以及实际的光谱相位差Δφ(ω)曲线。
图4为两个和频脉冲在延时τ=0.33,1.00fs的干涉光谱。
图5为不同的小量延时τ对应的cos[Δφ(ω)+ωτ]曲线。
图1中,该光学结构由分束镜1、光栅2、直角反射镜3、安装在精密平移台上的反射镜4、带单缝的望远镜扩束器5、双缝光阑6、玻璃薄片7、反射镜8、可将脉冲的偏振方向旋转90°的潜望镜9、安装在精密平移台上的直角反射镜10、凹面反射镜11、二类匹配和频晶体12、由压电驱动的反射镜13、反射镜14、凹面反射镜15、光栅光谱仪16依照被测量脉冲传播路径排列而成。被测量的脉冲的传播路径分两路进行一路由分束镜1透射进入光栅2,经光栅2、直角反射镜3、光栅2、反射镜4反射进入带单缝的望远镜扩束器5、双缝光阑6、玻璃薄片7,形成两个准单色长脉冲,再经反射镜(8)、凹面反射镜(11)反射进入二类匹配和频晶体(12);另一路由分束镜(1)反射进入可将脉冲的偏振方向旋转90°的潜望镜(9)、经直角反射镜(10)反射,在反射镜(8)的上方通过,由凹面反射镜(11)反射进入二类匹配和频晶体(12)的同一位置。由三个脉冲相互作用而同时生成的两个和频脉冲,经由压电驱动的反射镜(13)、反射镜(14)、凹面反射镜(15)反射进入光栅光谱仪(16)。反射镜13和反射镜14可用一块落差合适的阶梯反射镜代替。
具体实施例方式
假设利用脉冲整形技术产生的飞秒脉冲有如图2所示的光谱和相位结构。该脉冲宽度约为60fs,中心频率ω0=2π×375THz(即中心波长λ0=800nm),其光谱相位曲线的某处存在一个跃变。
当脉冲进入图1所示的光学系统后,由双缝选出两个圆频率分别为ω1=2π×375THz和ω2=2π×376.5THz(即Ω=2π×1.5THz)的准单色长脉冲,它们将独立地与同一复制脉冲在晶体内发生和频效应,从而生成两个和频脉冲。为简单起见,假设脉冲不同的频率成分的和频效率相等,则这两个和频脉冲的光谱强度D1(ω)和D2(ω)曲线,以及相应的光谱相位差Δφ(ω)曲线,应如图3所示。通过压电装置驱动其中一个反射镜,可精确控制这两个脉冲之间的延时τ,最后聚焦入射到光谱仪,由CCD记录其干涉光谱。τ值不同,得到的干涉频谱D(ω)就不同。例如,调节τ分别等于0.33和1.00fs,则对应于ωa=2π×750THz,ωaτ的值分别为π/2和3π/2。这两个延时所对应的干涉频谱D(ω)如图4所示。
可以看出,由于τ很小,这两个干涉频谱图都不出现稠密的条纹,干涉图案主要由D1(ω)、D2(ω)和Δφ(ω)的变化特性决定。直接利用公式(3),就可逐点求解出Δφ(ω)曲线,应与图3中的实际曲线一致。将这些Δφ(ω)串联起来,就可重构脉冲的光谱相位φ(ω),最终能求得脉冲的时域表示,获得脉冲的全部信息。
为了说明用新方法重构脉冲的准确性,在此将求解的过程作分步阐述。在校正了频谱剪切量Ω和延时τ值,并记录了和频脉冲的光谱D1(ω)、D2(ω)和D(ω)后,就可由公式(1),逐点计算出相应的cos[Δφ(ω)+ωτ]曲线(如图5)。由公式(2)可知,当ωaτ=π/2,3π/2时,cos[Δφ(ω)+ωτ]分别等于-sin[Δφ(ω)+a(ω)]和sin[Δφ(ω)+a(ω)],而|a(ω)|<<π/2。因此,这两条曲线都充分反映了各处Δφ(ω)的幅值和符号的信息。所以采用其中一条,都可直接求出Δφ(ω)曲线。由于实际上脉冲的每个Δφ(ω)值,的确都没有超出有效取值范围{-π/2-a(ω),π/2-a(ω)],所以该脉冲的重构就不会有偏差,而且准确度很高。
权利要求
1.一种利用光谱相位干涉测量超短激光脉冲的方法,其特征是一种延时受控的无条纹的光谱相位干涉法,具体做法是1)先将一个待测脉冲用分束镜分成两路,一路光束经光栅加直角反射镜将其光谱横向展开,并利用双缝光阑选取出两个频谱稍有差别的准单色长脉冲;另一路光束经潜望镜将偏振旋转90°,作为单一的复制脉冲;2)将这三个脉冲聚焦入射和频晶体的同一位置,可同时产生两个频谱剪切的和频脉冲;并通过压电驱动单个反射镜,或者使用一个落差合适的阶梯反射镜的措施,在这两个和频脉冲之间精确地引入合适的小量延时τ,使ωτ值约等于±π/2,±3π/2,±5π/2的其中之一;这样两个脉冲的干涉光谱D(ω)将不呈现明显的干涉条纹;3)结合测得的单个和频脉冲的光谱D1(ω)和D2(ω),可直接由公式Δφ(ω)=±sin-1{[D(ω)-D1(ω)-D2(ω)]/2D1(ω)D2(ω)}-a(ω)]]>,逐点计算脉冲的光谱相位差Δφ(ω)曲线,最终实现脉冲的重构。
2.一种用于权利要求1脉冲测量方法的测量装置,其特征是该装置由分束镜(1)、光栅(2)、直角反射镜(3)、安装在精密平移台上的反射镜(4)、带单缝的望远镜扩束器(5)、双缝光阑(6)、玻璃薄片(7)、反射镜(8)、可将脉冲的偏振方向旋转90°的潜望镜(9)、安装在精密平移台上的直角反射镜(10)、凹面反射镜(11)、二类匹配和频晶体(12)、由压电驱动的反射镜(13)、反射镜(14)、凹面反射镜(15)、光栅光谱仪(16)依照被测量脉冲传播路径排列而成,被测量的脉冲的传播路径分两路进行一路由分束镜(1)透射进入光栅(2),经光栅(2)、直角反射镜(3)、光栅(2)、反射镜(4)反射进入带单缝的望远镜扩束器(5)、双缝光阑(6)、玻璃薄片(7),形成两个准单色长脉冲,再经反射镜(8)、凹面反射镜(11)反射进入二类匹配和频晶体(12);另一路由分束镜(1)反射进入可将脉冲的偏振方向旋转90°的潜望镜(9)、经直角反射镜(10)反射,在反射镜(8)的上方通过,由凹面反射镜(11)反射进入二类匹配和频晶体(12)的同一位置;由三个脉冲相互作用而同时生成的两个和频脉冲,经由压电驱动的反射镜(13)、反射镜(14)、凹面反射镜(15)反射进入光栅光谱仪(16)。
3.如权利要求2的测量装置,其特征是反射镜(13)和反射镜(14)可用一块落差合适的阶梯反射镜代替。
全文摘要
本发明涉及一种超短激光脉冲的测量方法及其测量装置,采用与传统的光谱相位相干电场重构法(SPIDER)不同的光学结构,让一个待测脉冲的复制脉冲同时与两个频率稍有差别的准单色长脉冲进行和频,生成两个频谱剪切的和频脉冲;再通过压电驱动单个反射镜,或使用适当落差的阶梯反射镜,在这两个脉冲之间精确地引入特定的小量延时。这时,它们的干涉光谱将不呈现显著的干涉条纹。结合测得的单个和频脉冲的光谱,可逐点计算待测脉冲的光谱相位差的曲线,进而重构脉冲的光谱相位。该方法运算法则简单直接,准确度高,无需使用傅里叶变换滤波的处理;最重要的是,它能克服传统SPIDER适用范围窄的缺点,能够胜任各种复杂的以及较长的脉冲的测量。
文档编号G01J11/00GK1743818SQ20051003758
公开日2006年3月8日 申请日期2005年9月29日 优先权日2005年9月29日
发明者文锦辉, 雷亮, 林位株, 赖天树 申请人:中山大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1