准确度受控的安全流动站的制作方法

文档序号:6121800阅读:198来源:国知局
专利名称:准确度受控的安全流动站的制作方法
技术领域
本发明总的来说涉及定位,更具体地涉及以具有带分级准确度的高度 完整性位置来进行定位。本发明公开了具有用于控制安全位置的准确度的位置抖动的GPS流动站。
背景技术
全球定位系统(GPS)由美国政府运营,用于向^:界的所有用户提 供免费GPS定位信号。独立的GPS接收器能够使用这些信号中的粗捕获 (coarse/acquisition, CA)码来计算具有大约5到20米的典型准确度的 独立位置。这些准确度对于包括大部分导航应用的一些应用来说是足够 的。然而,存在需要更高的准确度或完整性的定位应用,例如勘查、地图 绘制、机器控制和农业。提供GPS码相位校正的差分GPS系统满足了这些需要中的某些需 要。针对差分GPS操作所构造的GPS接收器能够使用码相位校正来计算 具有几十厘米到几米的典型准确度的位置。这些准确度对许多定位应用来 说M够的。然而,用户不能全信任独立或差分GPS位置的准确度,因 为这些位置的完整性受到多径的影响。GPS信号的多径反射能够偶尔造 成几十到几百米或更多的较大误差,这取决于反射的信号所行进的额外距 离。固定模糊度实时动态测量(real time kinematic, RTK)系统提供高 准确度的GPS载波相位测量以提供更高的准确度,同时避免多径的大部 分影响。针对RTK操作而构造的流动站GPS接收器能够使用载波相位测 量来确定具有大约l厘米到几十厘米的典型准确度的相对位置。术语"固 定模糊度"指的是在参考相位和流动站所测量的相位之间为RTK载波相 位测量而求解(固定)整数个载波相位周期。该载波周期整数的求解捕获 住大于GPS信号的载波波长的一部分的多径信号误差,这导致基于RTK 的位置的高信任度和完整性。现有GPS RTK系统对用户提供固定RTK载波相位测量,成本主要
由提供若干用户分享的系统的固定^l设施成本决定。然而, 一些用户需要基于固定RTK的定位的完整性,但是不需要其提供的完全准确度。不 幸地是,现在不存在通过提供其准确度低于系统的完全准确度的高完整性 位置来在更多用户之间分摊J^设施成本的技术。发明内容为了满足这些需求,这里的讨论包^it过提供GPS参考系统的合成 参考相位或通过抖动安全流动站位置而对流动站提供具有受控准确度的高完整性定位的方法。简单地说,本发明使用或包括用于在一个或多个实际参考位置接收 GPS信号并测量参考相位的一个或多个实时动态测量(RTK)参考站。 当使用三个或更多参考站时,可针对虛拟参考位置确定虚拟参考相位。在 参考站、参考系统中的服务器、RTK流动站或在参考站和流动站之间进 行交互的合成相位处理器中生成合成偏移向量。参考相位测量被用于该合 成偏移向量,来推断出合成位置的合成参考相位,其中合成位置不等于实 际或虚拟参考位置的任何一个。流动站使用实际或虚拟参考位置和合成参 考相位来代替实际或虛拟参考相位,从而计算相对于实际或虚拟参考位置 的流动站位置,所述流动站位置具有与合成偏移向量成比例的添加的位置 误差。在另 一方法中,安全RTK流动站直接使用合成偏移向量抖动通过实 际或虛拟参考相位确定的安全流动站位置。可在参考站、参考系统中的服 务器、流动站或在参考系统和流动站之间进行交互的处理器中生成合成偏 移向量。由流动站确定的位置具有RTK系统的完整性,其准确度受合成 偏移向量控制。在优选实施例中,本发明是对地理位置具有受控的准确度的安全流动 站,包括流动站全球导航卫星系统(GNSS)接收器,用于确定对流动 站的用户不可用的安全位置;位置抖动处理器,用于用所选择的非零合成 偏移向量抖动安全位置,来对用户产生具有与合成偏移向量成比例的添加 的位置误差的流动站位置。在另一优选实施例中,本发明是用于控制地理位置的准确度的方法, 包括接收全球导航卫星系统(GNSS)信号;使用GNSS信号来确定对 流动站的用户不可用的安全位置;用所选择的非零合成偏移向量来抖动安 全位置,从而向用户提供具有与合成偏移向量成比例的添加的位置误差的 流动站位置。在另一优选实施例中,本发明3一有形介质,该介质包含使处理器执行控制地理位置的准确度的以下步骤的一组指令,包括接收全球导航卫星 系统(GNSS)信号;使用GNSS信号来确定对流动站的用户不可用的安 全位置;用所选择的非零合成偏移向量抖动安全位置,从而对用户提供具 有与合成偏移向量成比例的添加的位置误差的流动站位置。概括地说,本申请文件公开了用于提供具有分级准确度的高完整性位 置的定位系统或合成相位处理器或流动站。该定位系统包括用于在确定的 参考位置接收GPS信号并测量参考相位的一个或多个实时动态测量 (RTK)参考站。该定位系统或流动站选择合成偏移向量并使用该合成 偏移向量来针对合成位置推断出合成参考相位。流动站使用该合成参考相 位与实际或虚拟参考位置来确定具有由合成偏移向量控制的添加的位置 误差的流动站位置。对于其它实施例,安全流动站用合成偏移向量抖动安 全位置,来提供具有添加的位置误差的非安全流动站位置。在本领域技术人员阅读了用于实行本发明的以下最佳实施方式并观 看了各附图之后,无疑本发明的这些和其它实施例以及优势会更明白。


图1是用于对流动站提供参考相位的现有技术的单个参考系统的图; 图1A是用于对流动站提供参考相位的现有技术的参考网络定位系统的图;图2是用于对流动站提供合成参考相位来将位置误差加到流动站位 置的本发明的单个参考定位系统的图;图2A是图2的系统的参考站的框图;图3是用于对流动站提供合成参考相位来将位置误差加到流动站位 置的本发明的参考网络定位系统的图;图3A、 3B和3C是图3的定位系统的服务器的第一、第二和第三实 施例的框图;图4是示出本发明的在单个参考定位系统中操作的安全流动站的图, 其用于计算合成参考相位以将位置误差加到流动站位置;
图4A是图4的流动站的框图;图5是示出本发明的在参考网络定位系统中的安全流动站的图,其用 于计算合成参考相位以将位置误差加到流动站位置;图5A和5B是图5的流动站的第一和第二实施例的框图;图6A和6B是用于提供本发明的合成参考相位的随机参考生成器的 第一和第二实施例的框图;图7是本发明的单个参考定位系统的图,其中安全流动站抖动安全位 置来提供具有添加的位置误差的非安全位置;图7A和7B是图7的定位系统的第一和第二实施例的框图;图8是本发明的参考网络定位系统的图,其中安全流动站抖动安全位置来提供具有添加的位置误差的非安全位置;图8A、 8B、 8C和8D是图8的定位系统的第一、第二、第三和第四 实施例的框图;图9是图7和图8的系统的随机位置抖动处理器的框图;图10是本发明用于从单个参考定位系统向流动站提供合成参考相位 的方法的流程图;图11是本发明用于从参考网络定位系统向流动站提供合成参考相位 的方法的流程图;图12是本发明用于计算在单个参考定位系统中操作的流动站中的合 成参考相位的方法的流程图;图13是本发明用于计算在参考网络定位系统中操作的流动站中的合 成参考相位的方法的流程图;图14是本发明用于抖动安全流动站位置来在单个参考定位系统中向 流动站位置拔^供添加的误差的方法的流程图;以及图15是本发明用于抖动安全流动站位置来在参考网络定位系统中向 流动站位置提供添加的误差的方法的流程图。
具体实施方式
现在详细说明实施本发明的构思的优选实施例。应理解,对这些细节 的说明不旨在将本发明限制到这些细节。相反,这些细节仅用来说明实施 本发明的构思的最佳模式。在本发明的构思的范围内,本领域技术人员会 想到此处说明的实施例的许多替换例、变型以及等同方式。针对全球定位系统(GPS)说明本发明的优选实施例。然而,本领域技术人员明白,本 发明可通过通用全球导航卫星系统(GNSS)来实现,包括全球定位系统 (GPS )、 全球轨道导航系统(global orbiting navigation system, GLONASS)、伽利略系统或这些系统的组合。应注意,可使用伪卫星来 代替广播GNSS定位信号的卫星。图1是示出现有技术的基于传统实时动态测量(RTK)全球定位系 统(GPS)的系统的图。参考站12包括参考GPS接收器,用于从16A、 16B和16C示出的GPS卫星16接收14A、 14B和14C示出的GPS信号 14。参考站12测量GPS信号14的载波相位并将具有针对所测量相位和 参考地理位置的参考数据的无线电信号17发送到示出为流动站18的一个 或多个流动站。流动站18包括用于测量相同GPS信号14的栽波相位的 RTK GPS接收器。参考和流动站相位测量之间的差产生对流动站18和GPS卫星16A 之间由向量^表示的垂直距离向量的估计。来自若干GPS卫星16的测量 产生对若干i直距离向量以及最终流动站18相对于参考站12的位置的估 计。可将向量丄理解为GPS卫星16和流动站18之间的向量与参考站12 和流动站18之间的向量的点积。示例性的RTK GPS系统在Nicholas C. Talbot等人的名为"centimeter accurate global positioning system receiver for on隱the画fly real-time-kinematic measurement and control"的美国专利 No. 5,519,620中公开,这里通过引用将其包括在内。图1A是示出现有技术的基于虚拟参考系统(virtual reference system, VRS ) RTKGPS的系统的图。参考网络站12A、 12B 12N包括 参考GPS接收器,用于测量从GPS卫星16接收的GPS信号14的载波 相位。参考站12A N将具有针对其测量的相位和参考地理位置的参考数 据的信号22发送到服务器23。 12A示出的参考站之一被指定为主参考站。 服务器23和主参考站12A可放置在一起。服务器23通过无线电信号25 与一个或多个VRS RTK GPS流动站通信。VRS RTK GPS流动站,皮示出 为流动站24。服务器23,或服务器23与流动站24—起,确定虚拟参考位置26和 主参考站12A的位置与虛拟参考位置26之间的虛拟向量27,然后使用主
参考站12A的位置和所测量的相位、辅参考站12B ~ N的位置和所测量的 相位以及虚拟向量27 (或虚拟参考位置26)来根据虚拟参考系统(VRS ) 参数模型计算虚拟参考位置26的虚拟参考相位。流动站24包括用于测量 相同GPS信号14的相位的RTK GPS接收器。虚拟参考和流动站相位测 量之间的差产生对与上述向量&相似的到GPS卫星16的垂直距离向量、 以及最终相对于虚拟参考位置26的流动站24的位置的估计。使用参考站的网络而不是单个参考站允许模拟区域内的系统电离层 和对流层参数误差,并从而提供误差减少的可能性。存在对到流动站的双 向通信参考数据使用公共域RTCM和CMR标准的网络。关于误差模拟 的详细信息在Landau等A^C表在Journal of Global Positioning Systems for 2002, Vol. 1, No. 2, 137 ~ 143页的"Virtual Reference Station Syatems" 中可找到。图2是示出由附图标记30指示的本发明基于实时动态测量(RTK) GPS的定位系统的图。定位系统30包括至少一个参考站31,用于接收来 自GPS卫星16的GPS信号14。参考站31具有通过勘查或其它手段确定 的参考位置。系统30接收或生成用于控制系统30针对一个或多个RTK GPS流动站118提供的定位准确度的合成偏移向量32。参考位置和合成 偏移向量32限定合成位置33,其中合成位置33以合成偏移向量32与参 考位置分离。合成偏移向量32的长度和方向是任意的。然而通常是几米 或更少。图2A是示出参考站31和流动站118的框图。参考站31包括参考 GPS接收器34、合成相位处理器35和无线电收发器36。参考GPS接收 器34和合成相位处理器35可分离或组合成单个单元。如果不需要与流动 站118进行双向传送,则无线电收发器36可以是不具有接收器的发送器。 参考GPS接收器34测量GPS信号14的载波相位。处理器35使用合成 偏移向量32、站31的参考位置和GPS卫星16的三维角,来推断出如果 在合成位置33处进行测量所测量的载波相位的合成参考相位。无线电收发器36将具有针对合成参考相位和参考位置的合成参考数 据的无线电信号37发送到流动站118。蜂窝或地面线路电话可用来提供 或加强无线电信号37。合成参考数据像通常那样仍然包括参考站31的正 确地理参考位置,但是GPS信号14的相位不是在参考位置测量的实际相 位,而是由所测量的参考相位、实际参考位置和合成偏移向量32 (或合 成位置33 )计算的合成参考相位。
流动站118包括流动站GPS接收器119和异常检测器120。流动站 GPS接收器119接收GPS信号14并测量来自相同GPS卫星16的载波相 位,并计算所测量的流动站相位和合成参考相位之间的差。使用合成参考 相位来代替实际参考相位,现在获得向量^表示的估计的垂直距离向量, 而不是上述向量丄表示的估计的垂直距离向量。向量^可被理解为GPS 卫星16A和流动站118之间的向量与合成位置33和流动站118之间的向 量的点积。当流动站118计算其相对于参考站31的位置时,其获得具有 沿与合成偏移向量32相反的方向、长度相等的添加的位置误差39的位置 38。使用该技术,定位系统30能够任意地将添加的误差39引入流动站 118计算的位置38。流动站GPS接收器119由当前和在前的合成参考相位以及当前和在 前所测量的流动站相位确定双差相位剩余量,并将该相位剩余量传送到异 常检测器120。当该相位剩余量大于与针对用于RTK操作的完整性限制 40的所选距离相对应的相位阈值时,异常检测器120检测到相位剩余量 异常。完整性限制40对应于流动站位置38周围的区域的外部限制。当检 测到异常时,异常检测器120禁止流动站GPS接收器119向流动站118 的用户提供流动站位置38,或向该用户提供有关检测到异常的通知并允 许该用户决定是否使用位置38。或者,异常检测器120提供流动站位置 38的解,其中不使用与所述异常相关联的针对该特定GPS信号14的所 测量的流动站相位和合成参考相位。本发明的系统30的效果在于流动站 位置38具有受控的添加的位置误差39,而不使流动站位置38的RTK定 位方案的完整性限制40降级。图3是示出由附图标记50表示的根据本发明的基于实时动态测量 (RTK) GPS的定位系统的网络实施例的图。定位系统50包括由51A、 51B到51N表示的参考站的网络,用于接收来自GPS卫星16的GPS信 号14。参考网络站51A~N具有通过勘查或其它手段确定的参考位置。 系统50接收或生成用于控制系统50针对作为流动站124A、 124B或124C 示出的一个或多个RTK GPS流动站提供的定位准确度的合成偏移向量 32。流动站124A、 124B或124C分别包括流动站GPS接收器125A、 125B 或125C,和异常检测器126A、 126B或126C。定位系统50也包括服务器52A、 52B或52C。服务器52A C和参 考网络站51A ~ N通过无线电信号54进行通信。网络站之一,例如站51A 可被指定为主站,其它参考网络站51B~N可被指定为辅站。主参考站位在一起,可共享或不共享处理能力;或主参 考站51A和服务器52A ~ C可物理分离。参考网络站51A~N测量GPS信号14的载波相位,并将其相位测量 传送到服务器52A ~ C。服务器52 A ~ C通过无线电信号56与流动站124 A C通信。在传统系统中,服务器23使用虚拟向量27和主、辅参考位 置和相位来确定虚拟参考位置26的虚拟参考相位。在本发明中,虚拟向 量27和合成偏移向量32的和是主合成向量64。主参考站51A的位置和 主合成向量64 P艮定合成位置133。本发明的系统50 4吏用合成偏移向量32 和虚拟向量27 (或主合成向量64)以及主、辅参考位置和相位来确定合 成位置133的合成参考相位。流动站124A~C预期的是仿佛在虚拟参考位置26处测量的参考相 位,然而,其接收的是针对合成位置133推断出的合成参考相位。流动站 GPS接收器125A ~ C接收GPS信号14并测量来自相同GPS卫星16的 载波相位,计算所测量的流动站相位和合成参考相位之间的差。使用该合 成参考相位代替虚拟参考相位,现在获得上述向量^表示的估计的垂直 距离向量。当流动站124A C计算其相对于虚拟位置26的位置时,获得 相对于虚拟参考位置26的位置38,该位置38具有与合成偏移向量32长 度相等、方向相反的添加的位置误差39。使用该技术,定位系统50能够 任意地将添加的误差39引入流动站124A ~ C计算的位置38。服务器52A ~ C和流动站124A ~ C可使用双向通信来就虚拟参考位 置26的地理位置达成一致。例如,虚拟参考位置26可被选择为流动站 124A~C的最佳估计位置。应注意,本发明不依赖于服务器52A~C的 处理能力的位置。服务器52A~C的处理能力可位于通信范围内的任何地 方,并且可分布在若干位置。蜂窝电话或地面线路电话可用来提供或加强 无线电信号54和/或56。图3A Al良务器52A的框图。服务器52A包括无线电M器62、虚 拟参考合成相位处理器63和异常检测器63A。服务器52A从参考站51A ~ N接收参考位置(或其已具有这些参考位置)和参考相位的数据。处理器 63使用虛拟参考系统(VRS)参数模型和主合成向量64 (代替虛拟向量 27),参考网络站51A N的主、辅参考网络位置和相位,以及针对GPS 卫星16的三维角,来推断出如果在合成位置133 (代替虚拟参考位置26 ) 处进行测量所测量的合成参考相位。无线电收发器62将具有合成参考数据的无线电信号56发送到流动站 124A。合成参考数据通常仍然包括正确的地理虚拟参考位置26,但是包 括合成参考相位,以代替传统流动站用于在不具有本发明的准确度控制的 情况下进行的定位操作的实际或虚拟参考相位。图3B是服务器52B的框图。服务器52B包括无线电M器62、合 成相位处理器65、虚拟参考处理器66和异常检测器66A。服务器52B从 参考站51A ~ N接收参考位置(或其已经具有这些参考位置)和参考相位 的数据。虚拟参考处理器66使用虚拟向量27和参考站51A ~ N的参考位 置和相位、以及针对GPS卫星16的三维角来确定虚拟参考相位。虚拟参 考处理器66然后将该虚拟参考相位和虚拟参考位置26传送到合成相位处 理器65。合成相位处理器65使用合成偏移向量32和虚拟参考相位以及针对 GPS卫星16的三维角来推断出如果在合成位置133处进行测量所测量的 载波相位的合成参考相位。无线电收发器62将具有合成参考数据的无线 电信号56发送到流动站124B。合成参考数据通常仍然包括正确的地理虚 拟参考位置26,但是GPS信号14的相位不是在虚拟参考位置26处测量 的虛拟参考相位,而是在合成位置133处测量的合成参考相位。图3C ;U艮务器52C的框图。合成相位处理器65与虚拟参考处理器 66分离地定位。服务器52C使用公共交换电话网(public switch telephone network, PTSN)电话系统68来接收参考数据,并使用电话系统68来进 行虚拟参考处理器66和合成相位处理器65之间的通信。处理器65从虚 拟参考处理器66接收虚拟参考位置26和虚拟参考相位的数据,然后如上 所述推断出合成参考相位。处理器65可位于与具有局部有线连接的流动 站124C邻近的位置,或者蜂窝电话69可用来将合成参考相位传送到流 动站124C。虚拟参考处理器63和66针对当前和在前的相位测量确定主、辅相位 之间的双差相位剩余量,并将该相位剩余量传送到相应异常检测器63A 和66A。当相位剩余量大于与针对RTK操作的所选距离或完整性限制40 相对应的相位阈值时,异常检测器63A和66A检测到相位剩余量异常。 虛拟参考处理器63和异常检测器63A和66A分别可共享硬件和软件。流动站GPS接收器125A ~ C也确定双差相位剩余量。在流动站GPS 接收器中确定的相位剩余量是针对当前和在前相位测量的流动站相位和 合成参考相位之间的差。流动站GPS接收器125A ~ C将相位剩余量传送 到相应异常检测器126A ~ C。当相位剩余量大于与针对RTK操作的所选
距离或完整性限制40相对应的相位阈值时,异常检测器126A ~ C也检测 到相位剩余量异常。流动站GPS接收器125A ~ C和异常检测器126A ~ C 分别可共享硬件和软件。完整性限制40对应于流动站位置38周围的区域。当检测到异常时, 异常检测器63A、 66A或126A ~ C禁止流动站GPS接收器125A ~ C向 流动站124A ~ C的用户提供流动站位置38,或向该用户提供有关检测到 异常的通知,并允许用户决定是否使用该位置38。或者,流动站124A C提供针对流动站位置38的解,其中不使用与异常相关联的针对特定 GPS信号14所测量的流动站相位和合成参考相位。本发明的系统50的 效果在于流动站位置38具有受控的添加的位置误差39,且不使流动站位 置38的RTK定位方案的完整性限制40降级。在系统50中,通itiC送主、辅参考网g置和/或参考网络相位之间 的差而不是实际参考位置和相位来减少在各位置之间传输的数据的量会 是有益的。例如,辅站51B N的参考位置和相位可作为相对于主参考站 51A的参考位置和相位的差来发送。图4是示出本发明用于从基于GPS的定位系统71接收安全格式的传 统参考数据的安全实时动态测量(RTK) GPS流动站70的图。定位系统 71包括具有通过勘查或其它手段确定的参考位置的至少一个参考站112, 用于从GPS卫星16接收GPS信号14。参考站112测量GPS信号14的 载波相位,并将具有针对参考相位的安全参考数据的无线电信号117发送 到流动站70。可通过防止对受版权保护的作品进行未经授权的访问的 1998数字千年版权法的措施来维护参考数据的安全性。或者可对参考数 据加密。流动站70接收、生成或选#^合成偏移向量32。合成偏移向量32和 参考站112的参考位置限定上述合成位置33。合成偏移向量32的长度和 方向任意,但是长度一般为几米或更少。当期望本发明的流动站70与现 有的基于RTKGPS的参考系统操作时,参考站112可以是附加有用于保 护参考数据不受未经授权的访问的安全措施的上述传统参考站12。图4A是流动站70的框图。流动站70包括具有异常检测器74A的 RTK流动站GPS接收器74、安全合成相位处理器75和无线电^1UL器76。 流动站GPS接收器74测量由参考站112测量的相同GPS信号14的载波 相位。如果不需要双向通信,无线电收发器76可被不具有发送器的无线 电接收器代替。蜂窝电话可用于无线电收发器76。无线电收发器76接收
无线电信号117中的参考位置和参考相位的安全参考数据。安全合成相位处理器75选择合成偏移向量32并使用合成偏移向量 32、参考位置、安全参考相位和针对GPS卫星的三维角来推断出合成参 考相位。安全合成相位处理器75以使得授权用户难以改变处理算法或查 看信号或数据的方式对处理器75的物理边界内的信号和数据进行处理。 此外,通过1998数字千年版权法的访问控制来保护算法、信号、消息和 数据。安全合成相位处理器75将合成参考相位传送到流动站GPS接收器 74。 GPS接收器74使用合成参考相位和所测量的流动站相位、以及参考 位置和针对GPS卫星16的三维角来计算流动站位置38。传统流动站18 会计算参考和流动站相位测量之间的差以得出由针对GPS卫星16A的向量丄表示的距离向量。然而,本发明的流动站70获得^表示的估计的垂 直另巨离向量,而不是&表示的向量。当流动站70计算其相对于参考站112的位置时,其获得具有与合成 偏移向量32长度相等、方向相反的向量位置偏移误差39的位置38。安 全处理器75中的安全措施防止用户通过使用所测量的参考相位代替合成 参考相位来取消本发明的准确度控制。流动站GPS接收器74对若干GPS 卫星16的测量产生若干垂直距离向量^以及最终流动站70相对于参考 站112的具有添加的误差39的位置。4吏用该技术,安全合成相位处理器 75能够将任意的添加的误差39引入由流动站70计算的位置38。流动站GPS接收器74由当前和在前合成参考相位以及所测量的流动 站相位确定相位剩余量,并将该相位剩余量传送到异常检测器74A。当相 位剩余量大于与针对RTK^作的所选的完整性限制40相对应的相位阈 值时,异常检测器74A检测到相位剩余量异常。完整性限制40对应于流 动站位置38周围的区域。当检测到异常时,异常检测器74A禁止流动站 GPS接收器74向流动站70的用户提供流动站位置38,或向该用户提供 有关检测到异常的通知,并且允许用户决定是否使用该位置38。或者, 异常检测器74A提供针对流动站位置38的解,其中不使用与异常相关联 的针对特定GPS信号14的所测量的流动站相位和合成参考相位。本发明 的系统70的效果在于流动站位置38具有受控的添加的位置误差39,且 不4吏针对流动站位置38的RTK定位方案的完整性限制40降级。图5是示出本发明用于从网络定位系统81接收安全格式的传统参考 数据的安全实时动态测量(RTK) GPS流动站80A或80B的图。流动站80A~B从系统81接收具有安全参考相位的参考数据,并选^^合成偏移 向量32来控制其提供的定位准确度。可通过1998数字千年版权法的访问 控制措施和/或加密来保护参考相位的安全性。定位系统81包括服务器 123和具有通过勘查或其它手段得知的参考位置、由112A、 U2B 112N 表示的参考网络站的网络。参考网络站112A ~ N包括用于从GPS卫星16接收GPS信号14并 测量载波相位的参考GPS接收器。当期望本发明的流动站80A~B与现 有的基于RTK GPS的参考系统一起操作时,参考站112A~N可以是传 统参考站12A ~ N,服务器123可以是附加有用于保护参考数据的安全措 施的上述传统服务器23。参考站之一,如112A所示,可以被指定为主参 考站,其它参考网络站112B N可以被指定为辅参考站。参考网络站112A ~ N通过信号122与服务器123通信,该服务器通 过具有安全数据格式的无线电信号127与流动站80A ~ B通信,该安全数 据格式使得未经授权用户不能轻易使用参考相位。虚拟向量27和合成偏 移向量32的和是主合成向量64。主参考站112A的位置和主合成向量64 限定合成位置133。图5A是流动站80A的框图。流动站80A包括无线电收发器82、安 全虚拟参考合成相位处理器83和具有异常检测器86A的RTK流动站 GPS接收器84A。无线电收发器82通过无线电信号127接收主、辅参考 网络站112A N的主、辅参考位置和相位的数据。如果不需要双向通信, 无线电M器82可以是不具有发送器的无线电接收器。无线电收发器82 可以是蜂窝电话。为了减少发送的数据的量,辅参考站112B N的参考 位置和相位可作为与主参考站112A的参考位置和相位的差来发送。合成相位处理器83接收、生成或选择合成偏移向量32,并然后确定 虚拟参考位置26,或与服务器123协商来确定虚拟参考位置26。虛拟参 考位置26和合成偏移向量32限定合成位置133,其中合成位置133以合 成偏移向量32与虚拟参考位置26分离。处理器83由虚拟向量27和合成 偏移向量32的向量和(或虚拟参考位置26和合成偏移向量32)确定主 合成向量64。合成偏移向量32的长度和方向是任意的,但是长度通常是 几米或更少。处理器83然后使用代替虚拟向量27的主合成向量64以及参考网络 站112A~N的主、辅参考网络位置和相位与针对GPS卫星16的三维角 来推断出如果在合成位置133处进行测量所测量的合成参考相位。处理器
83将虚拟参考位置26的合成参考数据和合成参考相位传送到流动站GPS 接收器84A。流动站GPS接收器84A测量相同GPS信号的相位并使用所 测量的流动站相位、主、辅参考位置和相位以及合成参考相位和虚拟参考 位置26来确定流动站位置38。图5B是流动站80B的框图。流动站80B与上述流动站70相似,除 了流动站80B使用虚拟参考位置26而不是参考站112的实际参考位置之 夕卜。流动站80B包括无线电^器82、具有异常检测器86B的流动站GPS 接收器84B和安全合成相位处理器85。无线电^器82通过无线电信号 127接收虛拟参考位置26和虚拟参考相位的数据。处理器85使用合成偏移向量32(或虚拟参考位置26和合成位置133 之间的差)与虚拟参考位置26、虚拟参考相位和针对GPS卫星的三维角 来推断出在合成位置133处测量的合成参考相位。处理器85将该虚拟参 考位置26的合成参考数据和合成参考相位传送到流动站GPS接收器 84B。流动站GPS接收器84B测量相同GPS信号的相位并使用所测量的 流动站相位和合成参考相位以及虚拟参考位置26来确定流动站位置38。流动站GPS接收器84A ~ B由当前和在前合成参考相位以及所测量 的流动站相位确定相位剩余量,并将该相位剩余量传送到异常检测器 86A ~ B。当相位剩余量大于与针对RTK ^作的所选的距离或完整性限制 40相对应的相位阈值时,异常检测器86A~B检测到相位剩余量异常。 完整性限制40对应于流动站位置38周围的区域。当检测到异常时,异常 检测器86A ~ B禁止流动站GPS接收器84A ~ B向流动站80A ~ B的用户 提供流动站位置38,或向用户提供有关检测到异常的通知并且允许用户 决定是否使用位置38。或者,异常检测器86A B提供流动站位置38的 解,其中不使用针对与异常相关联的特定GPS信号14的所测量的合成参 考相位和流动站相位。流动站80A ~ B所计算的相对于虚拟参考位置26的位置38具有与合 成偏移向量32长度相等、方向相反的添加的位置偏移误差39。使用该技 术,流动站80A~B能够任意地将添加的误差39引入位置38,而不使流 动站位置38的RTK定位方案的完整性限制40降级。安全合成相位处理器83和85以4吏得流动站80A和80B的用户难以 物理地改变处理算法或查看信号或lt据的方式对围在流动站80A和80B 的边界内的信号和数据进行处理。此外,通过1998数字千年版权法的访 问控制保护算法、信号、消息和数据。
图6A和6B分别是由附图标记卯A和卯B指示的本发明的随机参考 生成器的框图。随机参考生成器卯A用在本发明具有用于生成合成参考 相位的VRS参数模型的合成相位处理器63和83中。随机参考生成器卯B 用在本发明具有用于生成合成参考相位的实际或虚拟参考位置的合成相 位处理器35、 65、 75和85中。合成参考相位从系统30和50被传送到流 动站118或124A ~ C中的RTK GPS接收器来确定流动站位置38,或在 流动站70或80 A ~ B内的安全处理器中祐j十算从而确定流动站位置38。随机参考生成器卯A和卯B包括随机过程向量生成器170。随机过 程向量生成器170存储或接收最大改变率以及一个或多个最大尺寸的值 并使用这些值作为随机或伪随机过程的输入来连续计算合成偏移向量 32。重要的是,因为通过随机或准随机过程计算合成偏移向量32,因此 所添加的误差39不会轻易地被用户或流动站内编程的软件取消。最大尺寸的值可以是规定球形误差区域的最大半径、规定圆柱形误差 区域的最大半径和最大长度、规定盒形误差区域的三个最大长度X、 Y和 Z,等等。误差区域指的是在不使用本发明的准确度控制而由RTK流动 站确定的流动站位置周围的针对流动站位置38的添加的误差39的量或三 维范围。例如,盒形误差区域的添加的偏移39可具有lxl <X、 lyl《Y以 及lzl <Z的三维的误差x、 y和z。盒形误差区域不需要具有相等或互相 垂直的维度。最大尺寸的值z = 0或x和y = 0可用来限制随机过程向量生 成器170,使得添加的误差39被分别限制到水平或垂直方向。当针对固定RTK操作所构造的流动站GPS接收器连续使用所求解的 整数个载波相位周期进行其定位时,添加的误差39可以具有相对大的量, 但是在任何方向上具有低改变率。通过连续使用整数,流动站位置38具 有即使当添加的误差39有几米或更多时仍然在几厘米小的完整性限制40 内的RTKGPS方案的完整性。由于多径造成的误差被大大地消除,即使 当本发明使得准确度下降时,RTK流动站位置38仍具有高完整性。本领 域技术人员应理解,仅直接抖动参考载波相位测量和向流动站提供抖动的 参考相位会^f吏RTK流动站不能求解载波相位整数,从而失去了 RTK位 置方案的高完整性的优势。随机参考生成器卯A包括向量加法器172和虚拟参考相位合成器 174。向量加法器172对合成偏移向量32和虛拟向量27求和以确定主合 成向量64。虚拟参考相位合成器174使用主合成向量64、针对GPS卫星 16的三维角和主、辅参考位置以及相应的所测量的GPS信号14的主、 辅参考载波相位来计算合成参考相位。然后,合成参考相位如上所述被用于RTK流动站GPS接收器测量的载波相位,以计算流动站位置38。随机参考生成器90B包括相位合成器175。相位合成器175使用来自 随机过程向量生成器170的合成偏移向量32和参考载波相位、针对GPS 卫星16的三维角来计算GPS信号14的合成参考相位。参考载波相位可 以是在实际参考位置测量的实际参考相位或针对虚拟参考位置26计算的 虚拟参考相位。然后合成参考相位被用于RTK流动站GPS接收器所测量 的载波相位,以计算流动站位置38。图7是示出在定位系统201中分别与参考站212A或212B —起操作 的本发明的安全实时动态测量(RTK) GPS流动站200A或200B的系统 图。流动站200A B从系统201接收安全形式的参考系统数据,并接收 或生成相对于参考站212 A ~ B的位置的合成偏移向量232。在流动站200 A ~ B中使用安全参考数据来计算安全位置210。流动站200 A ~ B然后用 合成偏移向量232抖动安全位置210以向流动站200 A ~ B的用户提供具 有添加的位置误差239的非安全流动站位置238。针对添加的位置误差239的向量与合成偏移向量232长度相等、方向 相同。在流动站200 A ~ B中监视双差相位剩余量来保持安全位置210周 围的RTK操作的完整性限制240。完整性限制240是安全位置210周围 的区域的外部限制。所添加的位置误差239将安全位置210偏移到非安全 位置238,且不使非安全位置238周围的完整性限制240降级。完整性限 制240可以是二十厘米或更少。合成偏移向量232和所添加的位置误差 239的长度和方向任意,但是长度一般是几米或更少。参考站212A B具有通过勘查或其它手段确定的参考位置,用于接 收来自GPS卫星16的GPS信号14并测量参考载波相位。合成偏移向量 232和参考位置限定参考站212A~B的合成位置233。参考站212A~B 将具有所测量的参考相位和参考位置的安全参考数据的无线电信号217 发送到流动站200A~B。合成偏移向量232的信息可包括在发送到流动 站200A,或在流动站200B内生成,或在流动站200A内从其它安全源接 收的安全参考数据中。当期望本发明的流动站200B与现有的基于RTK GPS的参考系统一起操作时,参考站212B可以是附加有发送到流动站 200B的参考数据的安全性的上述传统参考站12。图7A是参考站212A和流动站200A的实施例的框图,其中参考站 212A生成合成偏移向量232。参考站212A包括参考GPS接收器252、参 考位置存储器254、合成向量生成器260、安全参考数据供应方262和无 线电转换器264。参考GPS接收器252接收并测量GPS信号14的载波相 位。参考位置存储器254存储参考站212A的位置。合成向量生成器260 生成合成偏移向量232。安全数据供应方262将参考相位、参考位置以及 合成偏移向量232处理成参考数据的安全格式。无线电收发器264通过无 线电信号217将安全参考数据发到流动站200A。流动站200A包括无线电仗义器272、具有异常检测器275的RTK流 动站GPS接收器274以及位置抖动处理器277。如果不需要双向通信, 可以用不具有发送器的无线电接收器代替无线电收发器272。蜂窝电话可 用作无线电M器272。无线电收发器272通过无线电信号217接收合成偏移向量232和参考 位置以及所测量的参考相位的安全参考数据,将参考位置和相位传送到 GPS接收器274,并将合成偏移向量232传送到位置抖动处理器277。 GPS 接收器274测量相同的GPS卫星16的GPS信号14的载波相位,并计算 参考相位测量和流动站相位测量之间的差。该相位差导致用于确定安全流 动站位置210的上述GPS信号14A的向量丄表示的估计的垂直距离向量。位置抖动处理器277用合成偏移向量232抖动安全流动站位置210 以提供具有添加的位置误差239的流动站位置238。优选地,位置抖动处 理器277是体现在存储器或信号处理硬件中、由流动站GPS接收器274 中的硬件和软件读取或处理的编码算法。流动站GPS接收器274和位置 抖动处理器277必须都不会被流动站200A的用户的墓改,以防止用户取 消由流动站200A提供的准确度控制。流动站GPS接收器274由当前和在前参考相位以及当前和在前所测 量的流动站相位来确定双差相位剩余量,并将该相位剩余量传送到异常检 测器275。当相位剩余量大于与完整性限制240的所选距离相对应的相位 阈值时,异常检测器275检测到相位剩余量异常。安全位置210周围的完 整性区域被位置抖动处理器277转成抖动的流动站位置238周围的完整性 区域240。当检测到异常时,异常检测器275禁止位置抖动处理器277向 流动站200的用户提供流动站位置238,或向用户提供有关检测到异常的 通知并且允许用户决定是否使用位置238。或者,异常检测器275提供安 全位置210的解,位置抖动处理器277提供流动站位置238,其中不4吏用 与异常相关联的针对特定GPS信号14的所测量的流动站相位和参考相 位。 图7B是参考站212B和流动站200B的实施例的框图,其中流动站 200B生成合成偏移向量232。参考站212B和流动站200B如以上关于参 考站212A和流动站200A所述地操作,除了合成偏移向量232由流动站 200B中的合成向量生成器260生成之外。图8是示出本发明在一般用附图标记301示出的网络定位系统中分别 与服务器323A、323B、323C和323D —起操作的安全实时动态测量(RTK) GPS流动站300A、 300B、 300C或300D的系统图。流动站300A ~D从 系统301接收安全参考系统数据,并接收或生成用于控制其提供的定位准 确度的合成偏移向量232。合成偏移向量232将系统301的虚拟参考位置 26偏移到合成位置333。参考数据被流动站300A ~ D用来计算安全位置 310。流动站300A~D然后使用合成偏移向量232来抖动安全位置310, 以向流动站300A~D的用户提供具有添加的位置误差239的非安全流动 站位置338。 RTK操作的完整性限制240表示安全位置310周围的区域的 外部限制。所添加的位置误差239将安全位置310偏移到非安全位置338, 且不使完整性限制240降级,使得完整性限制240成为位置338周围的区 域的外部限制。所添加的位置误差239的向量与合成偏移向量232长度相 等、方向相同。合成偏移向量232和所添加的位置误差239的长度和方向 任意,但是长度一般是几米或更少。定位系统301包括由312A、 312B 312N表示的参考网络站的网络, 具有通过勘查或其它手段得知的参考位置。参考站312A~N测量来自 GPS卫星16的GPS信号14的载波相位,并将具有所测量的相位的参考 系统数据的电话或无线电信号322发送到服务器323A~D。合成偏移向 量232的信息可包括在发送到流动站300A、 C,或在流动站300B、 D内 生成,或在流动站300A、 C中从其它安全源接收的安全参考数据中。服 务器323A~D通过无线电信号325通信,以将安全格式的参考数据发送 到流动站300A D。参考站之一,如312A所示,可被指定为主参考站, 其它参考网络站312B ~ N可被指定为辅参考站。系统301确定虚拟参考位置26和从主参考站312A到虚拟参考位置 26的虚拟向量27。当期望本发明的流动站300B、 D与现有的基于RTK GPS的参考系统一起操作时,服务器323B、 D和参考站312A N可以是 附加有发送到流动站300B、 D的参考数据的安全性的现有技术中的服务 器23和参考站12A ~ N。应注意,服务器323A D的组成部分不必在一
个物理位置。图8A AJi艮务器323A和流动站300A的实施例的框图,其中服务器 323A生成合成偏移向量232。月良务器323A包括合成向量生成器260、具 有异常检测器353的VRS位置相位处理器352、安全参考数据供应方354 和无线电收发器356。合成向量生成器260生成合成偏移向量232并将该 合成偏移向量232传送到安全数据供应方354。VRS参考位置相位处理器352通过信号322接收来自参考站312A ~ N的主、辅参考相位。主、辅参考位置由处理器352保持或通过信号322 接收。处理器352使用虚拟参考位置26和来自参考站312A N的主、辅 位置和相位来确定有关虚拟参考位置26的GPS信号14的虚拟参考相位, 并将该虚拟参考位置26和虚拟参考相位的参考数据传送到安全数据供应 方354。异常检测器353监视参考站312A~N之间的当前和在前测量的 相位之间的双差相位剩余量,以在当前参考相位之一位于与完整性限制 240相对应的相位剩余量阈值之外时防止流动站300A使用参考数据。安全数据供应方354将参考数据处理成安全格式,并将该安全参考数 据传送到无线电收发器356。无线电收发器356通过无线电信号325将安 全参考数据发到流动站300A。流动站300A包括位置抖动处理器277、无 线电^L良器362和具有异常检测器365的流动站RTK GPS接收器364。 无线电收发器362接收无线电信号325中的安全参考数据,并将参考系统 位置和相位数据传送到流动站GPS接收器364,且将合成偏移向量232 传送到位置抖动处理器277。如果不需要双向通信,则无线电收发器362 可以是不具有发送器的无线电接收器。无线电收发器362可以是蜂窝电 话。流动站GPS接收器364如参考GPS接收器352 —样测量相同的GPS 卫星16的GPS信号14的载波相位,然后使用参考系统位置和相位数据 来校正其测量的载波相位,且最终获得相对于虚拟参考位置26的安全位 置310。流动站GPS接收器364由当前和在前参考相位以及所测量的流动站 相位确定相位剩余量,并将该相位剩余量传送到异常检测器365。当相位 剩余量大于与选择的完整性限制240相对应的相位阔值时,异常检测器 365检测到相位剩余量异常。完整性限制240对应于流动站位置310周围 的区域。位置抖动处理器277用合成偏移向量232抖动安全位置310,以 将完整性限制240转到具有添加的误差239的非安全位置338。当检测
异常时,异常检测器365禁止流动站GPS接收器364向位置抖动处理器 277 4^供流动站安全位置310且最终禁止流动站300A向流动站300A的 用户提供流动站位置338。或者,异常检测器365提供位置338,其中不 使用针对与异常相关联的特定GPS信号14所测量的参考相位和流动站相 位。图8B ;U艮务器323B和流动站300B的实施例的框图,其中流动站 300B生成合成偏移向量232。如上所述,服务器323B包括具有异常检测 器353的VRS位置相位处理器352、安全数据供应方354和无线电M 器356。如上所述,流动站300B包括合成向量生成器260、位置抖动处 理器277、无线电M器362和具有异常检测器365的流动站RTK GPS 接收器364。无线电收发器356通过无线电信号325将安全格式的虚拟参考位置 26和虚拟参考相位的参考系统数据发送到流动站300B。流动站300B中 的合成向量生成器260将合成偏移向量232传送到位置抖动处理器277。 位置抖动处理器277用合成偏移向量232抖动该安全位置310以向流动站 300B的用户提供具有完整性限制240的非安全流动站位置338。图8C ;U1务器323C和流动站300C的实施例的框图,其中月良务器 323C生成合成偏移向量232。服务器323C包括合成向量生成器260、参 考服务器处理器368、安全数据供应方354和无线电收发器356。合成向 量生成器260生成合成偏移向量232并将其传送到安全数据供应方354。参考服务器处理器368通过信号322接收来自参考站312A ~ N的主 辅参考相位。主、辅参考位置被处理器368保持或通过信号322被接收。 处理器368将主、辅参考位置和相位传送到安全数据供应方354。安全数据供应方354将参考数据处理成安全格式,并将该安全参考数 据传送到无线电》1^1器356。无线电收发器356通过无线电信号325将安 全参考数据发到流动站300C。流动站300C包括位置抖动处理器277、无 线电收发器362、具有异常检测器375的流动站RTK GPS接收器374。 无线电收发器362接收无线电信号325中的安全参考数据并将参考系统位 置和相位数据传送到流动站GPS接收器374,将合成偏移向量232传送 到位置抖动处理器277。如果不需要双向通信,无线电M器362可以是 不具有发送器的无线电接收器。无线电M器362可以是蜂窝电话。流动站GPS接收器374如参考站312A ~ N —样测量相同的GPS卫
星16的GPS信号14的载波相位,然后使用该参考系统位置和相位数据 来校正其测量的载波相位,且最终获得相对于虚拟参考位置26的安全位 置310。安全位置310被传送到位置抖动处理器277。流动站GPS接收器374由当前和在前参考相位以及所测量的流动站 相位确定相位剩余量,并将该相位剩余量传送到异常检测器375。当相位 剩余量大于与所选完整性限制240相对应的相位阈值时,异常检测器375 检测到相位剩余量异常。完整性限制240对应于流动站位置310周围的区 域的外部限制。位置抖动处理器277用合成偏移向量232抖动安全位置 310以将完整性限制240转到相对于虚拟参考位置26具有添加的位置误 差239的非安全流动站位置338。当检测到异常时,异常检测器375禁止 流动站GPS接收器374向位置抖动处理器277提供流动站安全位置310, 且最终禁止流动站300C向流动站300C的用户提供流动站位置338。或 者,异常检测器375提供流动站位置338的解,其中不使用与异常相关联 的针对特定GPS信号14测量的参考相位和流动站相位。图8D ^J艮务器323D和流动站300D的实施例的框图,其中流动站 300D生成合成偏移向量232。服务器323D包括上述参考服务器处理器 368、安全数据供应方354和无线电^ML器356。如上所述,流动站300D 包括合成向量生成器260、位置抖动处理器277、无线电收发器362以及 具有异常检测器375的流动站RTK GPS接收器374。无线电收发器356通过无线电信号325将安全格式的主、辅参考位置 和相位(或主、辅位置和相位之间的差)的参考系统数据发送到流动站 300D。流动站300D中的合成向量生成器260生成合成偏移向量232并将 其传送到位置抖动处理器277。位置抖动处理器277用合成偏移向量232 抖动安全位置310,以对流动站300D的用户提供非安全流动站位置338。使用该技术,安全流动站200A B、 300 A~D能够将任意添加的误 差239引入流动站200A B、 300A D提供的位置238、 338,而不4吏针 对安全位置210、 310计算的完整性限制240降级。参考数据必须是安全 的,且流动站GPS接收器274、 364、 374和位置抖动处理器277必须都 不会受到用户的墓改,从而防止用户取消流动站200A B、 300A D提 供的准确度控制。以上i兌明了例如63A、 66A、 74A、 86A~B、 120、 126A~C、 275、 353、 365和375的异常检测器,用于逐个卫星地针对实时动态测量(RTK) 位置确定来检测相位剩余量的异常(也称作野值)。当相位剩余量超过所
选择的相位剩余量限制时,检测到该异常。选择相位剩余量限制,使得当 相位剩余量位于相位剩余量限制内时,位置确定具有指定的完整性限制
40、 240。
为流动站GPS接收器274、 364、 374和位置抖动处理器277中的算 法、信号、消息和数据,以及信号127、 217和325中的参考数据提供1998 数字千年版权法的访问控制措施。也可通过加密来保护信号127、 217和 325中的参考数据。流动站200 A ~ B和300 A ~ D以使得流动站200 A ~ B和300 A~D的未经授权的用户难以机喊地或电地改变算法或查看信号 或lt据的方式对包括在流动站200 A B和300 A D的边界内的信号和 数据进行处理。所有用户都是未经授权的用户,除非他们被算法、信号或 数据的供应方指定为授权用户。
注意,定位系统30、 50、 71、 81、 201或301可用作收费RTKGPS 服务的基础,其中该服务的价格基于定位的准确度。
图9是示出合成向量生成器260和位置抖动处理器277的框图。合成 向量生成器260包括随机过程向量生成器380。随机过程向量生成器380 存储或接收最大改变率的值和一个或多个最大尺寸的值,并使用这些值作 为随机或伪随机过程的输入,以连续计算合成偏移向量232。位置抖动处 理器277包括用于对合成偏移向量232和安全位置210、 310求和的加法 器382。重要的是,因为合成偏移向量232与添加的位置误差239相同且 通过随机或准随机过程计算该合成偏移向量232,添加的位置误差239不 会被未经授权的用户轻易取消。
最大尺寸的值可以是规定球形误差区域的最大半径值、规定圆柱形误 差区域的最大半径和最大长度、规定盒形误差区域的三个最大长度X、 Y 和Z等。误差区域指的^1针对抖动的(非安全)流动站位置238、 338的 在安全流动站位置210、 310周围的添加的位置误差239的量或三维范围。 例如,盒形误差区域的添加的位置误差239可具有lxl <X、 lyl《Y以及 I z I < Z的三维上的误差x、 y和z。盒形误差区域不必具有相等或互相垂 直的维度。最大尺寸的值z = 0或x和y = 0可用来限制随机过程向量生成 器380,使得添加的位置误差239被分别限制到水平或垂直方向。
当针对固定RTK操作所构造的流动站GPS接收器连续使用所求解的 整数个载波相位周期进行其定位时,添加的误差239可在任何方向上具有 相对大的量。通过连续求解该整数,流动站位置238、 338具有即使当添 加的误差239几米或更多时仍在几厘米小的完整性限制240内的RTK
GPS方案的完整性。由于多径造成的误差被大部分消除,即使本发明的 准确度下降,RTK流动站位置238、 338仍具有高完整性。本领域技术人 员应理解,仅直接抖动参考位置和向流动站提供抖动的参考位置使得 RTK流动站不能求解载波相位整数,从而失去RTK位置方案的高完整性 的优势。
图10是本发明从具有一个参考站的参考系统30向一个或多个流动站 提供合成参考相位的方法的步骤的流程图。本发明可通过包含可由处理器 读取的指令的有形介质600实现,该指令使系统执行该方法的步骤。可通 过光盘、电子存储芯片、硬盘、数字视频装置等一个或多个存储装置来构 造该介质600。该处理器可以是通常作为计算机或微处理器已知的装置。
在步骤602,接收或生成或选择合成偏移向量。在步骤604,通过实 时动态测量(RTK) GPS接收器在参考站接收GPS信号。在步骤606, 参考GPS接收器在参考位置测量GPS信号的载波相位。
通过参考位置和合成偏移向量限定合成位置。在步骤608,参考系统 使用合成偏移向量和所测量的参考相位来确定在合成位置接收的GPS信 号的合成参考相位。在步骤612,参考系统将包括合成参考相位的合成参 考数据发送到流动站。
在步骤614,具有RTK GPS接收器的GPS流动站接收合成参考数据。 在步骤618,流动站GPS接收器^目同的GPS卫星接收GPS信号。在步 骤618,流动站GPS接收器测量相同的GPS信号的载波相位。在步骤622, 合成参考相位和所测量的流动站相位被用来测试相位测量的完整性。在步 骤624,当验证了完整性时,流动站使用参考位置、合成参考相位和流动 站相位来确定其位置。流动站所确定的位置具有与通过参考位置的相位来 确定的位置相同的RTK完整性,但是具有添加的偏移误差,该偏移误差 对流动站未知且与合成偏移向量长度相等。
图11是本发明用于向一个或多个流动站提供来自参考网络系统50等 参考网络系统的合成参考相位的方法的步骤的流程图。本发明可通过包含 可由处理器读取的指令的有形介质650实现,该指令使系统执行该方法的 步骤。可通过光盘、电子存储芯片、硬盘、数字视频装置等一个或多个存 储装置构造介质650。处理器可以是通常作为计算机或微处理器已知的装 置。
在步骤602接收或生成或选择合成偏移向量。在步骤652,将参考站 组之一指定为主参考站。在步骤654,在参考网络站接收信号。在步骤656, 参考站的实时动态测量(RTK) GPS接收器在参考网络位置测量GPS信 号的载波的参考网络相位。
在步骤662,由系统选#^虚拟参考位置或在系统和流动站之间协商该 虚拟参考位置。在步骤664,计算主参考站的位置和虚拟参考位置之间的 虚拟向量。在步骤666,通过相加虚拟向量和合成偏移向量来计算主合成 向量。通过虚拟参考位置和合成偏移向量,或等价地通过主参考站的位置 和主合成向量来限定合成位置。在步骤674,系统使用主合成向量、参考 网络位置和所测量的参考网络相位来数学确定针对在合成位置接收的 GPS信号测量的合成参考相位。在步骤675,参考系统使用主、辅参考相 位的双差相位剩余量来测试完整性。在步骤676,当确定了参考相位的完 整性时,系统发送包括合成参考相位的合成参考数据。在步骤678,流动 站接收该合成参考数据。
在步骤682,具有实时动态测量(RTK) GPS接收器的GPS流动站 接收来自相同的GPS卫星的GPS信号。在步骤684,流动站GPS接收器 测量GPS信号的载波相位。在步骤685,使用合成参考相位和所测量的 流动站相位来测试相位测量的完整性。在步骤686,当验证了完整性时, 流动站使用合成参考相位来确定其位置。流动站所确定的位置的准确度具 有与用虚拟参考位置的相位在RTK方案中确定的位置相同的完整性,但 是具有与合成偏移向量长度相等、流动站未知的添加的偏移误差。
图12是本发明用于计算流动站70等流动站中的合成参考相位,然后 使用该合成参考相位来计算具有添加的误差的流动站位置的方法的步骤 的流程图。本发明可通过包含可由处理器读取的指令的有形介质700实 现,该指令使流动站执行上述方法的步骤。可通过光盘、电子存储芯片、 硬盘、数字视频装置等一个或多个存储装置构造介质700。处理器可以是 作为计算机或微处理器等通常已知的装置。
在步骤702,在流动站的安全合成相位处理器中接收或生成或选择合 成偏移向量。在步骤704,通过GPS参考站中的实时动态测量(RTK) GPS接收器在参考位置接收GPS信号。通过参考位置和合成偏移向量限 定合成位置。在步骤706,参考GPS接收器测量GPS信号的载波相位。 在步骤708,参考系统发送具有安全参考数据的信号,该安全参考数据包 括参考位置和所测量的参考相位。
在步骤714,流动站GPS接收器从系统接收安全参考数据。在步骤 716,流动站GPS接收器^目同的GPS卫星接收GPS信号。在步骤718, 流动站GPS接收器测量GPS信号的载波相位。在步骤722,流动站4吏用 参考位置和相位和合成偏移向量来推断出在合成位置接收的GPS信号的 合成参考相位。在步骤723,使用合成参考相位和所测量的流动站相位来 测试相位测量的完整性。在步骤724,当验汪了完整性时,流动站GPS 接收器使用参考位置、合成参考相位和所测量的流动站相位来确定其位 置。流动站所确定的位置的准确度具有与通过真实参考相位确定的位置的 准确度相同的RTK完整性,但是具有长度与合成偏移向量相等、流动站 未知的添加的偏移误差。
图13是本发明用于计算流动站80A或80B等流动站中的合成参考相 位并使用该合成参考相位来计算具有添加的误差的流动站位置的方法的 步骤的流程图。本发明可通过包含可由处理器读取的指令的有形介质750 实现,该指令使流动站执行该方法的步骤。可通过光盘、电子存储芯片、 硬盘、数字视频装置等一个或多个存储装置来构造该介质750。处理器可 以是通常作为计算机或微处理器已知的装置。
在步骤702,在流动站的安全相位处理器中接收或生成或选择合成偏 移向量。在步骤752,选择参考站组之一作为主参考站。在步骤754,通 过GPS参考网络站的实时动态测量(RTK) GPS接收器接收GPS信号。 在步骤756,参考GPS接收器测量GPS信号的载波的参考网络相位。
在步骤762,由系统选择虚拟参考位置,或在系统和流动站之间协商 该虚拟参考位置。在步骤764,计算从主参考站的位置到虛拟参考位置的 虚拟向量。通过虚拟参考位置和合成偏移向量限定合成位置。在步骤774, 系统或流动站通过虚拟参考向量和参考网络位置和相位计算虚拟参考相 位。在步骤776,系统将具有测量的主、辅参考位置和相位或虚拟参考位 置和相位的安全参考数据发送到流动站。
在步骤778,流动站GPS接收器接收来自相同的GPS卫星的GPS 信号。在步骤782,流动站GPS接收器测量GPS信号的载波相位。在步 骤784,流动站直接使用或通过(通过对虚拟向量和合成偏移向量相加而 计算的)主合成向量间接使用合成偏移向量,以及使用虚拟参考位置和相 位或主、辅位置和相位来计算合成位置的合成参考相位。在步骤785,使 用合成参考相位和测量的流动站相位来测试相位测量的完整性。在步骤 786,当验证了完整性时,流动站GPS接收器使用虚拟参考位置和相位以 及合成参考相位来确定位置。流动站所确定的位置的准确度具有与针对虚
拟参考相位确定的位置的准确度相同的RTK完整性,但是具有长度与合 成偏移向量相等且对流动站未知的添加的偏移误差。图14是本发明对流动站位置添加以上作为添加的误差239示出和说 明的误差的方法的步骤的流程图。本发明可通过包含可由处理器读取的指 令的有形介质800实现,所述指令使流动站执行该方法的步骤。可通过光盘、电子存储芯片、硬盘、数字视频装置等一个或多个存储装置构造^h质800。处理器可以是通常作为计算机或微处理器已知的装置。在步骤802,在流动站接收或生成或选择合成偏移向量。在步骤804, 通过GPS参考站中的实时动态测量(RTK)GPS接收器在参考位置接收 GPS信号。在步骤806,参考GPS接收器测量GPS信号的载波相位。在 步骤808,参考系统将安全格式的、包括参考位置和所测量的参考相位的 安全参考数据发送到流动站。在步骤814,安全流动站接收参考数据。在步骤816,流动站GPS接 收器接收来自相同GPS卫星的GPS信号。在步骤818,流动站GPS接收 器测量相同GPS信号的载波相位。在步骤820,针对相位测量的完整性 来测试参考和流动站相位。在步骤822,流动站GPS接收器使用参考数 据和流动站GPS相位测量来确定安全流动站位置。不〗吏该安全位置对流 动站的普通用户可用。在步骤824,流动站用来自步骤802的合成偏移向 量抖动该安全流动站位置以向该安全流动站位置的用户提供非安全流动 站位置。非安全流动站位置具有与合成位置偏移相等的添加的误差。图15是本发明用于对流动站位置添加以上作为添加误差239示出和 说明的误差的方法的步骤的流程图。本发明可通过包含可由处理器读取的 指令的有形介质850实现,该指令使流动站执行该方法的步骤。可通过光 盘、电子存储芯片、硬盘、数字视频装置等一个或多个存储装置构造介质 850。处理器可以是通常作为计算机或微处理器已知的装置。在步骤802,在安全流动站接收或生成或选择合成偏移向量。在步骤 852,选择或指定参考站组之一为主参考站。在步骤854,通过GPS参考 网络站的实时动态测量(RTK) GPS接收器接收GPS信号。在步骤856, 参考GPS接收器测量GPS信号的载波的参考网络相位。在步骤862,由系统选择虚拟参考位置,或在系统和流动站之间协商 该虚拟参考位置。在步骤864,计算从主参考站的位置到虚拟参考位置的 虛拟向量。在步骤874,系统或流动站由虚拟参考向量和参考网络位置和
相位计算虚拟参考相位。在步骤876,系统将安全格式的包括参考相位的 参考数据发送到流动站。在步骤877,安全流动站接收参考数据。在步骤878,流动站中的GPS接收器接收来自相同的GPS卫星的 GPS信号。在步骤882,流动站GPS接收器测量相同的GPS信号的载波 相位。在步骤883,针对相位测量的完整性来测试参考网络和流动站相位。 在步骤884,流动站GPS接收器使用参考网络和流动站GPS相位测量来 确定安全流动站位置。不使该安全位置对流动站的普通用户可用。在步骤 886,流动站用合成偏移向量抖动该安全流动站位置以向流动站的用户提 供非安全流动站位置。非安全流动站位置具有与合成偏移向量相等的添加 的误差。在本发明的一些实施例中将参考数据、流动站和流动站的结构部件i兌 明为安全的。在本发明的上下文中,术语"安全,,指的是已制定安全措施 来禁止或防止未经授权的用户查看、访问或改变安全单元中的信号、数据 或算法。安全措施可包括加密、用于防止对受版权保护的作品的未经授权 的访问的1998数字千年版权法的保密措施、以及物理限制,例如密封包 装,和以使得难以物理地或机械地查看、访问或改变代码、信号和数据的 方式使用嵌入代码、信号和数据。安全位置M授权用户可用。非安全位 置是对未经授权(普通)的用户可用的位置。用于控制流动站的位置准确度的参考系统的供应方、参考数据的供应 方和/或算法的供应方指定作为授权用户的各方。参考系统、参考数据和/ 或流动站的所有其他用户都是未经授权的用户。控制位置准确度的供应方 未指定的任何人都是"未经授权的用户"。未经授权的用户被限制使用流 动站来获得不具有供应方控制的添加的位置误差的位置准确度。供应方一 般是或者代表参考系统、参考数据或流动站的销售方,未经授权的用户是 作为普通用户或流动站位置的最终用户4吏用流动站进行野外测量的用户。图2和图10示出了单个参考站系统生成合成参考相位并通过非安全 (公开)信号将合成参考相位提供给现有流动站的实施例。图3和图11 示出参考网络系统生成合成参考相位并通过公开信号将合成参考相位提 供给现有流动站的实施例。图4和图12示出安全流动站由从单个参考站 系统通过安全(私密)信号接收的真实参考相位来合成合成参考相位的实 施例。图5和图13示出安全流动站由从参考网络系统通过安全(私密) 信号接收的真实参考相位来合成合成参考相位的实施例。图7和14示出安全流动站接收来自单个参考站系统的安全(私密) 信号中的参考数据,计算安全私密真实位置并用合成偏移向量抖动安全位置以向用户提供非安全位置的实施例。图8和15示出流动站接收来自参 考网络系统的安全(私密)信号中的参考数据,计算真实安全私密位置并 用合成偏移向量抖动安全位置以向用户提供非安全位置的实施例。尽管根据当前优选实施例说明了本发明,但是应理解,该说明书不应 被解释为限制性的。对本领域技术人员来说,在阅读了以上说明书之后, 无疑能够想到各种变化和修改。因此,所附权利要求应被理解为覆盖了落 入本发明精神和范围内的所有修改和变型。
权利要求
1.一种对地理位置具有受控的准确度的安全流动站,包括流动站全球导航卫星系统(GNSS)接收器,用于确定对所述流动站的用户不可用的安全位置;以及位置抖动处理器,用于用所选的非零合成偏移向量抖动所述安全位置,从而发出具有与所述合成偏移向量成比例的添加的位置误差的对所述用户可用的流动站位置。
2. 根据权利要求l所述的流动站,其中所述流动站包括用于禁止所述用户使用所述安全位置的安全措施。
3. 根据权利要求l所述的流动站,其中所述位置抖动处理器包括随机过程向量生成器,用于提供随机向量流 以作为所述合成偏移向量。
4. 根据权利要求3所述的流动站,其中用最大输入值限制所述随机过程向量生成器,所述最大输入值用于将 所述合成偏移向量限制到水平平面、垂直方向、球形误差区域、圆柱形误 差区域或盒形误差区域之一。
5. 根据权利要求l所述的流动站,还包括信号接收器,用于从全球导航卫星系统(GNSS)参考系统接收具有 GNSS信号的参考相位和参考位置的信息的安全参考数据,且其中所述流动站GNSS接收器使用所述参考相位和所述参考位置来确定 相对于所述参考位置的所述安全流动站位置。
6. 根据权利要求5所述的流动站,其中所述参考数据包括多个参考网络相位,这些相位包括由多个参考网络 GNSS接收器在多个参考网络位置分别测量的所述参考相位;以及所述流动站GNSS接收器使用所述参考网络相位和所述参考网g 置来确定不与任何所述参考网络GNSS接收器在一起的虚拟参考位置的 虚拟参考相位,并使用所述虚拟参考相位和所述虚拟参考位置来确定所述 安全流动站位置。
7. 根据权利要求6所述的流动站,其中所述流动站GNSS接收器测量所述GNSS信号的流动站相位,并确 定与当前相位差和期望相位差之间的差相对应的双差相位剩余量,所述当 前相位差基于所述测量的流动站相位和所述参考相位之间的差,所述期望 相位差基于所述测量的流动站相位和所述参考相位之间的差的在前确定; 且所述流动站进一步包括异常检测器,用于当所勤目位剩余量超过与所选完整性限制相对应的 阈值时检测到异常,且当检测到所述异常时禁止使用所述流动站位置。
8. 根据权利要求7所述的流动站,其中 所述添加的位置误差在大约十厘米到大约两米的范围内;以及 所述选择的完整性限制小于大约二十厘米。
9. 一种控制地理位置的准确度的方法,包括 接收全球导航卫星系统(GNSS)信号;使用所述GNSS信号来确定对流动站的用户不可用的安全位置;以及用所选的非零合成偏移向量抖动所述安全位置,从而对所述用户提供 具有与所述合成偏移向量成比例的添加的位置误差的流动站位置。
10. 根据权利要求9所述的方法,其中确定安全位置包括使用安全措施来禁止所述用户使用所述安全位置。
11. 根据权利要求9所述的方法,还包括使用用于提供所述合成偏移向量的随机向量流的随机过程生成所述 合成偏移向量。
12. 根据权利要求ll所述的方法,还包括用最大输入值限制所述随机过程,所述最大输入值用于将所述合成偏 移向量限制到水平平面、垂直方向、球形误差区域、圆柱形误差区域或盒 形误差区域之一。
13. 根据权利要求9所述的方法,还包括从全球导航卫星系统(GNSS )参考系统接收具有GNSS信号的参考 相位和参考位置的信息的安全参考数据,且其中提供所述安全位置包括使用所述参考相位确定相对于所述参考位置 的所述安全位置。
14. 根据权利要求13所述的方法,其中所述参考数据包括多个参考网络相位,这些相位包括由多个参考网络 GNSS接收器在多个参考网络位置分别测量的所述参考相位;以及确定所述安全位置包括使用所述参考网络相位和所述参考网络位置 来确定不与任何参考网络GNSS接收器在一起的虚拟参考位置的虚拟参 考相位,且使用所述虚拟参考相位和所述虚拟参考位置来确定所述安全位 置。
15. 根据权利要求14所述的方法,其中确定所述安全位置包括测量所述GNSS信号的流动站相位;确定与当前相位差和期望相位差之间的差相对应的相位剩余量,所述 当前相位差基于所述测量的流动站相位和所述参考相位之间的差,所述期 望相位差基于所述测量的流动站相位和所述参考相位之间的差的在前确 定;且该方法进一步包括当所述相位剩余量超过与所选择的完整性限制相对应的阈值时检测 到异常,以及当检测到所述异常时禁止使用所述流动站位置。
16. 根据权利要求15所述的方法,其中 所述添加的位置误差在大约十厘米到大约两米的范围内;以及 所述选择的完整性限制小于大约二十厘米。
17. 包含一组指令的有形介质,所述指令使处理器执行用于控制地理 位置的准确度的以下步骤接收全球导航卫星系统(GNSS)信号;使用所述GNSS信号确定对所述流动站的用户不可用的安全位置;以及用所选择的非零合成偏移向量抖动所述安全位置以提供具有与所述 合成偏移向量成比例的添加的位置误差的对所述用户可用的流动站位置。
18. 根据权利要求17所述的介质,其中确定安全位置包括使用安全措施来禁止所述用户使用所述安全位置。
19. 根据权利要求17所述的介质,还包括用于执行以下操作的指令 使用用于提供所述合成偏移向量的随机向量流的随机过程生成所述 合成偏移向量。
20. 根据权利要求19所述的介质,还包括执行以下操作的指令用最大输入值限制所述随机过程,所述最大输入值用于将所述合成偏 移向量限制到水平平面、垂直方向、球形误差区域、圓柱形误差区域或盒 形误差区域之一。
21. 根据权利要求17所述的介质,还包括执行以下操作的指令从全球导航卫星系统(GNSS)参考系统接收具有GNSS信号的参考 相位和参考位置的信息的安全参考数据;以及其中提供所述安全位置包括使用所述参考相位来确定相对于所述参考位 置的所述安全位置。
22. 根据权利要求21所述的介质,其中所述参考数据包括多个参考网络相位,这些相位包括由多个参考网络 GNSS接收器在多个参考网络位置分别测量的所述参考相位;以及确定所述安全位置包括^f吏用所述参考网络相位和所述参考网络位置 来确定不与任何参考网络GNSS接收器在一起的虚拟参考位置的虚拟参 考相位,并使用所述虛拟参考相位和所述虚拟参考位置来确定所述安全位 置。
23. 根据权利要求22所述的介质,其中确定所述安全位置包括测量所述GNSS信号的流动站相位;确定对应于当前相位差和期望相位差之间的差的相位剩余量,所述当 前相位差基于所述测量的流动站相位和所述参考相位之间的差,所述期望 相位差基于所述测量的流动站相位和所述参考相位之间的差的在前确定; 且还包括当所述相位剩余量超过与所选完整性限制相对应的阈值时检测到异 常,以及当检测到所述异常时禁止使用所述流动站位置。
24. 根据权利要求23所述的介质,其中 所述添加的位置误差在大约十厘米到大约两米的范围内;以及 所述选择的完整性限制小于大约二十厘米。
全文摘要
一种定位系统或合成相位处理器或流动站,用于提供具有分级准确度的高完整性位置。该定位系统包括用于在所确定的参考位置接收GPS信号并测量参考相位的一个或多个实时动态测量(RTK)参考站。定位系统或流动站选择合成偏移向量并使用该合成偏移向量来对合成位置推断出合成参考相位。流动站使用合成参考相位与实际或虚拟参考位置来确定具有由合成偏移向量控制的添加的位置误差的流动站位置。对于另一个实施例,安全流动站通过合成偏移向量抖动安全位置,来提供具有添加的位置误差的非安全流动站位置。
文档编号G01S19/04GK101166993SQ200680014162
公开日2008年4月23日 申请日期2006年5月15日 优先权日2005年5月26日
发明者大卫·G·伯德 申请人:特林布尔导航有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1