用于估计内燃机的排气压力的方法和设备的制作方法

文档序号:5831715阅读:253来源:国知局
专利名称:用于估计内燃机的排气压力的方法和设备的制作方法
技术领域
本发明总体上涉及内燃机,且更具体地涉及估计其排气压力。

背景技术
现代内燃机配有精密的系统用以在进行操作期间监测并控制发动机性能的各个方面,从而满足操作者对性能的需求(包括转矩和燃料经济性)以及符合与排放、安全及燃料经济性有关的政府规定。此类系统包括被连接到一个或多个控制模块的感测装置和执行器,控制模块执行计算机程序以在进行操作期间监测并控制发动机操作。
排气压力是发动机系统设计者所用的重要参数。作为需要准确确定排气压力的例证,排放要求已导致实施与后处理系统相结合的废气再循环(EGR)系统以减少发动机排放。废气再循环的控制要求准确确定EGR质量流量。此类方法包括根据气体流动方程计算经过孔口的EGR流量以及确定增压空气(charge air)质量流量和新鲜空气质量流量之间的差。这两种计算都把发动机排气压力用作输入变量之一。一些发动机制造商采用了排气压力传感器以确定排气压力。
需要估计内燃机的排气压力以准确地确定排气压力而不会引起与附加感测装置相关联的附加成本。


发明内容
依照本发明的实施例,提供了用于在内燃机(例如,配有可变几何形状进气压缩装置和控制模块的发动机)的进行操作期间估计废气压力的方法和设备。控制模块适于监测内燃机的感测装置且适于执行包含于其中的算法以估计废气压力。该方法包括监测来自感测装置的信号输入和确定排气流量和进气压缩装置的开度(opening)的操作参数。排气压力比基于排气流量和进气压缩装置的开度的参数来确定,且排气压力基于排气压力比确定。
本发明的一方面包括基于排气压力比的多个选择性可检索的预定参数来确定排气压力比,所述参数以表格形式存储或者替代地通过执行多项式方程来确定。
本发明的这些及其它方面对本领域技术人员而言在阅读和理解以下实施例的详细描述后将显而易见。



该发明可采用以某些部件和部件设置的物理形式,在形成本发明的一部分的附图中说明并详细描述了其实施例,其中 图1是依照本发明的示例性发动机系统的示意图; 图2和图3是依照本发明的图形数据图; 图4是依照本发明的算法流程图的图形图;和 图5-图10是依照本发明的图形数据图。

具体实施例方式 现在参照附图,其中这些图示仅仅用来说明该发明而不是要限制该发明。图1描绘了发动机10和依照该发明的实施例构造的发动机控制模块(ECM)5。示例性发动机10包括传统的多汽缸内燃机,其被机械化成以压缩点火配置来操作,但是该发明不必受限于压缩点火式发动机配置。发动机系统元件包括包含可变几何形状涡轮装置(VGT)和空气压缩机(COMP)的进气压缩装置40、增压空气冷却器42、废气再循环(EGR)阀32和冷却器52、进气歧管50和排气歧管60以及排气后处理系统70(比如包含氧化催化剂和柴油机微粒过滤器)。感测装置被安装在发动机上以监测物理特性并产生可与发动机和环境参数相关的信号。这些感测装置优选包含环境空气压力传感器12、环境或进气空气温度传感器14以及空气质量流量传感器16,所有这些传感器可以被分开配置或被配置成单个集成装置;进气歧管空气温度传感器18和进气歧管压力传感器20。有废气温度传感器24、VGT位置传感器28和EGR阀位置传感器30。发动机转速传感器22监测发动机的旋转速度。压力传感器26监测沿排气后处理系统70的压降,这优选包括监测进入排气系统的、进气压缩装置40的VGT的压力输出。每个感测装置被信号地连接到ECM5以提供信号信息,该信号信息被ECM变换成表示相应监测参数的信息。要理解,这种配置是说明性的不是限制性的,包括在功能等效装置内可替换的各种感测装置和算法,且仍然落入该发明的范围之内。此外,进气压缩装置40可以包含在该发明的范围之内的涡轮增压器和增压器装置。
这些传感器是可操作的以提供参数信息,在此表示如下 Ma 新鲜空气质量流量传感器16 Tim 进气歧管温度传感器18 Pim 进气歧管压力传感器20 Tam 环境温度传感器14 Pam 环境压力传感器12 Tex 排气温度传感器24 VGTp VGT位置传感器28 EGVp EGR阀位置传感器30 RPM 发动机转速传感器22,和 ΔP 排气后处理压差传感器26。
ECM5是总体车辆控制系统的元件,优选包含可操作以提供协调的系统控制的分布式控制模块架构。ECM是可操作的以综合来自前述感测装置的有关信息和输入,并执行算法以控制各个执行器来实现控制目标,包括诸如燃料经济性、排放、性能、驾驶性能和硬件保护之类的参数,如下文所述。ECM5优选为通用数字计算机,其通常包含微处理器或中央处理单元、存储介质(包含只读存储器(ROM)、随机存取存储器(RAM)、电可编程只读存储器(EPROM))、高速时钟、模数(A/D)及数模(D/A)电路、以及输入/输出电路及装置(I/O)和适当的信号调节缓冲电路。包含常驻程序指令和标定的一组控制算法被存储在ROM中且被执行以提供每个计算机的相应功能。算法一般在预置循环周期期间被执行以使得每个算法在每个循环周期至少执行一次。利用预定的标定,存储在非易失性存储器装置中的算法由中央处理单元之一执行且可操作以监测来自感测装置的输入并执行控制及诊断例程来控制相应装置的操作。在进行发动机和车辆操作期间,循环周期一般每隔规则间隔(例如每3.125、6.25、12.5、25和100毫秒)被执行。替代地,算法可响应于事件的发生来执行。
该发明包含一种优选作为ECM 5中的一个或多个算法执行的方法,该方法对于估计发动机(例如本文所说明描述的示例性发动机10)的排气系统中的压力是有效的。该方法包括监测来自感测装置的信号输入。修正的排气流量、在进气压缩装置40的涡轮出口处的压力Pst(也被称为烟囱压力)以及进气压缩装置40的旋转速度Nt的参数被确定。排气压力比是基于包含修正的排气流量、进气压缩装置的涡轮出口压力、VGT位置以及进气压缩装置的旋转速度的参数而确定的。排气压力比是优选根据以表格形式存储在ECM 5的存储器装置中的标定表(包含预定压力比矩阵)而确定的。替代地,排气压力比通过执行由ECM 5可执行的多项式方程来确定。排气压力是基于排气压力比并结合所监测的压力参数(优选为在进气压缩装置40的出口处确定的压力Pst)而确定的。这会在下文中进行详细描述。
利用废气压力的示例性实施例包括控制和管理废气再循环。发动机废气通过控制EGR流率或进气增压氧气浓度而从排气歧管60再循环到进气歧管50。这两种控制都要求准确地估计用于闭环反馈的EGR质量流量。现有技术教导了用于估计EGR质量流量的两种普通方案一种使用经过孔口的气体流动方程,另一种把EGR流量估计为增压空气质量流量和新鲜空气质量流量之间的差,如下面方程1.1和1.2所示 且[1.1] 其中在方程1.1中,R包含理想气体常数;C包含排放系数;而A包含由EGR冷却器作用所修正的EGR阀影响面积。在方程1.2中,D包含发动机排量;ηv包含发动机容积效率,其也基于发动机排气压力Pex。关于上面所示的方程1.1和1.2中任一个,确定EGR流量的准确测量值与准确确定排气压力有关。
现在描述用于准确确定排气压力的方法,包括基于所监测的操作条件和应用于物理定律的预定标定来估计排气压力。利用热力学的第一和第二定律,描述固定几何形状涡轮的性能映射(map)可以被简化成基于四个无量纲组的方程,如下方程2 其中 Pst包含涡轮出口压力,ηT包含涡轮效率,Mex包含废气质量流量(包含新鲜空气质量流量和燃料质量流量之和);且Nt包含进气压缩装置的旋转速度。
每个涡轮叶片位置Vp被定义为Vp=VGTp,即VGT位置传感器28的输出。因此,针对固定几何形状涡轮存在方程2中唯一限定的关系。对于如上所述的可变几何形状涡轮而言,形成以方程3表示的类似于方程2的新方程,包含描述可变几何形状涡轮的性能的映射 现在参照图2,说明了涡轮映射,其中数据点是针对系统中示例性进气压缩装置根据方程3绘制的。在图2中,x轴代表修正的涡流质量流量

而y轴代表涡轮压力比所示的五条曲线包含VGT位置的数据,所述VGT位置被控制成25%、50%、62%、75%和100%的打开位置。所有那些曲线中标为90、91、92、93、94、95和96的相同段分别代表涡轮的不同的恒定旋转速度,这由表1限定 表1
旋转速度由废气温度Tex标准化(单位兰金(兰氏绝对温度,R)),如表1所示。在方程3中,Mex、Nt、Tex、Pst、Vp是一般根据由物理传感器测量的参数所计算的已知参数,如先前所述。
实时地(即在进行发动机操作期间)求解方程3优选通过形成特征在于具有变换坐标系的变换涡轮映射来完成。变换坐标系包含用于修正的排气质量流量的不同坐标,如下方程4所示 其中排气流量通过涡轮出口压力Pst而不是涡轮入口压力来修正。因而,方程[3]可以被重写成方程[5],如下 其中 x2=Vp,且 对方程[5]的求解产生一对一的唯一映射,因而y通过坐标变换具有基于x1、x2、x3的、限定新涡轮映射的唯一解,如方程6所示,并参照图3进行阐释 y=Pr=g(x1,x2,x3) [6] 图2和图3所描绘的涡轮映射每个都阐释了涡轮转速(x3)的影响基本上是可忽略的。修订的涡轮映射看似基于x1、x2的三维线性表面。因此,如方程7所示,估计排气压力 废气质量流量可以通过方程8来计算 其中

是来自传感器16的新鲜空气质量流量输出,p包含燃料密度,Fc包含按体积测量的燃料供应指令(单位mm3/冲程),而α是与每曲轴回转的汽缸数有关的常数。
当需要考虑涡轮转速Nt的影响以产生较高分辨率的估计值时,可以使用压缩机映射来估计涡轮转速,如方程9所示 涡轮出口压力(即烟囱压力Pst)可以根据环境压力传感器和排气后处理系统的压差传感器来计算,如方程10所示 Pst=Pam+ΔP[10] 现在参照图4-10,现在描述在系统上实施和标定该发明。参照图4,产生在ECM5中实施的算法,用以实时执行来确定排气压力Pex。算法的参量输入包括涡轮的出口压力或烟囱压力Pst;空气质量流量Ma;燃料流量FUEL;发动机转速RPM;VGT打开位置百分比VGTp;发动机废气温度Tex;以及涡轮转速Nt。在系统的标定期间预先确定涡轮的映射常数(涡轮映射常数)。根据这些参数,确定修正的排气流量和修正的涡轮转速的参量值,它们与涡轮的预定映射结合用来确定压力比Pr(如图6所示)和压力比的变化。压力比Pr乘以烟囱压力Pst来确定排气压力Pex。
为了把算法实施到ECM 5中,需要理解和考虑在系统中所采用的特定进气压缩装置40的标定,包括与标准化操作参数(包括环境压力和废气的操作温度)有关的问题。提供涡轮40的映射常数(涡轮映射常数),显示为具有值1.313433,包含了对在环境温度68F(22C)和环境压力22.92汞柱(即海平面)时所作的涡轮标定的修正。
此外,VGT位置可被定义为打开百分比或关闭百分比。优选的是提供基于关闭百分比的修正废气质量流量,因为涡轮压力比随着关闭百分比的增大而增大,因而提供与压力比增加成正比的VGT位置的测量。参照图4,VGT关闭百分比(VGTp)被转化成Vp,Vp被定义为VGT打开百分比位置的倒数,如方程11所示 Vp=1/(1-VGTp) [11] 因子Vp等效于关闭位置的定义,但已经显示显著地提高了估计准确度。如图所示,当空气质量流量传感器16被安装在进气压缩装置40的压缩机部分(comp)的入口中时,在计算排气质量流量时优选包括时滞常数以考虑整个发动机空气系统的时间延迟。
用于在ECM中标定的三维涡轮映射优选通过借助于上述输入(排气质量气流、烟囱压力、排气温度和VGT的打开百分比)使用涡轮映射来产生,并且包括所有压力比和VGT位置从最小打开(例如25%)到全开的整个范围,以确保排气压力估计值Pex的参量值在所有发动机操作条件下都准确。当涡轮映射数据不能获得时,涡轮映射点可以使用发动机测试来产生。参照图5所示的示例性映射利用方程12被外推为参照图6所示的映射 替代地,压力比可被建模成二阶多项式,如下方程[13] 其中 且系数a1、a2、a3、a4、a5、a6基于涡轮映射数据和/或在发动机标定期间由示例性发动机的操作所产生的数据来回归。
现在参照图7,描绘了根据方程13的估计值和来自排气压力传感器的实际测量值的相关性,估计的涡轮压力比和测量的涡轮压力比的相关性为99%相关性。
发动机测试数据是由在ECM中实施的上述压力估计器从示例性柴油发动机收集的。发动机以1500和2500rpm进行操作,而制动器平均有效压力(BMEP)范围为从空载到1500kPa。现在参照图8,示出了排气压力估计值的验证结果。实线代表从物理传感器测量的排气压力;而虚线代表估计的排气压力,测量单位PSI(镑/平方英寸)。如图9所示,所计算的估计误差少于5%。在稍微调整上述方程13的常数系数后,估计准确度被进一步提高,且估计误差被降低到少于4.1%,如图10所示。
要理解,在本发明的范围内允许修改。该发明具体参照实施例及其修改进行了描述。其他人在阅读和理解本说明书之后可容易想到进一步的修改和替换。旨在包含所有此类修改和替换,因为它们属于本发明的范围之内。
权利要求
1.一种用于估计配有进气压缩装置的内燃机的排气压力的方法,该方法包括
确定排气流量和进气压缩装置的开度的参数;
基于排气流量和进气压缩装置的开度来确定排气压力比;和
基于排气压力比确定排气压力。
2.根据权利要求1所述的方法,其中,确定排气流量的参数包括确定基于排气温度和在进气压缩装置的涡轮出口处的压力所修正的排气质量流量。
3.根据权利要求1所述的方法,其中,基于排气压力比确定排气压力还包括基于在进气压缩装置的涡轮出口处的压力确定排气压力。
4.根据权利要求1所述的方法,还包括确定进气压缩装置的旋转速度;以及基于排气流量、进气压缩装置的排气压力和进气压缩装置的旋转速度来确定排气压力比。
5.根据权利要求1所述的方法,其中,基于排气流量和进气压缩装置的开度来确定排气压力比包括基于预定的标定映射来确定排气压力比。
6.根据权利要求1所述的方法,其中,基于排气流量和进气压缩装置的开度来确定排气压力比包括通过二阶多项式方程计算排气压力比。
7.一种动力系,包括
配有可变几何形状进气压缩装置的内燃机;和
控制模块,所述控制模块
适于监测内燃机的多个感测装置和控制多个执行器;以及
适于执行包含于其中的多个算法以实现以下操作,所述算法包括
i)用于确定排气流量和进气压缩装置的开度的参数的代码;
ii)用于基于排气流量和进气压缩装置的开度来确定排气压力比的代码;
iii)用于基于排气压力比确定排气压力的代码;和
iv)用于基于排气压力比确定排气压力的代码。
8.根据权利要求7所述的动力系,其中,适于执行用于基于排气流量和进气压缩装置的开度来确定排气压力比的代码的控制模块包括用于基于以表格形式存储的排气压力比的多个选择性可检索的预定参数来确定排气压力比的代码。
9.根据权利要求7所述的动力系,其中,适于执行用于基于排气流量和进气压缩装置的排气压力来确定排气压力比的代码的控制模块包括用于执行多项式方程的代码。
10.根据权利要求7所述的动力系,其中,用于基于排气流量确定排气压力比的代码还包括用于基于进气压缩装置的出口压力和发动机废气温度来修正排气流量的代码。
11.根据权利要求7所述的动力系,其中,用于基于排气压力比确定排气压力的代码包括用于把排气压力比算术地乘以进气压缩装置的出口压力的代码。
12.根据权利要求7所述的动力系,其中,内燃机包括压缩点火式发动机。
13.根据权利要求7所述的动力系,其中,内燃机包括均质充气压缩点火式发动机。
14.根据权利要求7所述的动力系,其中,内燃机包括火花点火式发动机。
全文摘要
提供了一种方法和设备,其包含配有可变几何形状进气压缩装置和可操作在进行发动机操作期间估计废气压力的控制模块的内燃机。控制模块适于监测内燃机的感测装置且适于执行算法。该方法包括监测来自感测装置的信号输入和确定排气流量和进气压缩装置的排气压力的操作参数。排气压力比基于排气流量和进气压缩装置的排气压力的参数来确定。排气压力基于排气压力比来确定。
文档编号G01M99/00GK101506507SQ200780030896
公开日2009年8月12日 申请日期2007年7月26日 优先权日2006年8月22日
发明者A·甘戈帕迪亚伊, Y·王 申请人:通用汽车环球科技运作公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1