便携式液相色谱仪的制作方法

文档序号:6113368阅读:221来源:国知局
专利名称:便携式液相色谱仪的制作方法
技术领域
本发明涉及一种液相色谱仪,尤其是涉及一种便携式液相色谱仪。
背景技术
高效液相色谱(简称HPLC)是一门广泛用于分离分析的技术,它具有分离效能高、选择性好、检测灵敏度高、分析速度快等优点。在环境分析和生命分析中的广泛应用更使高效液相色谱成为现代分析科学的核心技术之一,近年来液相色谱仪器一直居于分析仪器需求量首位。
现有的高效液相色谱仪一般由输液系统01、进样系统02、色谱柱03、检测系统04、数据记录与处理系统05和温度控制装置06等部分组成,检测器、泵和色谱柱是HPLC的三大关键部件。样品由进样器进入色谱柱中,输液系统驱动液体流动相携带样品物质流过色谱柱,样品中的不同组分因其性质的不同得以相互分离而先后进入检测器,按其物理化学特性转换为易测量的电信号,由数据采集处理系统记录下或导入计算机07进行显示处理。其仪器的基本结构示意如图1所示。
输液系统主要包括储液装置、脱气装置、输液泵、梯度洗脱装置和管路等。储液装置的容器通常用不锈钢、玻璃或聚四氟乙烯塑料等制成,置于储液容器中的吸液导管一般装有不锈钢烧结的过滤器;流动相通过加热、抽真空、吹氮气或超声波方法进行脱气后装入储液容器中,有的仪器装有在线脱气装置;流动相通过高效液相色谱柱时受到的阻力较大,需要用高压泵驱动,常用的高压输液泵是往复式柱塞泵,能够提供高达40~50MPa的压力,但因其结构决定,往复式柱塞泵存在难以避免的存在输出压力脉动大、输出流速范围有限、在超低流量下精度有限等缺陷,且体积重量大、成本较高;在分离过程中可以改变流动相组成以求在尽量短的时间内获得较好的分离效果的方法称为梯度洗脱,HPLC仪器通常都配置梯度洗脱装置,用多个高压泵驱动的几个流动相组分在混合器中混合的方式称为高压梯度,用电磁比例阀使各组分在低压下混合再进入一个高压泵的方式称为低压梯度;HPLC中的液体管路通常使用不锈钢或高聚物材料制成,内径一般为0.1~0.8mm;输液系统还包括一些辅助设备如脉动阻尼器、压力测量装置和流速测量装置等。
高效液相色谱系统的进样装置要求密封性好、死体积小及具有良好的重复性,目前HPLC仪器上常用的进样装置是高压六通阀,具有定量准确、抗压力好等优点。缺点是它对样品的定量是靠一定体积的定量管,进样体积最小值有限,不适合作为微色谱的进样阀。
HPLC的分离柱主要由柱管和填料组成。柱管由管壁和两端接头套件及柱头筛板组成,一般由不锈钢管或高聚物制成,管内壁高度抛光。内径一般在1~4.6mm之间,内径大于4.6mm的一般称为制备型柱,内径小于1mm的称为微色谱柱或微柱。不锈钢柱管强度高、耐压性好,但抗腐蚀性较差;聚合物材料如聚醚醚酮(PEEK)、聚四氟乙烯(PTFE)等具有极佳的抗腐蚀性能,但抗压性略逊于不锈钢,且成本较高。色谱柱的填料是样品实现分离的关键,按填料的填充方式可分为填充柱和整体柱。填充柱是把直径数微米至数百微米的球状固定相颗粒紧密填充于柱管中,颗粒直径越小,分离效率越高,但通透性越差,工作压力越大;整体柱的固定相直接聚成在柱管里,优点是通透性好、结构简单,但整体柱目前应用不多。
高效液相色谱的检测器分为通用型检测器和专用检测器。通用型检测器如示差折光检测器、电导检测器等适用范围广,但对于流动相有响应而不适合用于梯度洗脱,灵敏度也较低,在仪器上使用并不广泛。专用检测器对检测组分具有而流动相组分不具有的某种性质产生响应,灵敏度较高,对流动相变化不敏感,可以进行梯度淋洗的检测。应用非常广泛的是紫外-可见吸收检测器和荧光检测器。
紫外吸收检测器是基于朗伯一比尔定律,通过测量样品的吸光度测定其浓度,它只对有紫外-可见吸收的物质有响应。紫外-可见吸收检测器一般包括光源08、流通池09、光路系统010与011和光电转换器件012。紫外-可见吸收检测器常用的光源是低压汞灯、氘灯、卤钨灯等,波长范围为190~800nm。光路系统一般由棱镜、透镜、光栅等组成,用于光信号的传导和分光。流通池的结构通常有Z型、H型和圆锥型等。流通池体积越小,检测器死体积越小,对柱分离效果影响越小;流通池光程越长,灵敏度越高。紫外-可见吸收检测器的光电转换器件一般有光电倍增管、光电二极管阵列(PDA)等。紫外-可见吸收检测器使用方便,应用范围广泛。目前的商品仪器体积重量都比较大,常见产品的流通池体积为8~10μl、光程为5~10mm,不适合用于微色谱系统,有的产品配备了微小体积的流通池,但其成本较高。紫外检测器的基本原理如图2。
荧光检测器是基于检测某些化合物吸收光辐射后发出的荧光强度来测定物质浓度的专用型检测器,荧光检测器适用于检测能发荧光或能通过荧光衍生发荧光的物质。其灵敏度是常用检测器中最高的,因此应用也很广泛。荧光检测器也由光源013、光路系统014与015、流通池016和光电转换器017等部件组成,与紫外-可见吸收检测器主要不同之处是检测光路与入射光路成一定角度,通常为直角。荧光检测器的基本原理如图3。
目前HPLC仪器的数据采集处理以及系统控制通常都由微型计算机来实现。某些型号的仪器还带有温度控制系统和柱切换系统等附加装置。
分析仪器的便携化是目前国际环境监测仪器制造业发展的趋势。研制开发“便携式的分析仪器”一方面可以降低分析测试成本、技术易于掌握、使用快捷方便,更重要的是便于携带,适于野外现场监测,易于被环保部门接受。而常用的液相色谱仪器的输液泵、分离柱、检测器、控制器等因为结构限制都很难做得小巧轻便。目前还没有出现商品化的便携式液相色谱仪。

发明内容
本发明的目的在于针对现有的液相色谱仪难以做得小巧轻便的不足,为了实现液相色谱仪器的便携化,提供一种体积小、质量轻、功耗低,并且各个部件具有高集成度,一物多用,结构紧凑的便携式液相色谱仪。
本发明的技术方案是以精密注射泵驱动流动相,可以进行流动相梯度洗脱;以毛细管整体柱作为预富集/分离柱,柱末端与检测系统的流通池直接相连;检测系统以发光二极管为光源,以光栅光谱仪为光信号检测器,光源、流通池和检测器之间以光纤连接;检测系统的流通池一物两用,既可以作为紫外-可见吸收流通池也可以作为荧光流通池使用;根据样品的光谱特性,通过改换光纤组件的连接方式就可以选择紫外-可见吸收或荧光检测两种检测模式。不安装色谱柱时,便携式液相色谱仪也可作为流动注射式紫外-可见分光光度计或荧光光度计使用。
本发明设有注射泵、进样阀、光纤式紫外-可见吸收/荧光两用流通池及其配套光纤组件、毛细管整体柱、光栅光谱仪、光电二极管光源、平板式电脑、废液瓶和电源,所有部件安装在一个机箱内。注射泵的注射器出口接进样阀的进口,进样阀的样品出口接毛细管整体柱的入口,毛细管整体柱的出口接光纤式紫外-可见吸收/荧光两用流通池,光电二极管光源由分岔光纤分别导入光纤式紫外-可见吸收/荧光两用流通池和光栅光谱仪,光纤式紫外-可见吸收/荧光两用流通池的透射光或荧光由光纤导入光栅光谱仪中,光栅光谱仪的吸光度或荧光强度转换信号输出端接平板式电脑并获得被测物的光谱信息和相应的谱图,光纤式紫外-可见吸收/荧光两用流通池的流路出口管路连接废液瓶,注射泵的控制端接平板式电脑串口通讯接口。
毛细管整体柱和光纤式紫外-可见吸收/荧光两用流通池最好安装在一个可调式微柱安装架上,可调式微柱安装架设有固定板、下滑块和上滑块,在固定板上设有纵向沟槽、用于固定圆柱形三通混合器的纵向槽和固定孔,在固定板背面还设有用于限定连接泵和三通混合器管路的前后两横向槽;下滑块设于固定板上表面,由螺栓固定于固定板上的纵向沟槽,螺母嵌在纵向沟槽内,下滑块限定于纵向沟槽中移动,在下滑块的上表面设有半圆槽;上滑块设于下滑块上,由螺栓固定于下滑块上表面,螺母嵌在下滑块的固定孔的沉槽中,在上滑块的下表面设有半圆槽。所述的纵向沟槽最好为两段平行纵向沟槽。下滑块为矩形柱体,半圆槽设于下滑块的中部。上滑块为矩形柱体,半圆槽设于上滑块的中部,上滑块上的半圆槽与下滑块上的半圆槽对接。所用的螺栓最好为内六角螺栓。夹持在上下滑块中间的六棱柱状两通流路连接器的中心和流通池的入口在一条直线上,这样毛细管柱两端分别固定在两通流路连接器和流通池上时不会受到切相的应力。上下滑块采用分离的结构设计便于在滑块中夹紧固定一个六楞柱形的两通流路连接器,同时,在更换毛细管微柱时又便于解脱。
两台注射泵上所夹持的注射器用于容纳流动相,注射器出口各引出一条流动相管路,两条管路在一个三通混合器上汇合,该三通混合器也固定在可调式微柱安装架上。由三通混合器的出口管路连接到微量进样阀的进口,从微量进样阀的出口管路连接到一个六棱柱状两通接头,该两通接头被紧固在可调式微柱安装架上。
毛细管整体柱的一端通过卡套接头连接在两通接头上,另一端插入固定在可调式微柱安装架一端的紫外-可见吸收/荧光两用流通池中,通过卡套接头连接。可调式微柱安装架上用螺栓固定在一块平板上,该平板靠支架和螺钉固定在机箱中,其下方空间容纳仪器的电源部分。从光纤式紫外-可见吸收/荧光两用流通池的流路出口管路连接到一个废液瓶,该废液瓶固定在机箱中一角,另有一条管路从微量进样阀的排废液口连接到废液瓶。
紫外-可见吸收/荧光两用流通池设有池体、光导石英毛细管、聚醚醚酮(PEEK)衬管、自聚焦透镜、密封垫圈、垫片、光纤和液体流路管路。光导石英毛细管安装在聚醚醚酮衬管内并装填在池体的管腔中;自聚焦透镜设置在光线入口方向,与池体以密封垫圈密封并固定;垫片位于自聚焦透镜和聚醚醚酮衬管之间,垫片的缺口对准流路方向,其作用是填补二者之间行成的多余空间;入口光纤和出口光纤及进出液管分别由接头和卡套固定在池体上构成密封流路。光导石英毛细管的管壁为三层同心管状结构,外层为聚酰亚胺涂层,向内依次是掺杂石英层和纯石英内壁层,掺杂石英层与纯石英内壁层之间的界面为全反射界面。
用于便携式液相色谱仪检测系统的光纤组件包括单股光纤和双股分岔光纤两种光纤组件。单股光纤设有石英光纤和聚四氟乙烯套管,石英光纤设于聚四氟乙烯套管中,在聚四氟乙烯套管向外依次包覆有硅橡胶保护层和热收缩套管保护层。双股分岔光纤设有两根平行排列的石英光纤和聚四氟乙烯套管,两根平行排列的石英光纤设于聚四氟乙烯套管中,在聚四氟乙烯套管向外依次包覆有硅橡胶保护层和热收缩套管保护层。使用时单股光纤可连接在紫外-可见吸收/荧光两用流通池的光路出口端,另一端在进行紫外可见吸收检测时连接光栅光谱仪,进行荧光检测时以遮光帽封闭。双股分岔光纤的双股端连接在紫外-可见吸收/荧光两用流通池的光路进口端,一根单股端连接光源,另一根单股端在在进行荧光检测时连接光栅光谱仪,进行紫外可见吸收检测时以遮光帽封闭。
检测器模块安装在光纤式紫外-可见吸收/荧光两用流通池下方的机箱底部,由二极管光源、光栅光谱仪,散热风扇和三片固定架组成。检测器模块与光纤式紫外-可见吸收/荧光两用流通池之间由光纤组件进行连接。光纤组件分为一条单股光纤和一条双股分岔光纤。单股光纤一段连接在两用流通池的光路出口端,另一端在进行紫外可见吸收检测时连接光栅光谱仪,进行荧光检测时以遮光帽封闭。双股分岔光纤的双股端连接在两用流通池的光路进口端,一根单股端连接光源,另一根单股端在进行荧光检测时连接光栅光谱仪,进行紫外可见吸收检测时以遮光帽封闭。用于控制和数据采集的平板式电脑安装于箱体上盖中,平板电脑通过串口通讯控制两台注射泵,通过USB连线控制光栅光谱仪并采集数据。
本发明的简要原理及流程如下由平板式电脑控制的注射泵驱动流动相,样品从微量进样阀注入流路,将样品带入毛细管整体柱进行预富集/分离;样品中各组分依次通过光纤式紫外-可见/荧光两用流通池;光源发出的光由光纤导入流通池,透射光或荧光由光纤导入光栅光谱仪中;由光谱仪将采集到的吸光度或荧光强度信号转换并输入到平板式电脑中,经过处理得到被测物的光谱信息及相应的谱图。
由于毛细管整体柱的柱床通透性好,可以在较低压力下工作,并且需要的样品量比常规色谱柱少得多。因此使体积小、质量轻的注射泵作为流动相输送泵成为可能。随着现代光学仪器技术的进步,手掌大小的微型光源和微型光谱检测仪器已经面市,为集成化、微型化的色谱检测器的出现铺平了道路。


图1为现有的高效液相色谱仪器基本结构示意图。
图2为现有的高效液相色谱仪紫外检测器基本原理图。
图3为现有的高效液相色谱仪荧光检测器基本原理图。
图4为本发明实施例的结构组成示意图。
图5为本发明实施例整体外观结构示意图。在图5中各部分名称如下51上盖;52箱体;53电缆束;54上盖面板;55平板式电脑触摸屏;56键盘接口;57鼠标接口;58注射泵电源开关;59平板式电脑电源开关;510USB接口;511面板螺丝钉;512配件盒盖板;513活动盖板;514硅橡胶键盘;515检测器模块;516电源盖板;517微量进样阀。
图6为本发明实施例上盖面板结构示意图。在图6中各部分名称如下61上盖面板背面;62平板式电脑机壳;63横向加强条;64螺丝钉;65纵向加强条;66螺丝钉;67电源插口;68USB端口;69RS-232串口;610鼠标接口;611键盘接口;612USB集线器;613两个外接USB端口;614平板式电脑电源开关;615注射泵电源开关;616鼠标接口;617键盘接口;618缺口。
图7为本发明实施例除去配件盒盖板和活动盖板后的内部结构俯视图。在图7中各部分名称如下71安装底板;72接线盒;73配件箱;74、75纵隔板;76横隔板;77检测器模块;78光谱仪光纤接口;79光源光纤接口;710废液瓶固定平台;711废液瓶;712内六角扳手放置孔;713一号注射泵;714二号注射泵;715一号注射器;716二号注射器;717注射泵固定螺丝;718注射器管路接头;719流动相管路;720三通混合器;721毛细管柱安装架;722安装架固定螺丝;723电源盖板;724流动相管路;725微量进样阀;726进样器废液排放管;727柱前管路;728六角形两通接头;729毛细管色谱柱;730流通池;731流通池光纤出口;732流通池光纤入口;733流通池废液排放管;734零件盒;735电源散热风扇进风口。
图8为本发明实施例除去注射泵和电源盖板后的内部结构俯视图。在图8中各部分名称如下81安装底板;82 12V电源变压器;83 5V电源变压器;84风扇安装架;85进样阀让位槽;86注射泵固定螺钉孔;87光栅光谱仪;88检测器模块散热风扇;89二极管光源;810检测器模块固定架;811光源脉冲控制线;812电源面板固定螺钉孔。
图9为本发明实施例电源电路组成图。
图10为本发明实施例信号流程图。
图11为本发明实施例检测系统以紫外可见吸收模式PAR光度法检测水中Cd2+的信号图。在图11中,横坐标为Time(sec),纵坐标为Absorbance。样品中Cd2+的浓度为1μg mL-1,PAR浓度为5×10-5mol L-1。
图12为本发明实施例检测系统以荧光检测模式检测水中荧光素的信号图。在图12中,横坐标为Time(sec),纵坐标为Intenstity。样品浓度为20μg mL-1。
图13为本发明实施例毛细管整体柱对六种苯系物的分离色谱图。在图13中,横坐标为Time(min),纵坐标为Absorbance(mAU)。流动相为6∶4的乙腈/水溶液,流速60μL min-1,出峰顺序为1硫脲、2苯酚、3苯、4甲苯、5乙苯、6异丙苯。
图14为本发明实施例的可调式微柱安装架正面结构示意图。
图15为本发明实施例的可调式微柱安装架背面结构示意图。
图16为本发明实施例的紫外-可见吸收/荧光两用流通池结构组成示意图。在图16中各部分名称标记池体31;光导石英毛细管32;PEEK衬管33;C字型垫片34;自聚焦透镜35;密封垫圈36;垫片37;光路进口光纤及接头38;光路出口光纤及接头39;流路进口管路及接头310;流路进口管路及接头311。
图17为本发明实施例的光纤组件中的单股光纤结构示意图。在图17中各部分名称标记为石英光纤11;聚四氟乙烯套管12;硅橡胶保护层13;热收缩套管保护层14。
图18为本发明实施例的光纤组件中的双股分岔光纤结构示意图。在图18中各部分名称标记为石英光纤21;聚四氟乙烯套管22;硅橡胶保护层23;热收缩套管保护层24。
具体实施例方式
以下实施例将结合附图对本发明作进一步的说明。
参见图4,本发明设有光纤式紫外-可见吸收/荧光两用流通池1及其配套光纤组件、毛细管整体柱2、微型光栅光谱仪3、光电二极管光源4、注射泵5、进样阀6、平板式电脑7、废液瓶8和电源,所有部件安装在一个机箱内。进样阀6的样品出口接毛细管整体柱2的入口,毛细管整体柱2的出口接光纤式紫外-可见吸收/荧光两用流通池1,光电二极管光源4由分岔光纤9分别导入光纤式紫外-可见吸收/荧光两用流通池1和光栅光谱仪3,光纤式紫外-可见吸收/荧光两用流通池1的透射光或荧光由直通光纤10导入光栅光谱仪3中,光栅光谱仪3的吸光度或荧光强度转换信号输出端接平板式电脑7并获得被测物的光谱信息和相应的谱图。该微型光栅光谱仪的尺寸为89.1mm×63.3mm×34.4mm,重190克,较之通常意义上的光栅光谱仪其大小明显缩小。从光纤式紫外-可见吸收/荧光两用流通池1的流路出口管路连接到一个废液瓶8,该废液瓶8固定在机箱中一角(参见图7),另有一条管路从微量进样阀的排废液口连接到废液瓶8。
参见图5,本发明实施例整体外观设计成为手提箱形,分为铰链连接的上盖51和箱体52,尺寸为48cm×38cm×20cm,箱体由高强度工程塑料制成,抗压性和防腐蚀性好,铰链左端有电缆束53,两端分别连接上盖51与箱体52。上盖51内装有信号处理部分,在上盖51内有上盖面板54,由6个螺丝钉511固定于上盖51上。上盖面板54上主要的部分是带触摸屏的平板式电脑55,由4个螺丝钉固定在上盖面板上。在上盖面板下部,分布有一些接口和开关,自左到右分别是键盘接口56、鼠标接口57、注射泵电源开关58、平板式电脑电源开关59、两个外接USB端口510。箱体中装有仪器的主要各部分,箱体左边部分有配件盒盖板511和活动盖板512,活动盖板上放置超薄型硅橡胶键盘513。该硅橡胶键盘轻薄防水,可以卷折收藏,通过数据线与上盖的键盘接口514连接(图中未画出)。活动盖板下是两台注射泵(图中未画出)和可调式毛细管安装架(图中未画出)。箱体右部表面无盖板,内部有检测器模块515、电源盖板516和微量进样阀517等部件。以下对各部分分别作介绍。
参见图6,从在上盖面板61背面看,平板式电脑机壳62安装在上盖面板的矩形空间中,两条横向纵贯全长的“∏”形铝合金结构加强条63分别位于平板式电脑的上下,各以2个螺丝钉64固定,两条较短的纵向“∏”形铝合金结构加强条65分别位于平板式电脑的左右,各以两个螺丝钉66将平板式电脑面板、上盖面板和纵向“∏”形铝合金结构加强条固定在一起。平板式电脑机壳下侧有各种接口,从背面自左向右分别是电源插口67、USB端口68、RS-232串口69、鼠标接口610、键盘接口611。在上盖面板背面左边有一个四端口的USB集线器612,以魔术贴(带不干胶的尼龙粘扣)固定。上盖面板下端有一排外接端口,从背面自左向右分别为两个外接USB端口613、平板式电脑电源开关614、注射泵电源开关615、鼠标接口616、键盘接口617。上盖面板背面右下角有一个缺口618,用于容纳连接到主机箱体的电缆束。
参见图7,以下给出箱体中各部件的位置关系,箱体底部有与箱底同样尺寸的安装底板71,所有部件均直接或间接固定在安装底板上。图7中底板左上角是接线盒72,连接上盖和箱体内各部分的电源线与信号线在此处连接,仪器总电源线也由此引出。接线盒旁边被纵隔板74、75和横隔板76分隔出的空间作为配件盒,可以收藏卷折起来的硅橡胶键盘。配件盒盖板和活动盖板也分别铰接在横隔板76上,可以向上掀起打开。检测器模块77包括光栅光谱仪、发光二极管光源、散热风扇及3个金属固定架组成,由3个螺丝钉固定在安装底板上。其中光栅光谱仪上有光纤接口78,光源上有光纤接口79。图中右上角与检测器模块相邻的是废液瓶固定台710,其上有一个大圆孔容纳废液瓶711,还有一个小圆孔712用于放置常用工具内六角扳手。注射泵713、714由4个长螺钉717固定在底板上,其上分别夹持有注射器715、716,在注射器出口连接有带锁紧的接头718,分别由流动相管路719连接到三通混合器720的两个接口。三通混合器嵌在毛细管柱安装架721上的铣槽中,毛细管柱安装架是由两个安装架固定螺丝722固定在电源盖板723上。电源盖板与安装底板之间是仪器的电源变压器及其散热风扇(图中未画出电源及风扇)。从三通混合器720的中间出口引出的流动相管路724连接到微量进样阀725的进口,从进样阀到废液瓶711之间有一根进样器废液排放管726。进样阀由两个螺丝钉从反面固定在电源盖板上,一根柱前管路727从进样阀底端引出,穿过电源盖板连接到六角形两通接头728的一端。六角形两通接头固定在毛细管柱安装架721上,另一端连接毛细管色谱柱729。毛细管色谱柱上有一保护套(图中未画出),进口端接在六角形两通接头728上,出口端直接旋在流通池730上。流通池上有光纤出口731和光纤进口732,分别用光纤(图中未画出)连接到光谱仪光纤接口78和光源光纤接口79上。从流通池于毛细管色谱柱相反的一面引出一根废液排放管733通入废液瓶711中。电源盖板723上粘接了一个圆形浅盒734作为零件盒,用来放置实验中临时用到的小零件。电源盖板上还开了一个圆形的电源散热风扇进风口。
参见图8,以下给出箱体底层各部件的位置关系,在安装底板81上有两个电源变压器,分别是12V电源变压器82和5V电源变压器83,分别以螺丝钉固定在底板上。在电源变压器右侧有一个框形电源风扇安装架84,其上装有一个垂直向下吹风的风扇,风扇下面与底板有一段距离,由于受横隔板和电源盖板的限制,风扇吹出的风向左流经电源变压器和注射泵底部的空间流出,实现对电源变压器的散热。在风扇安装架上与电源盖板上进样阀位置对应处开有一个让位槽85,用于容纳进样阀底部的结构。底板右上方的检测器模块中,自上而下分别是光栅光谱仪87、检测器模块散热风扇88和二极管光源89,由三片固定架810以螺丝固定在底板上。从光源有一根光源脉冲控制线811连接到光栅光谱仪。在横隔板右端及风扇安装架右下角分别有一个电源盖板固定螺丝孔812。
参见图9,以下给出电源电路部分的连接关系,使用AC 220V照明电路进行供电,通过2个电源变压器(12V 3A,5V 10A)分别得到12V和5V的直流电源。12V电源通过开关K1为两台注射泵91和92以及二极管光源93提供电力;5V电源通过开关K2分别为平板式电脑94、USB集线器95和光栅光谱仪96提供电力。仪器中各主要金属部件均有良好接地。
参见图10,以下给出控制信号和数据采集线路的简单介绍,平板式电脑7的USB(通用串行总线)端口连接到USB集线器101;从USB集线器101引出的一条USB电缆连接到光栅光谱仪3上,实现数据采集和对光谱仪的控制;一根脉冲信号电缆连接光栅光谱仪和二极管光源102,用于光谱仪和光源的发光脉冲同步;两个USB外接端口USB1和USB2分别从USB集线器引出到上盖面板上,以提供到其他外部设备的连接;从平板式电脑7的RS-232串口COM上引出串口信号线到一台注射泵105的上行接口,从第一台注射泵106的下行接口有一条信号线连接到第二台注射泵的上行接口,平板式电脑通过串连式泵网络可以控制两台注射泵。
注射泵可采用美国New Era公司的NE-501型注射泵。微色谱系统要求液体输送泵必须在极低的流速下具有较高的精密度和稳定性。常用的蠕动泵、往复式平流泵都难以满足这些条件,而注射泵能够满足上述要求。NE-501型注射泵以RS-232串口与计算机通信,通过计算机程序控制可实现所有功能;可以运行多达41个步骤的泵程序。可以在两台注射泵上夹持两个直径不同的注射器实现两种流动相的梯度洗脱,也可以通过控制两台注射泵的推送速度不同实现梯度洗脱。另外该泵还带有停止检测器,可以自动检测因超压或机械故障并报警;两个注射泵上夹持的注射器出口上各有一条流动相管路连接到一个三通混合器的两个进口,另一根管路从三通混合器的出口连接到微量进样阀的流动相进口。三通混合器以嵌入的方式安装在毛细管微柱-流通池安装架上的铣槽中。
微量进样阀可采用美国Rheodyne公司制造的7520型微量进样阀,该进样阀的进样体积为0.2~1μl,适合微色谱系统的进样要求。
使用的毛细管聚合物整体微柱以长15~20cm,内径为0.53mm,外包聚酰亚胺涂层的石英毛细管为外壁,以整体聚合合成的十八烷基型甲基丙烯酸酯为固定相。该毛细管聚合物整体微柱安装在可调式毛细管微柱-流通池安装架上,进口端由一条管路与进样阀相连,出口端直接插入检测系统的流通池中。
检测器模块中使用的光源可采用美国Ocean Optics公司的LS-450型发光二极管光源。该光源可以通过更换发光二极管在380~680nm范围内提供光源,体积小、质量轻,可以以连续发光模式或通过RS-232接口与USB2000光谱仪连接而以脉冲发光模式工作,适合可见光波段的吸收光谱和荧光光谱检测。另外以美国Micropack公司制造的DH-2000-CAL小型氘灯/卤钨灯光源作为外置的补充光源。DH-200-CAL型氘/卤钨灯光源的发光范围可以从200~800nm,且发光强度大,可以作为紫外-可见全波段的吸收和荧光激发光源。
检测器模块中的流通池是一种光纤式紫外-可见/荧光两用流通池,固定在毛细管安装架的一端。流通池的流路进口直接连接毛细管微柱的出口,流路出口有一根管路连接到废液瓶。流通池的光路进口接有一根双股份岔光纤,光路出口接有一根单股光纤。通过改变光纤与光检测器件的不同连接形式,可以实现紫外-可见吸收检测模式和荧光检测模式的转换。
检测器模块中的光检测器件可以采用美国Ocean Optics公司制造的USB2000型光栅光谱仪。该光栅光谱仪以光栅为分光器件,以光电耦合器件(CCD)为检测器件,具有体积小(89.1mm×63.3mm×34.4mm)、质量轻(190克)、功耗低、光谱检测范围宽、光谱分辨率高等特点。USB2000光栅光谱仪与电脑通过USB接口连接,使用配套的OOIBase32软件控制和采集数据,拥有测量光强度、吸光度、透过率、时间采集等多种工作模式。
检测器性能的评价本发明的检测系统以紫外-可见吸收检测模式,应用于4(2-吡啶偶氮)间苯二酚(PAR)光度法测定水中的重金属元素镉,检测限为10ng mL-1,重复测试6次的RSD为2%。重复实验结果图见图11。本发明的检测系统以荧光检测模式,应用于检测荧光物质荧光素,检测限为1μg mL1-1,重复测试17次的RSD为3.8%。重复实验结果图见图12。
本发明的数据采集和控制可采用深圳市德特康电子有限公司制造的PPC-121T/BEL型工业级平板式电脑。该平板式电脑装有400MHz的Intel Celeron M移动处理器;内置256M内存和1G的CF闪存卡;12.1英寸触摸式液晶显示屏。该平板式电脑被安装于实例样机的箱体上盖中。
本发明所述的毛细管整体柱可采用十八烷基型毛细管整体柱,用于分离硫脲、苯酚和四种苯同系物的混合物,结果见图13。
如图14和15所示,可调式微柱安装架设有固定板41、下滑块421和上滑块422,在固定板41上设有纵向沟槽46、用于固定圆柱形三通混合器的纵向槽47和固定孔43,在固定板41背面还设有用于限定连接泵和三通混合器管路的前后两横向槽48;下滑块421设于固定板41上表面,由内六角螺栓44固定于固定板41上的纵向沟槽46,螺母45嵌在纵向沟槽46内,下滑块421限定于纵向沟槽46中移动,在下滑块421的上表面中部设有半圆槽4211;上滑块422设于下滑块421上,由内六角螺栓44固定于下滑块421上表面,螺母45嵌在下滑块421的固定孔49的沉槽中,在上滑块422的下表面中部设有半圆槽4221,上滑块422上的半圆槽4221与下滑块421上的半圆槽4211对接。使用时可使毛细管柱的木端直接接进固定在另一端的流通池中,由柱长确定滑块的位置后,依次旋紧上下滑块的螺栓即可。夹持在上下滑块中间的六棱柱状两通流路连接器的中心和流通池的入口在一条直线上。
以下给出十八烷基型毛细管整体柱的制备方法。1)毛细管内壁活化依次用丙酮、盐酸、二次水、NaOH溶液、二次水清洗活化毛细管内壁,氮吹干燥,使毛细管内壁获得丰富的游离型硅羟基;2)毛细管内壁的预聚合在毛细管内壁键合一层带烯基的硅烷化试剂γ-甲基丙烯酸氧丙基三甲氧基硅烷(γ-MAPS);3)制备甲基丙烯酸十八烷基酯—乙二醇二甲基丙烯酸酯整体柱反应混合物包括反应单体混合物、引发剂和致孔剂,按质量百分比(下同)反应单体混合物占整个反应混合物的40%~70%,引发剂偶氮二异丁腈为反应单体混合物的0.5%~3%,余为致孔剂;反应单体混合物中的甲基丙烯酸十八烷基酯(OMA)与乙二醇二甲基丙烯酸酯(EDMA)的含量比例为OMA为70%~40%,EDMA为30%~60%,致孔剂为由正丙醇和1,4丁二醇构成的二元混合物,按比例称取OMA、EDMA和致孔剂,混合氮吹超声震荡脱气后注入已预键合的毛细管中,一端封口,超声震荡后封住另一端,水浴中反应,用高压泵驱动乙腈冲洗后即得到多孔结构的连续整体式液相色谱微柱,可在μ-LC模式下对其进行色谱评价。在步骤1)中,所述的毛细管内壁依次用丙酮清洗15~30min,1mol L-1NaOH冲洗0.5~3h,二次水冲洗0.5h,0.1mol L-1HCl在50~70℃下冲洗2h,二次水冲洗0.5h,然后置于气相色谱柱温箱中,120~300℃,最好160℃缓慢氮吹过夜,尔后两端封口并置于干燥器中保存,使毛细管内壁获得丰富的游离型硅羟基。在步骤2)中,所述的毛细管内壁的预聚合是按体积百分比用加入0.25%~0.5%的有机酸的γ-甲基丙烯酸氧丙基三甲氧基硅烷(γ-MAPS)注入经过活化干燥的毛细管内,两端封口,室温过夜,然后用氮气吹扫30min,重复一次,最后用氮气吹扫0.5~3h。有机酸为乙酸或甲酸。在步骤3)中,致孔剂由70%的正丙醇和30%的1,4丁二醇构成。混合液注入已预键合的毛细管中,一端封口超声震荡脱气的时间为15~30min,水浴中反应,水浴温度为50~70℃,水浴中反应时间为15~24h,然后截成适当长度,用高压泵驱动乙腈冲洗5~10h后即可得到多孔结构的连续整体式液相色谱微柱。
以下给出紫外-可见吸收/荧光两用流通池的结构组成实施例及其工作模式与原理,参见图16,紫外-可见吸收/荧光两用流通池设有池体31、光导石英毛细管32、聚醚醚酮(PEEK)衬管33、C字型垫片34、自聚焦透镜35、密封垫圈36与37、光纤38与39、液体流路管路310与311等零部件。光导石英毛细管32安装在PEEK衬管33内并装填在池体31的管腔中;自聚焦透镜35设置在光线入口方向,与池体31以密封垫圈36与37密封并固定;C字型垫片34位于自聚焦透镜35和PEEK衬管33之间,C字型垫片34的缺口对准流路方向,其作用是填补二者之间行成的多余空间;入口光纤38和出口光纤39及进出液管310、311分别由接头和卡套固定在池体上构成密封流路。
紫外可见吸收和荧光检测两种工作模式的工作原理是在紫外-可见吸收检测模式下,从光源发出的光由双股分岔光纤的一股导入流通池,经过样品溶液吸收后由出口单股光纤导入微型光栅光谱仪,测定其吸光度;在荧光检测模式下,从光源发出的光由双股分岔光纤的一股导入流通池,照射激发样品中的荧光活性物质,荧光活性物质受激发后发出的荧光沿与入射光相反的方向沿双股分岔光纤的另一股进入微型光栅光谱仪,测定其光强度,扣除杂散光背景后得到荧光强度。
紫外-可见吸收/荧光两用流通池中的光导石英毛细管的管壁为三层同心管状结构,外层为聚酰亚胺涂层,向内依次是掺杂石英层和纯石英内壁层,掺杂石英层与纯石英内壁层之间的界面为全反射界面。为了解决因光导石英毛细管内径较小造成的光路连接困难问题,采用了光导纤维连接流通池光路,光导纤维和光导毛细管之间的光路耦合使用了自聚焦透镜作为聚光器件。通过自聚焦透镜将光纤射出的具有一定发散角的光汇聚进入光导石英毛细管,由于光导石英毛细管内壁能够使光线沿管内全反射传导,不会被管壁吸收而损失,可以在较小的光路截面上保持较高的光密度。池体可由聚酰亚胺材料整体加工而成,长宽高尺寸分别为47.2mm×22.4mm×20mm。沿池体中轴线有一内径1.6mm的通孔,孔两端内径加粗并加工有与光纤接头配合的内螺纹。池体两个侧面上各有一条内径1.6mm的条孔道,与中心孔道相通,构成一条Z字型流路,这两条孔道的外端也加工有内螺纹,用于连接液体流路管路接头。在池体顶面对角位置钻有两个通孔,用于固定流通池时穿过螺栓。这两个螺栓孔不与池体内部的孔道连通。流通池光路进口处各零部件介绍如下PEEK衬管33内径0.38mm,外径1.58mm,长20mm;光导石英毛细管32内径0.25mm,外径0.375mm,长20mm;C字型垫片34为聚四氟乙烯材料制成,其上开有一条宽的0.6mm的缺口;自聚焦透镜35为特种光学玻璃制成,直径1.8mm,长5.8mm;密封垫圈36以橡胶制成;垫片37为聚四氟乙烯材料制成,光路进口光纤及接头38包括光纤衬管、锥形卡套和手紧接头,具体结构另行描述。
流通池光路进口处各零部件安装位置关系介绍如下PEEK衬管33装填在池体31的中央孔道中;光导石英毛细管32装填在PEEK衬管33中。C字型垫片34位于PEEK衬管33和自聚焦透镜35之间,被二者夹持固定,其缺口对准流路管路;自聚焦透镜35插入池体31中央孔道的一端约一半长度;流路出口管路310插入池体中一端出口正好对准PEEK衬管出口;密封垫圈36两个为一组套在自聚焦透镜的柱体上;垫片37两个为一组套在自聚焦透镜的柱体上;光纤套管靠手紧接头上的螺纹旋入池体中央孔道一端的螺纹孔中,锥形卡套向内压紧自聚焦透镜及垫片,垫片压迫密封圈变形使自聚焦透镜与池体之间得以密封。
流通池光路出口端与进口端类似,但没有安装自聚焦透镜及密封圈、垫片,靠光纤接头上的锥形卡套和手紧接头与池体连接密封。进出流通池的流路管路靠锥形卡套和手紧接头与池体连接密封。该流通池光程长度为20mm,大于目前常见的大多数流通池。池体积约为1μL,可以满足毛细管微柱色谱的使用要求。
参见图17和18,在单股光纤中,核心是一根外径0.46mm的石英光纤11,套在一根内径0.5mm的聚四氟乙烯套管12中,向外依次包覆有硅橡胶保护层13和热收缩套管保护层14。双股分岔光纤中,核心是平行排列的两根外径0.46mm的石英光纤21,套在一根内径0.8mm的聚四氟乙烯套管22中,聚四氟乙烯套管22可发生形变而容纳两根光纤,向外也依次包覆有硅橡胶保护层23和热收缩套管保护层24。三层保护层使光纤在使用中能够进行一定的弯曲而不易折断。同时防止环境光进入光纤。使用时单股光纤和双股分岔光纤分别与紫外-可见吸收/荧光两用流通池连接。光纤组件与紫外-可见吸收/荧光两用流通池连接端接头的结构以单股光纤的接头为例,石英光纤11套在聚四氟乙烯套管12中,锥形卡套和手紧接头依次套在聚四氟乙烯套管外,锥形卡套和手紧接头可采用标准连接件。当拧紧手紧接头时,锥形卡套和手紧接头之间的锥形配合面迫使锥形卡套尖端收缩形变,向内箍紧聚四氟乙烯套管,聚四氟乙烯套管也发生形变箍紧石英光纤实现密封。双股分岔光纤与流通池连接端接头的结构与单股光纤相同,但不依靠锥形卡套和手紧接头实现密封。
光纤组件与光源/光谱仪连接端接头连接时,石英光纤21套在聚四氟乙烯套管22中,标记23为硅橡胶保护层(热收缩套管未画出),前端伸出的一段石英光纤和聚四氟乙烯套管上套有一段外径4mm的接头内套管,硅橡胶保护层外套有一段硅橡胶材料的接头外套管并伸出与接头内套管等长,接头内外套管之间为筒状空腔。当把光纤插在光源或光谱仪的光纤接头上时,接头内套管插入光源或光谱仪的光纤接头为光纤定位,接头外套管套在光源或光谱仪的光纤接头上承受作用力。
权利要求
1.便携式液相色谱仪,其特征在于设有注射泵、进样阀、光纤式紫外-可见吸收/荧光两用流通池及其配套光纤组件、毛细管整体柱、光栅光谱仪、光电二极管光源、平板式电脑、废液瓶和电源,所有部件安装在一个机箱内,注射泵的注射器出口接进样阀的进口,进样阀的样品出口接毛细管整体柱的入口,毛细管整体柱的出口接光纤式紫外-可见吸收/荧光两用流通池,光电二极管光源由分岔光纤分别导入光纤式紫外-可见吸收/荧光两用流通池和光栅光谱仪,光纤式紫外-可见吸收/荧光两用流通池的透射光或荧光由光纤导入光栅光谱仪中,光栅光谱仪的吸光度或荧光强度转换信号输出端接平板式电脑并获得被测物的光谱信息和相应的谱图,光纤式紫外-可见吸收/荧光两用流通池的流路出口管路连接废液瓶,注射泵的控制端接平板式电脑串口通讯接口。
2.如权利要求1所述的便携式液相色谱仪,其特征在于所述的毛细管整体柱和光纤式紫外-可见吸收/荧光两用流通池安装在一个可调式微柱安装架上,可调式微柱安装架设有固定板、下滑块和上滑块,在固定板上设有纵向沟槽、用于固定圆柱形三通混合器的纵向槽和固定孔,在固定板背面还设有用于限定连接泵和三通混合器管路的前后两横向槽;下滑块设于固定板上表面,由螺栓固定于固定板上的纵向沟槽,螺母嵌在纵向沟槽内,下滑块限定于纵向沟槽中移动,在下滑块的上表面设有半圆槽;上滑块设于下滑块上,由螺栓固定于下滑块上表面,螺母嵌在下滑块的固定孔的沉槽中,在上滑块的下表面设有半圆槽。
3.如权利要求2所述的便携式液相色谱仪,其特征在于所述的纵向沟槽为两段平行纵向沟槽,下滑块为矩形柱体,半圆槽设于下滑块的中部,上滑块为矩形柱体,半圆槽设于上滑块的中部,上滑块上的半圆槽与下滑块上的半圆槽对接。
4.如权利要求1所述的便携式液相色谱仪,其特征在于所述的注射泵上所夹持的注射器用于容纳流动相,注射器出口各引出一条流动相管路,两条管路在一个三通混合器上汇合,该三通混合器也固定在可调式微柱安装架上,由三通混合器的出口管路连接到微量进样阀的进口,从微量进样阀的出口管路连接到一个六棱柱状两通接头,该两通接头被紧固在可调式微柱安装架上。
5.如权利要求1或2所述的便携式液相色谱仪,其特征在于毛细管整体柱的一端通过卡套接头连接在两通接头上,另一端插入固定在可调式微柱安装架一端的紫外-可见吸收/荧光两用流通池中,通过卡套接头连接,可调式微柱安装架上用螺栓固定在一块平板上,该平板靠支架和螺钉固定在机箱中,其下方空间容纳仪器的电源部分。
6.如权利要求1所述的便携式液相色谱仪,其特征在于所述的光纤式紫外-可见吸收/荧光两用流通池的流路出口管路连接到一个废液瓶,废液瓶固定在机箱中一角,另有一条管路从微量进样阀的排废液口连接到废液瓶。
7.如权利要求1所述的便携式液相色谱仪,其特征在于紫外-可见吸收/荧光两用流通池设有池体、光导石英毛细管、聚醚醚酮衬管、自聚焦透镜、密封垫圈、垫片、光纤和液体流路管路,光导石英毛细管安装在聚醚醚酮衬管内并装填在池体的管腔中;自聚焦透镜设置在光线入口方向,与池体以密封垫圈密封并固定;垫片位于自聚焦透镜和聚醚醚酮衬管之间,垫片的缺口对准流路方向;入口光纤和出口光纤及进出液管分别由接头和卡套固定在池体上构成密封流路,光导石英毛细管的管壁为三层同心管状结构,外层为聚酰亚胺涂层,向内依次是掺杂石英层和纯石英内壁层,掺杂石英层与纯石英内壁层之间的界面为全反射界面。
8.如权利要求1所述的便携式液相色谱仪,其特征在于所述的光纤组件包括单股光纤和双股分岔光纤两种光纤组件,单股光纤设有石英光纤和聚四氟乙烯套管,石英光纤设于聚四氟乙烯套管中,在聚四氟乙烯套管向外依次包覆有硅橡胶保护层和热收缩套管保护层,双股分岔光纤设有两根平行排列的石英光纤和聚四氟乙烯套管,两根平行排列的石英光纤设于聚四氟乙烯套管中,在聚四氟乙烯套管向外依次包覆有硅橡胶保护层和热收缩套管保护层。
全文摘要
便携式液相色谱仪,涉及一种液相色谱仪,尤其是涉及一种便携式液相色谱仪。提供一种体积小、质量轻、功耗低,并且各个部件具有高集成度,一物多用,结构紧凑的便携式液相色谱仪。设有注射泵、进样阀、光纤式紫外-可见吸收/荧光两用流通池及光纤组件、毛细管整体柱、光栅光谱仪、光电二极管光源、电脑、废液瓶和电源,注射泵出口接进样阀进口,进样阀出口接毛细管整体柱入口,毛细管整体柱出口接流通池,光源导入流通池和光栅光谱仪,流通池的透射光或荧光由光纤导入光栅光谱仪中,光栅光谱仪的吸光度或荧光强度转换信号输出端接电脑并获得被测物的光谱信息和相应的谱图,流通池的流路出口管路连接废液瓶,注射泵控制端接电脑串口通讯接口。
文档编号G01N30/02GK1815221SQ200610055109
公开日2006年8月9日 申请日期2006年2月20日 优先权日2006年2月20日
发明者王秋泉, 付强, 徐振东 申请人:厦门大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1