用于交通检测的主动3d监控系统的制作方法

文档序号:6002619阅读:184来源:国知局
专利名称:用于交通检测的主动3d监控系统的制作方法
技术领域
本发明涉及一种用于交通检测的系统和方法,并且更具体地涉及通过使用基于飞行时间测距原理的主动三维传感器来感测在预定区域内的车辆和目标的存在的光学系统。
背景技术
运输需求的增长造成了交通拥挤。拥挤的影响表现为燃料的低效使用和时间的延迟。使用先进技术的智能运输系统(ITS)有可能增加现有设施的交通效率。高级管理运输系统(ATMS)依赖于来自不同种类的检测器的交通数据,这些检测器分成两种类型侵入式以及非侵入式。侵入式检测器的一种类型涉及电感线圈检测器,这仍是检测车辆的常用技术,即使该技术具有以下缺点如在安装和维护中交通的长时间中断、相对高的成本、高故障率及不灵活性。其他的检测器像具有视频处理的摄像机也具有限制,并且市场仍在寻找电感线圈的替代品。来自传感器的信息是在交通管理的优化中特别是交通灯信号传递的适应性调时中的基点。较好的管理适应性调时会带来燃料消耗的减少、更少的车辆排放及时间浪费的减少。然而,传感器安装要求通常是昂贵的并且在安装中造成交通中断。

发明内容
根据本发明的一个广泛的方面,提供了一种使用交通检测系统在检测区域检测目标的存在的方法。根据本发明的另一个广泛的方面,提供了一种使用交通检测系统在检测区域检测目标的存在的系统。在一个实施方案中,该交通检测系统包括一个光学单元,该光学单元具有在预定的发射区域中发送脉冲的一个发射器模块;一个接收器模块,该接收器模块接收由发射区域中的目标朝接收器模块的视野反射的脉冲的一部分,该视野包括多个相邻检测通道,该接收器模块接收所接收到的脉冲并将其转换为相应的多个数字信号波形;一个图像感测模块,该图像感测模块提供包含发射器模块的发射区域和接收器模块的视野的区域的图像。在一个实施方案,该方法包括为视野提供一种状态重叠图像,该图像包括上述图像和在多个相邻检测通道的轮廓的图像上的视觉指示;定位接收器模块的视野以使用状态重叠图像覆盖检测区域;使用交通检测系统获得多个数字信号波形;在视野中的一个位置上检测数字信号波形之一中的信号回波,该信号回波由目标在视野中的存在而造成;使用该位置为该目标确定在视野中的位置;为该目标存储该位置。在一个实施方案中,该方法包括发送所存储的位置到一个外部处理器。在一个实施方案中,该检测区域是沿着道路交叉口的引桥的停止线所确定的。在一个实施方案中,该方法包括识别哪一个检测通道产生了在其中检测到信号回波的信号波形;使用状态重叠图像确定对应于所识别的检测通道的交通车道;检测目标在所确定的交通车道中的存在。在一个实施方案中,该方法包括为检测通道提供距视野中的光学单元的最小和最大检测距离;若信号回波是在针对所确定的交通车道的最小和最大检测距离内,则产生一个呼叫;发送该呼叫到交通控制器。在一个实施方案中,该方法包括在比最小检测距离更接近于光学单元的位置处检测在信号波形中的信号回波并保持该呼叫。·在一个实施方案中,该目标是移动目标和静止目标之一。在一个实施方案,该目标是车辆。在一个实施方案中,该方法包括获得所发射的脉冲的波形的复制;将每个信号波形与复制数字上相关联;其中检测信号回波包括在相关联的信号波形中检测信号回波。在一个实施方案,该方法包括为回波提供一个阈值振幅,检测信号回波包括将信号的振幅与阈值振幅进行比较,该阈值振幅是随着位置而变化的振幅绝对值和振幅相对值
之一 O在一个实施方案中,该方法包括确定信号回波的振幅,基于在一个回波组的回波特性对可兼容的回波进行分组,回波组是在不同通道中的一系列信号回波,该回波特性是基本上相同的位置中的至少一个,振幅是基本上相同的,并且回波组的整体组位置包括该位置。在一个实施方案,该方法包括将该组与一种目标类型相匹配。在一个实施方案中,发射器模块是光学发射器模块,脉冲是短光脉冲,发射区域是照明区域,接收器模块是光学接收器模块,所反射的脉冲是所反射的光脉冲。在一个实施方案中,光学发射器模块发射人眼不可见的波长的短脉冲。在一个实施方案中,该方法包括为光学接收器模块提供一个滤波器,该方法进一步包括接收在一个反射波长的反射光的脉冲,该反射波长与由发射器模块发射的短光脉冲的发射波长相匹配。在一个实施方案中,该交通检测系统进一步包括用于光学单元的云台组件,云台组件被适配为以围绕三个正交轴中的至少一个以受控的方式转动光学单元;该方法进一步包括确定云台组件的方位以粗略地将光学单元指向检测区域。在一个实施方案中,该方法包括使用状态重叠图像和云台组件以转动光学单元,并且允许朝向检测区域的光学单元公共视线的精确指向。在一个实施方案中,包括识别在状态重叠图像中的永久标记,并且使用所识别的永久标记来使用所述云台组件精确地对准光学单元。在一个实施方案中,该方法包括提供至少一个传感器,每个传感器是温度传感器、倾斜仪、罗盘、加速计及全球定位系统中的至少一个,所述方法进一步包括使用由所述至少一个传感器捕获的信息用于定位所述视野、检测所述信号回波及确定所述位置的至少一个。在一个实施方案中,该方法包括提供一个角位置传感器用于产生关于光学单元的当前角位置的信息,该方法包括使用关于当前角位置的信息用于定位该视野。在一个实施方案中,该方法包括重复对于多次重复的获取、检测及确定步骤;追踪目标在每次重复中的所述视野中的位置;使用追踪位置中的连续若干个为目标确定目标在视野中的位移速度。在一个实施方案中,该方法包括发送状态重叠图像到外部处理器。在一个实施方案中,该方法包括重复由图像感测模块提供包含视野的图像以获得一系列图像,对一系列图像进行压缩,产生压缩视频输出并且发送压缩视频输出到外部处 理器。在一个实施方案中,该方法包括在图像上应用图像处理以检测候选目标,从图像提取候选目标在视野中的位置,使用所提取的位置以指引为目标确定该位置。在一个实施方案中,该方法包括在图像上应用图像处理以检测候选目标,从图像提取候选目标在视野中的位置,使用所提取的位置产生呼叫。在一个实施方案中,该方法包括发射器模块和接收器模块提供一个测距仪器,使用位置来为目标确定视野中的位置包括计算所发射的脉冲从光学单元行进到目标并返回到光学单元所花费的时间,接收器模块在脉冲的发射之后数值上处理所获得的信号波形持续一段时间。在一个实施方案中,定位接收器模块的视野以使用状态重叠图像覆盖检测区域包括发送状态重叠图像到外部处理器;接收检测区域位置信息;使用检测区域位置信息定位所述视野。在一个实施方案中,检测区域位置信息包括检测区域的轮廓、交通车道的宽度、光学单元的安装高度、最小距离和最大距离中的至少一个。在一个实施方案中,定位接收器模块的视野以使用状态重叠图像覆盖检测区域,包括发送一系列状态重叠图像到外部处理器;接收在该一系列状态重叠图像的至少一个上的检测区域中定位的检测目标的验证;基于验证确定检测区域位置;使用检测区域位置定位该视野。在一个实施方案中,定位接收器模块的视野以使用状态重叠图像覆盖检测区域包括发送状态重叠图像到外部处理器;存储区域环境的鸟瞰图并且包括检测区域;接收关于光学单元的安装数据;将状态重叠图像与鸟瞰图进行比较,并且使用该数据以确定在状态重叠图像中的检测区域的检测区域位置;使用检测区域位置定位视野。贯穿整个说明书,术语“非可见的(non-visible) ”是术语“不可见的(invisible) ”的同义词,并且是单词“可见的”的反义词。应理解“可见光”是指人眼可见的波长发射的光。类似地,“不可见光”是指在人眼不可见的波长发射的光。贯穿整个说明书,术语“车辆”旨在包括运输货物、人和动物的任何可移动装置,不必限于地面运输,包括有轮和无轮的车辆,如例如卡车、公交车、轮船、地铁车、列车车厢、架空索道车、滑雪运送机、飞机、汽车、摩托车、三轮车、自行车、Segway 、马车、独轮手车、婴儿
本坐
寸O
贯穿整个说明书,术语“环境粒子”旨在包括在空气中或在地面上可检测的任何颗粒并且通常由环境、化学或自然现象造成。其包括雾、雨、雪、烟、气、烟雾、黑冰、冰雹等。贯穿整个说明书,术语“目标”旨在包括移动目标和静止目标。例如,其可以是车辆、环境颗粒、人、乘客、动物、气体、液体、如尘埃的颗粒、人行道、墙壁、岗位亭、人行道、地表面、树等。附图简要说明 所包括的用于提供本系统和方法的主要方面的更好的理解并且包括在其中并且构成本说明书的一部分的所属附图示出了不同的实施方案并且结合说明书用来解释本系统和方法的原理。所属附图并非旨在按照尺寸绘制,在附图中图I示出了具有单个交通灯悬臂的道路交叉口的示意性俯视图,该悬臂在其上安装有一个其视线指向交叉口的引桥的交通检测系统;图2A和2B是示出由集成在交通检测系统中的图像感测模块捕获的道路引桥的示例状态重叠图像的照片,图2A示出了在中间车道中检测到的车辆,图2B示出了在右车道中检测到的自行车;图3是发射光锥的交通检测系统的示意性侧视图,示出了检测区域沿给定车道的长度;图4是类似于图I的示意性俯视图,但示出了包括对于其四个引桥的每一个的交通灯悬臂的更详细的道路交叉口,每个引桥由安装在交通灯组件旁边的单个交通检测系统
覆盖;图5示出了在交通检测器、交通控制器接口板及用于配置的计算机之间的可能相互连接的示例;图6是示出了其主要组件和它们相互连接的方式的示例交通检测系统的功能方框图;图7示出了用于交通检测器的壳体的示例;图8是交通检测系统的示例光学单元的示意性图示,示出了其主要组件;图9A和图9B是示出了使用视频内容分析的示例的图片,图9A示出了 3D传感器的覆盖的感兴趣的9个特别区域的地区,图9B示出了所检测到的两个车辆;

图10示出了道路交叉口的俯视图的示例;图11示出了总结一个示例流程的主要步骤的流程图,通过该示例流程由检测通道的设置提供的波形中检测到的信号回波被转换成输出检测信号;图12是图7的详细步骤320的流程图;图13是图7的详细步骤330的流程图;图14是图7的详细步骤340的流程图;图15是图7的详细步骤350的流程图;图16是由交通检测系统捕获的示例信号波形;图17示出了测量像人行道、中央分隔带及树木的背景中的某些元素的距离的示例测量技术;以及图18A、18B、18C、及18D示出了由系统18A检测到的移动车辆的示例序列,图18A示出了一个所检测到的车辆,图18B示出了一个所检测到的向前移动的车辆,图18C示出了仍向前移动其后面相对于所检测的的人行道与光学单元在相同的距离的一个所检测到的车辆,图18D示出了仍移动以其后面更远离检测的人行道的检测的车辆。
具体实施例方式I.使用、设置、基本的原理和特征现将详细参考具体的实施方案。然而,本系统和方法能够以许多不同的形式实施,并且不应该视为限于在如下说明书中提出的实施方案。参考图1,可以更好地理解交通检测系统的主要用途和示例安装配置,该图描述了其中交叉口的一个引桥被详细显示的道路交叉口的中心部分的示意性俯视图。为更好地读懂,已经使用安装在交通灯悬臂中的单个交通灯组件描绘了交叉口。交通检测系统10如在图中示出为安装在现有的交通灯组件12旁边的单个独立单元。然而,请注意,本系统可以安装在(或集成在)道路基础设施、建筑物、检查点等的其他类型中。作为独立单元的替代 方案,人们还可以构想实现为设计和构造为集成在新制造的交通灯组件的单元的形式的系统。图片的底部部分示出了面向交通灯组件的交叉口的引桥并且经受系统的连续检测。该示例性的引桥包括用于车辆的三个相邻行车道(仅进入交通)以及用于骑车者、行人等等的外车道。注意用于出向交通的两个最左边的车道通常不受本系统监控,但在这些车道中的车辆的检测也可以完成并且可以处理以添加关于通过交叉口的交通流的信息。该信息可以通过高级交通控制器使用。该交通检测系统旨在检测任何车辆类型,包括轿车、卡车、摩托车及自行车,并且甚至可以检测目标如会在引桥的预定区域中的出现的行人。该车辆在等待下一个绿灯阶段时也可以移动或停止。有可能检测在引桥的任何车道中排成一列(排队)的多辆车辆。来自图像传感器的信息可以用来确定如在下文进一步详细解释的排队的长度。在本系统的一个实施方案,总体检测区域包括一组连续矩形地区,这些区域可以具有相同的尺寸,并且这些区域沿着所监控的车道延伸通常远离与引桥的停止线14的位置的几米的距离。交通检测系统的视野的水平面(足迹)上的投射(在图中的FOVkm)确定了总的检测区域。FOVkm独立于几个矩形地区,并且每个矩形地区(从此简称为检测区域)由在交通检测系统中实施的单独的光学检测通道所监控。例如,FOVem的轮廓可以分割成16个相邻检测区域。然而,应理解检测区域的尺寸、长宽比、确切的位置以及它们的数目是示例。本系统允许通过使用多个独立的检测区域光学地监控道路交叉口的一部分。本系统然后对引桥的每个单独车道实施交通检测,同时在将系统配置为瞬时交通条件和交叉口的具体特征时提供充分的灵活性。例如,图I容易地建议引桥的每个车道的宽度可以由交通检测系统的多于一个单一检测通道所覆盖。可以一起组合来自多个相邻检测通道的输出以形成关联于特定车道的组合检测通道。该方案可以称为车道制图,可以有助于促进对系统的更高检测可能性。当合适的时候可以发布检测呼叫。这可以导致在任何给定的时间段中更少的错失呼叫和更少的错误肯定。检测呼叫是被发送到交通控制器的一个触发。错失呼叫在此是指未检测到在一个车道中出现的车辆的事件,而错误肯定描述了车辆在车道中的出现的系统信号不受任何车辆影响的事件。车道制图的流程不要求交通检测系统的硬件或设置中的任何变化,因为其可以由控制系统的操作的软件实施。独立地监控覆盖同一车道的相邻检测通道的输出可以给系统沿着车道宽度的更好的空间分辨率。该方案支持小尺寸车辆(摩托车、自行车)、行人、及意外跌倒在道路人行道上的目标的可靠检测。在先前行中描述的两个检测方案不是相互排斥。它们仅组成能够形成在交通检测系统的控制软件中实施的一组延伸检测方案的一部分的两个不同的方案,所有这些方案可以通过来自光学检测通道的输出的合适的实时并行处理来并行运行。通过示例,一组有用的检测方案可以包括一个专用方案,该专用方案被实施为实时追踪其轨道覆盖引桥的两个相邻车道的车辆以及当到达交叉口时突然从一个车道切换到另一个车道的车辆。另一个检测方案可以实施穿越交叉口的引桥的行人或骑车者的实时追踪。可以从连续、一个接一个穿越一系列检测区域的慢速移动目标(其距离保持接近停止线)的出现中检测到此类事件。相比较于使用视频摄像机的交通检测系统,本系统以更高效的方式处理堵塞事件。这些事件是指几乎所有检测区域由大尺寸目标如卡车临时隐藏,当执行向左转向一个除当前监测车道之外在相同的引桥上出向交通的车道时,该目标会阻挡交通检测系统的整 个视野。通过获得来自定位在非常接近于本系统的目标的信号(该卡车临时地定位在交叉口的中心地区),堵塞事件可以由交通检测系统容易地管理,并且这出现几乎所有检测通道中。这种事件将指令交通检测系统保持在备用模式,保持其输出检测信号在其当前的状态,直到访问检测区域的光学部件被逐渐恢复。最后,检测方案可以实施为识别特定事件,如在监控车道中出现抛锚车辆,其中来自静止目标的连续信号将被检测持续延长的时间段。这样特定事件通常由埋设在道路人行道中的电感检测线圈来处理,但存在一定的困难,而可以容易地在交通检测系统中对一种检测方案进行编程从而可靠地报告这些事件。由于其在整体检测区域上辐射具有预定特征的光的事实,交通检测系统10被认为是主动的。本系统的主动特性使得其日以继夜并且在较大变化的白天/夜晚照明条件下地工作,同时使其不易受来自不同源的杂散光的干扰。由交通检测系统照明的交叉口的一部分的轮廓示出为在图I由虚线描述的椭圆。辐射光的二维角度范围确定了本系统的照明区域(在图中的F0I)。可以注意到FOI的周界应该被适配为整体检测区域的尺寸以促进辐射光的高效使用,因此意味着,类似于整体检测区域,FOI通常显示相当大的不对称。如在下文进一步详细描述,可以将一个图像传感装置集成在交通检测系统中,该装置将图像转发到远程操作者以帮助他执行在本系统的整个检测区域的位置的精细调整。使用虚线绘制的矩形在图I中描述了在图像中可见的交叉口的一部分的一个示意性示例,限定了图像传感装置的视野(F0VJ。通过示例,在图2A中示出了由图像传感装置捕获的道路引桥的示例图像以及在图像中的白色重叠中可见的一组16个相邻检测区域周界。还使用黑线描绘了入向交通的三条车道的轮廓。在该示例中,将在三个相邻区域7至9以在28. 6米至29. O米之间的对应检测距离检测到在最中心车道中出现的车辆。注意整个检测区域足够宽以覆盖三个进入车道以及人行道和中央隔离带的主要部分。除了在二维检测区域中出现的车辆的检测之外,交通检测系统的主动性质提供了对被检测的车辆距本系统的即时距离进行测量的光学测距能力。该光学测距能力通过以非常短的脉冲的形式的光发射与脉冲从本系统行进到车辆然后返回到本系统所耗费的时间的记录一起实现。本领域技术人员应容易意识到光学测距通过在光学测距仪装置中广泛使用的所谓的飞行时间(TOF)原理来执行的。然而,注意,在光学测距仪和交通检测系统之间的模拟不应当被进一步延伸,因为大多数光学测距仪依赖于由远程目标反射的光脉冲信号的模拟峰值检测,其后是将其与预定振幅阈值水平进行比较。相反,交通检测系统在光脉冲的发射之后从数值上处理所获得的信号波形持续特定的时间段。该交通检测系统然后可以分类为全波形LIDAR (光检测和测距)工具。可以确定一个虚拟回路,并且当相关联的通道在预定的范围中检测到目标时,将产生一个呼叫(在最小和最大距离之间)。如在图2A中所见,可以使用通道7、8和9确定中间轿车车道中的虚拟回路。可以预先设定最小和最大距离以确定检测区域。当在预定范围内的预定通道中检测到一个目标时,可以发送一个呼叫到交通控制器。本系统能够补偿车道的透视图(当传感器未直接定位面向车道时)并且可以使用参考坐标系。该交通检测系统可以非常高的速率发射光脉冲以便其可以实时确定车辆接近或离开交叉口的速度。通过测量检测车辆随时间而改变的距离的速率来容易地实时速度测量。当特定数目的连续位置可用于被检测到的车辆,如例如大于5的数目,可以使用滤波器如卡尔曼滤波器来改进速度测量。光学测距能力与在沿着二维延伸的检测区域上的监控的组合允许交通检测系统也分类为三维(3D)光学监控系统。除了在接近道路交叉口的区域·中的车辆速度测量之外,本系统可以为交通控制管理提供更有用的信息。该信息包括但不限于车辆在任何时间在给定交叉口的存在、在预定白天或夜晚时间段中的车辆计数、交通车道的相对占用率(也就是检测区域被车辆占用的时间的百分比)、在交叉口的车辆的分类等。图2B示出了在右车道21中检测的骑车者的示例。该右车道21被突出显示。图3示意性地示出了安装在交通灯悬臂30上在地面水平之上5米的示例高度的一个交通检测系统10,用于检测从20米的距离(停止线34的位置)延伸到约30米的最大距离的一个区域32。该图然后示出了检测区域沿道路引桥的任何给定车道的范围由一些因素所确定,如系统的安装高度、从系统发射的光锥的传播(发散)角(纵轴)、系统的向下指向角、以及将其与在人行道上印刷的停止线分离的水平距离。结果,检测区域沿着车道的长度取决于与系统的光学设计、交通检测系统的设计相关的因素,以及取决于其安装在交通灯悬臂的方式。因为光以快速但有限的速度行进,由交通检测系统发射的光的单个脉冲将导致在时间t = 2Lmin/c开始的并且具有持续时间AT = 2 (Lmax-Lmin)/c的短暂光学信号回波的随后接收。在这些表达式中,c是光速(3X108m/s),而图3示出了 Lmin以及Lmax是斜光传播路径对应地从本系统到监测区域的最近和最远界限的长度。对于在图3中所示的特定几何配置,在光脉冲的发射随后的时间延迟t 135ns (奈秒)之后,光学信号回波将被记录,并且其在时间t+At 205ns处结束。由交通检测系统监控的在车道中出现的任何车辆将以基本上不同于在道路人行道上的光的弱漫反射的方式反射入射光。在任何车辆和道路人行道的光学反射特征之间的区别然后产生明显信号回波(签名),系统对车辆的可靠检测基于此。图3的示意图还示出了可以如何校准由交通检测系统获取的光学信号波形。校准过程在本背景中是指任何特征(即来自车辆的回波)在信号波形中是可见的特定时间转换成沿着检测区域的距离,因此允许确定被检测的车辆沿着其当前在其中移动的车道的位置,而没有任何歧义。此外,从其明显信号回波的持续时间来估计车辆的长度。这意味着,除了它们的信号回波的变化的振幅之外,交通检测系统可以从被检测到的信号回波的持续时间中识别不同尺寸的车辆。在图4中示意性地示出了针对交通检测系统的示例四路设置。该图示出了道路交叉口的鸟瞰图,其四个引桥中的每一个由安装在交通灯组件12旁边的单独的交通检测系统监控。在一个实施方案中,每个交通检测系统将其输出检测数据传输到单个交通控制器40。在接收数据时,交通控制器40然后命令四个交通灯组件的相位,其目的是支持在白天的任何时间和在各种天气条件和突然的交通事件下在交叉口处的通畅和安全的交通流。来自交通检测系统的设置的数据可以通过交通控制器接口板(未示出并且通常在交通控制器箱柜的内部)和合适的配线或通过无线数据链路转发到交通控制器。在后面的例子中,交通控制器可以连接到合适地定位在交叉口附近中的远程接入点42。接入点也可以集成到交通控制器组件中。交通控制器接口板和远程接入点也可以用于数据记录。可以注意到交通控制器可以转发数据到交通检测系统从而提供关于交通灯的当前相位和状态的信息或类似特性的任何其他信息。针对交通检测的一些检测处理、视频处理或增值特征(如视频压缩和数据记录)可以使用交通控制器接口板实施。 假设如在图4中所示的道路交叉口的引桥在那个示例中几乎等同的配置,总共大约16条车道由四个交通检测系统监控,可能每个车道具有若干个虚拟回路或在单个虚拟回路中组合多个车道。图4示出了具有3D感测和图像传感器的检测系统能够覆盖在交叉口中的所有引桥并检测和发送任何相关的信息以优化交通流和其他的用途到高级交通控制器的一种设置。图5示出了在交通检测器10、交通控制器接口板50及用于配置的计算机52之间的相互连接的示例,具有电源54和将数据发送到外部网络或其他接口卡B的一条链路。最后,应注意,交通检测系统的位置和使用不限于通过使用交通灯控制交通流量的交叉口。本系统可以安装在沿着道路的任何地方或在一个架台上,以执行速度测量和统计。另一个用途示例是离道路交叉通常达到50米到超过100米的距离的车辆的提前检测。提前检测通常相关于两难区域(或犹豫不决区域)。两难区域是远离交叉口的区域,其中驾驶员将在黄灯阶段中决定加大油门跨过交叉口或在黄灯阶段在停止线踩刹车停止。检测和速度测量可以用于保持呼叫直到车辆有时间行驶通过交叉口,从而避免在两难区域中将驾驶员置于两难。2-交通检测系统的描述概述通过参考如在图6中所示的功能性方框图可以更好地理解在示例交通检测系统中集成的各种组件的功能性。安装在机动驱动器组件上的三个模块形成交通检测系统的核心,这些模块集体地分组在图6中的光学单元60中。光学元件60然后包括一个光学发射器模块62 (0ΕΜ),其在预定照明区域(FOI)中发射短光脉冲。由车辆、目标及道路人行道漫反射的光的一部分指向到光学接收器模块64(0RM)的集光光圈,用于其光学检测并且随后转换到电压波形。为检测,目标应该置于ORM的视野中,这是由其光学器件以及由其光学敏感装置的尺寸所确定。光学单元的第三模块包括图像感测模块66 (ISM),其提供包含OEM的照明区域和ORM的视野的交叉口地区的部分的图像。所有这些模块从控制和处理单元68交换数据并且接收指令和信号,该控制和处理单元逻辑上不会形成光学单元的一部分。该控制和处理单元68可以具有各种实施方案,但其通常包括用于将模拟信号波形的数字化的采集子系统、通常由数字逻辑(例如通过现场可编程门阵列(FPGA)板)制成的处理和同步化控制、存储器、及处理单元。后者通常包括数字信号处理(DSP)单元、微控制器、或容易理解的装载个人计算机(PC)板。控制和处理单元的一些功能还可以集成到光学单元中。该控制和处理单元68在交通检测系统的运行中具有多种功能,这些功能之一由致动器组件(云台组件70)通过专用驱动电子器件(云台驱动电子器件72)来控制。上述行中简述的三个模块紧固地固定到致动器组件的连接表面。结果,这些模块以受控的方式围绕两个正交轴转动以允许在交通检测单元已经安装在位并粗略对准之后它们的共同视线的精确指向。视线的精确指向例如由操作者通过连接到交通控制器接口卡或例如通过有线或无线数据链路与交通检测系统的控制和处理单元通信的接入点的计算机装置远程执行。在控制和处理单元以及远程计算机装置之间的通信由数据接口模块74的操作实现。在交通检测系统的正常运行中,该模块还允许控制和处理单元68将在被监控的交叉口处检测到的车辆的数据发送到外部交通控制器 。从该控制和处理单元输出的检测数据来自由ORM转发的电压波形的数值实时处理。注意交通控制器不是本系统的一部分。套件通过在图6的不意图中的功能块标记的传感器76集中地表不。例如,在系统机箱中的内部温度可以使用温度传感器来监控,同时倾斜仪/罗盘组件可以提供关于系统的当前方位的信息。这样的信息对于失准的视线的及时检测可以是有用的。传感器套件还可以包括用于实时监控本系统所服从的振动水平的加速器以及用于实时追踪本系统的位置或用于接入到实时时钟的全球定位系统(GPS)单元。可以通过连接到电力线路为本系统供电,这还供应安装在交叉口的交通灯组件。电源78提供操作各种模块和单元所要求的适当滤波的DC电压,同时通过浪涌保护电路80提供其针对任何电压浪涌或瞬态的保护。电源和数据链路可以使用如以太网供电(PoE)的接口集成在一个连接器中。图7示出了具有用于交通检测系统的窗口 84的示例壳体,并且可以容纳更多或更少完整的监控仪器套件,它们的每个将其输出数据信号转发到控制和处理单元用于进一步处理或中继。2. A-交通检测系统的光学单元的描述在图8中所示的示意图提供了形成光学单元的一部分的模块和致动器组件的主要部件的更多细节。如更早地描述,ISM、0EM及ORM固定到致动器组件88的可转动连接面,其致动受操作者的控制以执行交通检测系统的共同视线(也称为光轴)的精确指向。在该图中,本系统的光轴形成为平行于也在图中描述的笛卡尔XYZ参考系的Z轴。图8还示出了具有对应的光轴的每个单个模块。可以使用未在图8中示出的合适的硬件将单个模块的光轴形成为彼此平行(相对的光学对准)。该操作是为了确保OEM的照明区域的中心几乎与两个其他模块的视野中心一致,如在图I的示意图中的情况。幸好,因为三个模块的较宽(即,几度)的照明区域和视野,相对光学对准的公差相对宽松。这意味着可以通过合适地加工将用于模块到致动器组件的接触表面的连接的部件或简单的机械调整来简单地实现该对准。本领域技术人员应意识到在致动器组件88上安装如在图6的示意图中所示的所有模块、组件及组件可以提供一些特定优点。通过允许系统组件和模块紧密地提供在较小体积中,同时减少单独的印刷电路板的数量并且缩短有线连接,该设计选择然后可以促进更紧凑、高度集成的交通检测系统。在说明书中长篇讨论的特定安装配置主要用于解释性目的。响应于在交通检测系统的精确指向中由操作者发送的指令,致动器组件围绕如在图8中所示的正交X和Y轴转动三个模块。发现沿每个轴在±15°阶数的总的角范围在大多数情况中是足够的,因为可以在其安装到交通灯悬臂的过程中将交通检测系统粗略地指向所期望的方向。同样,致动器组件所要求的角分辨率和精度相对不高,以便用于各种用途的低成本装置常常被发现非常令人满意的。例如,致动器组件88可以由旨在用于轿车车辆的远程控制侧视镜中使用的镜面致动器较好地实现。交通检测系统的视线基本上向下指向。当系统将连接到其上的支撑结构的配置不允许沿着期望的方向向下指向时,手动倾斜定位台可以包括在光学单元中以实现本系统的粗指向。这具体是以下情形交通检测系统旨在用于原装制造商集成在交通灯组件中。可以通过插入一个合适的工具到在交通灯组件的机箱中加工的接入口以驱动倾斜定位台的调整螺纹来执行粗手动对准步骤。所有三个光学单元、致动器组件及倾斜定位台连接在一起以形成固定到安装框架上的坚固组件,该框架是交通检测系统的框架的完整部分。安装框架可以有利地加工成具有相对垂直Y轴的预定倾斜角,其方式为使得当交通灯组件安装在交通灯悬臂上时光学单元的视线可以基本上向下指向。 对于配置为单独单元的交通检测系统而言,例如,当将该单元固定到交通灯悬臂上安装框架提供用于转动该单元的一些自由度时,可以防止上述段落中讨论的手动倾斜定位台的使用。在本系统的一个实施方案中,该致动器组件88包括向控制和处理单元提供关于其可转动的连接表面的当前角位置的反馈电压信号。该角位置反馈信号例如以校准的电位计装置或编码器产生。在从致动器组件接收反馈信号时,该控制和处理单元能够控制在光学单元的当前角定向中的任何突然的改变。该单元然后可以警告交通控制器需要对交通检测系统的光学对准进行微调。像在交通检测系统的机箱上的突然的冲击或振动或强风等事件会导致失准。如先前所述,本系统的失准还可以由倾斜仪/罗盘单元检测。该失准也可以从通过图像感测模块发送的图像来检测。2· A. I-光学发射器模块光学发射器模块(OEM)辐射具有在近红外线光谱区域中的中心波长的较短光脉冲。相比较于可见光,有若干因素支持近红外光的发射,如便宜紧凑的光学源和敏感光电探测器的可获得性、在该光谱区域中的无助的人眼的较弱的反应,这使得辐射光脉冲不可检测(并且然后不可分散),以及在该光谱区域中的更弱的太阳辐射背景水平。在紫外(UV)光谱区域中的光对于有意的应用是合适的,尽管在UV中发射的便利和便宜的光学源的可获得性当前是更有问题的。在近红外光谱区域中的光的选择应该被认为是一个示例,而不是作为一个限制。在对应于较低太阳辐射水平的光波长的操作促进对于包含在电压信号波形中的有用的信号回波的更高的信噪比(SNR)。在一个实施方案中,至少一个高功率发光二极管(LED)用作在OEM中的光学源。LED装置共享在相同的光谱区域中发射的半导体激光二极管的几个期望的特征,因为它们是能够以非常短的电流脉冲(持续时间低至几纳秒)以高重复率驱动的非常紧凑、不平坦、固态光学源。该后者能力对于基于飞行时间(TOF)原理执行光学测距的系统是非常有用的。大功率LED当前可用于在近红外光谱区域中的多种波长的发射。更长的近红外波长如940nm例如允许太阳辐射背景水平随着在该区域中的增加的波长而稳定的下降。相比较激光二极管源,LED在一个更宽的光谱带发射,取决于具体的LED材料和驱动水平,这通常达到IOnm至50nm。然而这些光谱带宽足够窄以通过使用在ORM中安装的窄带光学滤波器实现太阳辐射背景光的有效阻止而没有牺牲太多的被检测的信号回波的振幅。尽管LED光源在当前被视为用于交通检测系统的最佳候选方案,但是也可以展望其他的发光光源,例如激光光源的一些类型。此外,交通检测系统还可以利用发射未落在光谱区域内的电磁辐射。雷达装置时此类源的示例。众所周知LED光源的非激光发射比激光二极管光源发射的光具有更低的时空一致性,以便LED光源发射的冲击个体的未被保护的眼睛的光在眼睛视网膜上的更大表面上传播。结果,对于相比较的光学功率水平和波长,LED光源对于疏忽的视觉暴露比激光辐射提供更多的安全。实际上,通过基于在可应用于灯具装置的安全标准中定义的规则和程序(如国际电子技术协会公布的国际标准IEC 62471的灯具和灯具系统的光生物安全,第一版(2006-07))来执行风险分析从而可以最佳评估暴露到通过LED装置发射的光导致的可能视觉风险。如前所述,从OEM发射的光的有效使用命令其照明区域的外部界限不会显著地超 过由交通检测系统覆盖的引桥所要求的整个检测区域。该条件对于在图I中描述的各种轮廓而言非常流行。FOI的尺寸通常在沿水平方向在15°到50°、沿着垂直方向2°至10°的的范围内(假设为简化本系统水平指向)。这些尺寸取决于本系统将安装在交通灯悬臂的高度及其与引桥的停止线的水平的距离。通过使用准直透镜组件并且然后使用光学漫射器可以光学地调制LED光源的原始近红外光输出用于在FOI的期望的二维角范围上的发射。该准直透镜组件具有高输入数字孔以聚集从LED发射的高度分散的原始输出光束。该透镜组件然后将光改向以在其出口孔平面内形成具有适合于光学漫射器的尺寸的横截面的光辐射分布,发散角通常被减少几度以允许满足漫射器的特定散射特征。在其通过光学漫射器的传输时,该光束转换成其开口(发散)角确定OEM的FOI的基本上不对称的光锥。在本申请中,全像式的光学漫射器相对其他漫射器具有一些优点,因为它们的光学传输可以达到90%,并且在期望的波长甚至更高。全息光影漫射器可以被设计为在预定(非对称)FOI上传播入射光,这应该具有沿着正交的X和Y轴两者明显不同的发散角从而最佳地用在交通检测系统中。这种类型的光学漫射器还得益于其近乎高斯形平滑输出光辐射分布。凸透镜对于分布光非常有效并且还满足对FOI的需要。OEM还包括以电流脉冲驱动LED光源的专用电子器件,该电流脉冲具有峰值振幅和适用于有效实施交通检测系统所基于的光学测距原理的持续时间。由控制和处理单元转发的脉冲电压三角信号命令由驱动电子器件的每个电流脉冲的产生。交通检测系统所要求的操作条件和性能要求短光脉冲的发射具有通常在IOns至50ns范围中的持续时间。取决于发射脉冲的重复率,光学发射的工作周期(相对的ON时间)可以低至O. 1%。在较低工作周期上驱动LED光源允许提高峰值电流驱动水平在大幅超过在LED的标称电流额定值的值,而没有明显减少其寿命。为针对辐射光脉冲获得所期望的峰值光学输出功率,通过在OEM中安装附加的LED光源并且合适地重复它们的驱动电子器件可以补偿LED的峰值驱动水平的任何降低。通过沿特定方向执行每个LED光源的单独对准(光学轴线对准)该交通检测系统可以进一步得益于使用几个LED光源,以便辐射光束组的集体重叠产生一个最佳填充的F0I。该策略可以提供具有期望的整体尺寸的统一的FOI而不要求使用任何光学漫射器。
2. A. 2-光学接收器模块由光学接收器模块(ORM)在获取辐射光脉冲的一部分时产生用于识别检测区域中的车辆的控制和处理单元处理的时间电压波形,该辐射光脉冲的一部分已经由ORM的聚集孔定义的立体角上反射或散射。在该交通检测系统中,ORM的核心包括具有相同特征并且以线性(阵列)或二维(马赛克)配置的形式安装的多个光电探测器。然而,可以构想用于光电探测器的其他配置。每个单独的光电探测器形成连接到控制和处理单元上的检测通道的光学前端。该单元然后并行处理多个时间电压波形,这些波形是其在命令OEM发射一个光学脉冲之后在几个ns的较短延迟之后在几乎相同的时间全部一起接收的。在一个实施方案中,光电探测器配置采用16个相同的光电二极管、雪崩光电二极管(APD)的线性阵列的形式,例如由提供在包含OEM的发射波长的光谱带上的最佳敏感性。硅基APD可以选择用于在940-nm波长的光学脉冲的检测。光电检测不限于ATO的使用,因为可以构想如同PIN光电二极管和光电倍增管(PMT)的快速和敏感光电探测器的其他合适的类型。当交通检测系统正确地安装在交通灯悬臂上时,光电检测器的线性阵列基本上沿·着对应于水平X轴的方向延伸。这允许ORM的非对称视野(FOVem)的最长尺寸设置为平行于由交通检测系统监控的道路引桥的宽度。线性阵列的每个单个光电探测器具有其自身的视野,该视野具有由光电探测器的敏感表面积的尺寸与在光电探测器之前的某段距离处放置的目标透镜组件的有效焦距的比率给定的角度范围。光电探测器的线性阵列的典型特征使得光学检测通道的单个视野彼此相同,同时相邻,除非在阵列中的相邻光电探测器之间存在的一些光盲区域。在OEM的中心发射波长上调谐的高通光学滤波器或窄带光学滤波器可以插入到目标透镜组件中,用于阳光辐射背景的光谱部分和落在OEM的光谱发射带宽之外的任何寄生人工光(例如车辆前大灯的光)的光学阻止。由于其光谱带通具有陡峭边缘和更高的光学传输,可以使用光学干扰滤波器。光学滤波器减少了环境光造成的光电二极管的潜在饱和并且减少了由外源造成的噪声。光学滤波器还可以集成到光电二极管的窗口中。机箱的窗口可以用作一个光学滤波器。ORM包括用于调节和转换在线性光电探测器阵列的每个光电探测器的前端模拟电路的输出端上的原始电压信号的电子器件。本领域技术人员应理解,适用于与光电二极管一起使用的调节电子器件可以包括(在APD的情况中)用于极化APD、转移阻抗放大器、高带宽放大器阶段及模拟-数字转换器(ADC)的高电压源,以便能够以时间系列数字数据流的形式将输出电压波形发送到控制和处理单元。对于每个光学检测通道能够以几十和甚至数百兆次采样每秒的速率转换数据的ADC可以用来提供合适的距离分辨率,这将避免冲掉任何可能会出现在时间波形中的有用的但较窄的信号回波。2. A. 3-图像感测模块在交通检测系统的视线的精确定向阶段中通过向操作者提供由本系统当前所覆盖的区域的图像,形成光学单元的一部分的图像感测模块(ISM)找到了其主要用途。这意味着该模块在交通检测系统的正常运行中可能不会被触发。ISM然后包括低成本、相对低分辨率、图像传感器,如互补金属氧化物硅(CMOS)传感器,但可以构想其他类型的传感器。专用的电子电路以合适的格式转换由图像传感器产生的信号,然后将所产生的图像数据转发到控制和处理单元。选择ISM的目标透镜来提供所期望的视野以及便利的视野深度。在一个实施方案中,没有人工照明光源提供有ISM,因为交通检测系统的精确指向通常在白天执行。除了它们用于交通检测系统的视线的精确指向的用途之外,由ISM产生的图像可以创建各种应用并且可以用无尽多种方式对其进行处理。例如,它们可以与交通检测系统产生的光学测距数据组合用于实施多种类型的图像融合方案。视频内容分析可以使用来自图像传感器的数字化视频流来检测、辨识及分析目标和事件,并且可以用来增加高级检测功能。可以使用同一接口来设定基于视频内容分析的特定虚拟回路。图9A示出了由本系统或用户定义的一个检测区域90的示例。该区域被分成若干个子区域(虚拟回路)。图9B示出了在由3D传感器和图像传感器覆盖的区域94中的第一车辆92和仅由视频检测所检测到的远处的第二车辆96 (高级检测或序列线检测的示例)突出显示了检测区域90的子区域91、93及95。通常,基于3D传感器检测的虚拟回路更鲁棒,但视频检测具有更远的F0V。在同一交通检测器中使用两种技术允许最优化每项技术的强度。同样,可以将该图像发送到外部系统或网络以允许远程操作者监控交叉口处的交通。视频压缩(例如H. 264) 可以由处理器完成以限制视频传输所要求的带宽。除了提供图像之外,ISM还可以用于测 量环境光背景水平以帮助集成在ORM中的光电检测器的控制和操作。处理器还可以自动调整(AGC)图像传感器敏感性。交通检测系统的机箱包括合适尺寸的平板式保护窗84,其保护光学单元的各种模块不受目标的意外冲击、灰尘、及恶劣的天气条件的影响,同时允许940-nm近红外光以最小光学损耗传输(当选择该波长用于发射时)。为此目的,在发射波长上调谐的防反射涂层可以沉积在保护窗的两个面上。该窗在光谱的可见和红外部分中的光学传输应该足以用于ISM的正确操作。保护窗的外表面还可以涂有亲水膜,该亲水膜减少与表面相接触的雨水滴导致的光学畸变。3-交通检测系统的视线的远程对准的方法在此提供了在交通检测系统设定定位之后允许其视线的快速并简单的精确对准步骤的方法。该方法不要求与系统的任何物理接触。该方法依赖由集成在本系统的光学单元中的图像感测模块(ISM)产生的图像。在交通检测系统和远程PC计算机之间建立通信。通信链路可以指向或通过交通控制器接口卡、使用远程接入点的无线数据链路。PC计算机可以是由定位在道路交叉口的附近中的安全并舒适的位置的操作者使用的便携式笔记本PC计算机,而没有造成交通流的任何干扰如车道封闭。从ISM接收图像,这些图像示出了由交通检测系统当前覆盖的引桥的区域。本系统的总体检测区域的轮廓可以叠加显示在这些图像上(类似于图2A),允许操作者快速确定本系统的视线的某种精确调整的需要。该操作者发送命令到交通检测系统以远程致动机动化的致动器组件,该组件将可控制地转动本系统的整个光学单元。然后可以精细地调整该光学单元的当前指向直到在叠加部分中看到的总体检测区域覆盖由交通检测系统监控的道路交叉口的期望的部分。一些特定参考点、或标记可以由操作者在图像中以及其在存储在资源库或数据库中的图像中的位置中识别,用于后面使用。这使得交通检测系统的控制和处理单元连续地监控光学单元的当前校准用于随时间持续的任何失准的快速检测。应允许交通检测系统为交通控制器触发一个指示本系统的临时错误操作的信号。错误的操作可能例如由摆动交通灯悬臂的强风造成,其方式为使得交通检测系统的视线不规则地在较大的角范围内摆动。此外,图像中的参考点可以用来估计交通检测系统可以在任何时刻服从的振动的平均振幅水平。为此目的,图像可以处理为在图像中的参考点的精确定位(就像素而言)的任何快速时间变化的检测和测量。致动器组件的角度覆盖应该包含感兴趣的区域,并且本系统应该确定可以考虑的光学检测通道。同样,本系统应该确定在每个所选择的检测通道中的最小和最大检测距离两者以便模拟一个或几个虚拟回路。所有有待描述的三个方法包括交通检测系统的安装以及其沿感兴趣的区域的视线的粗对准。在系统安装过程中的初步对准步骤的精度应该在致动器组件可以实际提供的范围内。
使用在PC计算机上运行的配置软件,操作者连接到交通检测系统。他可以看到连续发送的低分辨率图像。方法I :基于车道的宽度的测量操作者选择软件的配置模式。他然后获得具有通常高分辨率的图像。操作者勾勒车道的轮廓。该过程可以是部分自动化(操作者指示停止线在哪儿)或全自动的(系统从图像中辨认停止线)。当需要时,操作者验证由系统提供的信息。他还可以指示他想检测比停止线更远定位的车辆。操作者应该输入一个或几个车道的宽度以便解决三维模糊度。若停止线是已知的,操作者可以提供停止线的距离而不是车道的宽度,尽管更难以正确的方式测量该距离。该评论还适用于系统的高度。该信息可以从画图、通过测量、或来自被判断为足够精确的任何其他估计中获得。计算机根据来自光学检测通道以及车道的位置以及根据ISM的特性的知识命令本系统移动该致动器组件到合适的方位。一旦该设置完成,获取新的图像,并且该计算机使用灰度相互关联来尝试恢复车道在图像中的位置,并且其促进操作者确认位置是正确的或者是否要求某种进一步的细化。可能需要重复执行这些步骤中的一些。在该阶段,道路交叉口的几何配置是已知,最小和最大检测距离可以自动设定,例如在距停止线预定距离或根据由操作者规定的任何距离处定位虚拟回路。方法2 :基于示出了接近停止线的车辆的图像操作者选择软件的配置模式。他然后获得通常具有更高分辨率的图像。该操作者指示停止线的位置,或者以更完整的方式,他绘制车道的轮廓,包括停止线。该步骤可以部分地自动化(操作者指示停止线在哪儿)或由在图像中的直线的计算机辅助检测(本系统辨识停止线和车道)而全自动的。当需要时,该操作者验证由本系统提供的信息。该计算机根据光学检测通道和车道的位置的知识以及根据ISM的特性命令本系统将致动器组件移向合适的方位。一旦该设置完成,获取新的图像,并且该计算机尝试使用灰度相互关联恢复车道在图像中的位置,并且其促进操作者确认位置是正确的或者是否要求某种进一步的细化。当本系统检测到在合适的方向即朝向停止线移动的目标的存在时,其传递一序列图像,同时将针对该序列中的每个图像的车辆的测量距离保存到存储器中。该操作者然后确定对于定位虚拟回路而言是所期望的距离处的车辆的图像。可能需要若干个图像序列以执行该步骤。一旦该距离被选择,操作者然后为有待监控的每个车道确定虚拟回路的位置。针对一组相邻车道的虚拟回路通常定位在相同的距离处,尽管操作者可能期望相比较于初始确定的距离偏置该距离。操作者验证交通检测系统操作正确。方法3 :基于道路交叉口的视图/绘图交叉口的鸟瞰图或绘图存储在计算机存储器中。在图10中示出此类为鸟瞰图的示例。使用该鸟瞰图或绘图,操作者识别一个或多个交通检测系统的位置和高度以及所期望的虚拟回路的位置。他然后使用视图/绘图的比例来评估将每个虚拟回路与将要覆盖该回路的交通检测系统相分离的距离。该操作者然后选择软件的配置模式。他然后获得通常具有更高分辨率的一个图像。该计算机校正在交叉口的俯视图(通过鸟瞰图或绘图提供)以及由交通检测系统的ISM提供的图像之间的透视图。该校正是用来建立在由操作者在视图/绘图中选择的虚拟回路的位置和在来自ISM的图像中的这些回路的对应位置之间的关系。该软件然后按照操作者所定义的虚拟回路位置来控制致动器组件用于检测区域的对准 和确定。4-捕获的信号波形的数值处理的方法本系统实施由多个光学检测通道产生的信号波形的处理。波形处理的主要目标是在最小预定检测概率中检测制图成多个相邻检测通道的车道中的车辆的存在。因为车辆车身的典型的光学反射特征和限制在交通检测系统中实施的模块的性能的各种限制,由ORM捕获的光学返回信号常常遭受洗刷掉指示车辆存在的微弱信号回波的强噪声影响。结果,波形处理的一些第一步骤旨在加强有用的信号回波的信噪比(SNR)。此类滤波步骤可以通过将原始波形与先前获取或人工产生的强烈、清晰的信号回波的重复数字上关联开始。以此方式处理的波形然后获得一个更平滑的形状,因为已经消除了初始出现在原始波形中的大部分高频噪声。在处理的第二步骤中,通过平均多个连续获取的波形可以进一步处理在波形中出现的有用的信号回波的SNR。假设在连续波形中出现噪声贡献彼此独立并且完全不相关联,由标准信号均值法(累积)获得的较佳的SNR是可能的。当满足该条件时,这常常是固定模式噪声贡献的适当消除之后的情况,如所示波形的SNR可以增加一个因数(N)1/2,其中N是均值波形的个数。平均400个连续波形于是可以产生二十倍SNR增强。实际限制有待平均化的波形的个数另一个条件是产生有用的信号回波的流程的稳定性的需要。换言之,在要求获取将要被平均化的一组完整的波形的时间段中,在波形中出现的有用的特征的特性(峰值振幅、形状、时间/距离位置)应理想地保持不变。当尝试检测快速移动的车辆时该条件会变得特别令人厌烦,这种情形导致信号回波或多或少明显地从一个波形漂移到另一个波形。尽管该波形在交通检测系统的通常使用中频繁发生,但通过设计交通检测系统其有害的影响会被减弱,以便其以高重复率(在kHz范围中)辐射光脉冲。这样高重复率将实现在足够短的时间间隔中捕获更多的波形以保持与移动车辆相关联的光学回波静止。在本系统的一个实施方案中,该波形平均化有利地以移动平均化的形式实施,其中当前平均波形是通过将其与新获取的波形加和同时拒绝来自第一次获取的波形的平均连续更新。使用移动平均不会影响由控制和处理单元产生输出检测数据的速率。然而,当新获取的波形出现明显不同于当前平均波形的至少一个特征时,可以通过重新设置移动平均来实现在一个车道中突然出现的车辆的及时检测。在由交通检测系统监控的任何给定的车道中的车辆的检测依赖在该车道被制图成的检测通道中发现其信号回波。被视为重要的,信号回波在所处理的波形中的位置应该远离检测区域开始的位置(最小检测距离),这通常对应于被监控的车道的停止线。被发现更接近于最小检测距离的回波被标记为障碍物,并且在该情况中在车道中没有执行进一步的检测。车辆在车道中的的当前位置是从在波形中的明显信号回波的位置推断的。通过执行在信号回波的峰值周围的局部二阶(抛物线)插值法获得信号回波的更精确的定位。实际上,仅在虚拟回路的最小和最大距离范围中的信号回波将保留用于触发输出检测信号。在控制和处理单元中编程的简单状态机可以从可疑回波的附近中的波形信号振幅的时间历史的分析中确定信号回波的真实重要性。因此,在可配置的阈值振幅上的信号振幅的递增将支持状态机的过渡,指示车辆的检测。在图11中所示的总流程图详细描述了将在由检测通道组提供的波形中检测到的信号波形转换成输出检测信号(也称为虚拟回路触发器)的流程。一旦交 通检测系统在流程图的步骤300中被适当地初始化,由光学接收器模块获取光学信号波形,该模块然后将其转换成电气信号波形。后者然后被转发到控制和处理单元用于进一步处理。在流程图中的标准获取步骤310然后包括在一些预处理步骤如明显信号回波的滤波、平均化、及检测 之后捕获波形。已在先前段落中描述了所有这些预处理步骤。在步骤320中对可兼容的回波进行分组。组被定义为在不同的通道中检测的一系列信号回波,并且定位在距本系统几乎相同的距离,即它们的距离不同于彼此通常少于50cm。在相邻通道中发现的回波被分为一组,尽管在一些例子中,没有回波的单个通道允许考虑具有稍微低于检测阈值的峰值振幅的可能的较弱的反射信号。在步骤330,已形成的各种组与现有目标匹配。在该过程的每次重复过程中,现有目标可以使其特性由一个组更新。此外,不能被匹配到先前重复中形成的组的一个组(其现在是一个目标)变成一个新的目标。对于每次重复,预测目标在下一个重复中的位置,除非当前目标是一个新的目标。由目标的当前位置与在两个先前重复中发现的位置之间的差值的总和来给定所预测的位置,假定该目标在这些重复过程中存在。当所有组已形成,然后检查所有目标以找到其预测位置与一个组的当前位置相匹配的一个目标。若一个组的当前位置不与任何预测位置相匹配,可以进行检查以找到一个新的目标(没有任何预测),其位置与一个组的位置相匹配,假设该目标以合理的速度移动。若没有发现这样的目标,创建一个新的目标。然后根据来自先前步骤的发现内容在步骤340中更新每个目标的状态。更新步骤的一部分包括评估每个目标的预测位置。在步骤350中,决定哪些目标应该触发一个车道,而在步骤360中,重新设定这些组以及目标,其方式为使得清除所有的组并且所有的目标被标记为不匹配。该处理然后通过返回到标准获取步骤310以获取一组新的信号波形而继续。在下文的段落中详细讨论了图11的流程图的主要处理步骤320至350,该讨论通过在图12至15中所示的特定流程图支持。图12然后描绘了进一步详细描述了在图11的步骤320中实施的回波的分组的方式的流程图。每当一个新的信号回波可获得(步骤380)时,首先检查其特性以确定该回波是否可以结合一个组中。若其特性匹配第一组的那些(步骤390和400),在步骤410中将该回波结合该组中,并且该流程然后指向步骤450以查找一个新的回波。在返回到步骤390之前在步骤460然后执行捕获一个新的回波,以重新设定新获取的回波的特性与第一组的特性的比较。在第一回波的特性不匹配第一组的特性的情况中,在步骤420确定是否当前存在第二组,若是这样,在返回到步骤400以将回波特性与第二组的特性进行比较之前在步骤430恢复第二组的特性。如果在步骤420确定回波不能结合到任何组中,则在步骤440创建一个新的组。然后在步骤450搜寻并在步骤460捕获一个新的信号回波以在步骤390将其特性与第一组的那些特性进行比较。若在步骤450没有进一步的回波可获得,则在步骤470计算机现有组的一些特性。一个组的特性主要包括在该组中出现的回波的平均距离(在波形中的位置)和该组的总强度。从关联于属于相同组的所有回波的距离的平均值中计算机平均距离。从回波的峰值振幅的总和中计算一个组的强度,这给出了与一个组相关联的信心水平的指示。这意味着例如包括若干个微弱回波的组可以是如由具有较强峰值振幅的单个回波组成的组一样可靠。可以进一步参考在图13中所示的流程图详细描述在图11的步骤330 (将组与目标相匹配)的性能中实施的处理。图11的步骤330然后通过分别恢复在步骤490和500中的第一组以及第一目标的特性开始。在步骤510中,将当前组距离与当前目标的预测距离相比较。若两个距离足够接近,或若当前目标是假设其以合理的速度移动的当前组的距 离,然后该目标的当前特性在在进行560之前在步骤520更新以确定第二组的存在。若第二组存在,在返回到步骤500和510之前在步骤570恢复其特性从而将这些特性与第一目标的那些特性进行比较。若没有组与第一目标匹配,该处理然后在步骤530询问第二目标的存在。若第二目标存在,在返回到步骤510之前在步骤540恢复其特性以将这些特性与第一组的那些特性相比较。在一个组的特性不与当前存在的目标中的任何特性匹配时,在步骤550创建一个新的目标。然后通过执行步骤550和570恢复下一组的特性,并且该处理返回到步骤500。当已经处理了所有当前存在的组时,该过程在步骤580完成。在图14的流程图中更详细示出了在图11中所示的流程图的步骤340中执行的每个目标的状态的更新。一旦第一目标的特性已经在步骤600中恢复,若其特性成功匹配在步骤610中一个组的那些特性,其被标记为在步骤620中的ALIVE (有生命的)。若不可能将该目标与一个组相匹配,则在步骤630中检查确定是否该目标是障碍物。若是这样(即其距离低于最小检测距离),在步骤620该目标被标记为ALIVE。若当在步骤640其当前被标记为ALIVE而该目标不是一个障碍物,则其标记被改为OTING (无生命的),然后在步骤660执行其下一个位置(距离)的预测。根据当前预测的位置,若发现目标在步骤680中未移动,在步骤690中其存在计数增加。在步骤710中,然后核实其存在计数,并且若其超过预定阈值,在步骤720标记该目标,其方式为使得其不允许触发一个车道。这种事件将不正常情形特征化,像阻塞信号的存在、在车道中的雪堆、来自地面的信号、或在车道中滞留的车辆。更新然后通过恢复下一个目标的特性进行到步骤700和730,并且返回到步骤610。当已经处理所有当前存在的目标时,该更新在步骤740结束。形成图11的总流程图的部分的最后主要处理步骤是步骤350,其中决定哪些目标应该触发一个车道。一旦在步骤760恢复第一目标,在步骤770核实其当前标记。因为仅标记为ALIVE的目标可以触发一个车道,若当前目标未标记为ALIVE,在步骤820立刻搜寻另一个目标,并且在步骤830恢复其特性。对于标记为ALIVE的目标,在步骤780检查其当前距离以确保其位于最小检测距离和最大检测距离之间。换言之,该目标应该位于由虚拟回路监控的车道的区域中。若该距离正确,在步骤790进行进一步检查以确定该目标是否接近交叉口。远离交叉口移动的目标将不允许触发车道。然后步骤800针对重复的数目进行另一个检查,直至该目标被发现已经找到。因此,若其存在当前限于单一重复,则该目标将不允许触发一个车道。当先前所有的检查被发现是成功的时,触发当前被制图成在其中检测到目标的平均检测通道的交叉口车道,即产生用于该车道的正向检测信号。该过程针对所有的目标重复,并且其在步骤840结束。图16示出由交通检测系统获取的示例信号波形。在波形的左手侧的可见的第一脉冲来自在形成系统机箱的一部分的保护窗上的辐射光脉冲的反射。该脉冲可以用于本系统的校准步骤,这将实施绝对距离测量。该脉冲在波形中的中心位置然后可以被定义为所显示的波形的水平轴的起点,即该距离设定等于零的位置。若由于例如温度变化本系统距离校准具有某种漂移,则可以基于第一脉冲在波形中的位置对其进行再调整。该交通检测系统还可以提供像下雾或下雪条件的存在的天气信息的可能性。雾和雪对离开保护窗的辐射光脉冲的反射具有影响,在存在雾时,第一脉冲的峰值振幅显示较大的时间波动,当相比较于其平均峰值振幅水平时,因数可以达到2至3。同样,在这些恶劣天气条件中第一脉冲的宽度还显示出时间波动,但是以减小的因数,即约10%到50%。当下雪时,在该波形中可见的第一脉冲的峰值振幅通常显示更快的时间波动,同时该脉冲宽度的波动不太强。最终, 应注意第一脉冲的峰值振幅中的长久变化可以简单地归因于沉积在保护窗的外表面上的灰尘或雪的存在。总之,检测系统需要处理以下事实人行道、路缘石、中央隔离带及像道路标记的固定目标发送一个反射到3D传感器。图17示出了针对人行道900、中央隔离带902以及树木904的距离测量。在该示例中,3D传感器定位在道路旁边并且检测正在离开的车辆。来自人行道的回波返回信号一般较弱并且嘈杂,并且可以被弃为背景噪声。然而,该背景可以在一些情况中改变,如当地面由于雨、冰或雪变湿时。来自人行道的回波返回信号会消失,或在一些情况中,振幅变得更强,具有更精确和固定的距离(较少噪杂)。该过程追踪人行道的反射的演化,并且掩盖该“目标”以避免产生错误的警报(适应性掩盖作为振幅和距离测量的噪声的函数)。固定目标(像在视野中的道路标记)还可以产生回波返回信号,但总体上具有恒定的振幅和恒定的距离测量。那些目标已经被系统视为背景特征。图18A、B、C及D示出了其中在相同或远于人行道的距离之前检测到车辆的序列。图18A示出了车辆的检测910。该信号通常更强(由方形点标识)并且可以完成一次分割以检测车辆的后面912和侧面914。图18B示出了车辆910的移动的演化。图18C示出了到达与人行道相同的距离的车辆910并且图18D示出了行进远离到人行道的距离的车辆的910。该序列是3D传感器如何使用几个FOV的一个示例,并且完整的回波返回数字信号波形可以基于如信号的振幅、距离测量、分割及移动的信息追踪一个目标。
权利要求
1.一种使用交通检测系统在检测区域中检测目标存在的方法,该方法包括 提供包括一个光学单元的所述交通检测系统,该光学单元具有 在预定的发射区域中发射脉冲的一个发射器模块; 一个接收器模块,该接收器模块接收由在所述发射区域中的一个目标朝向所述接收器模块的视野反射的脉冲的一部分,所述视野包括多个相邻检测通道,所述接收器模块获取所述接收到的脉冲并将其转换为相应的多个数字信号波形; 一个图像感测模块,该图像感测模块提供一个包含发射器模块的发射区域和接收器模块的视野的图像; 提供用于所述视野的一个状态重叠图像,该图像包括所述图像和在所述多个相邻检测通道的轮廓的所述图像上的视觉指示; 定位所述接收器模块的视野以使用所述状态重叠图像覆盖所述检测区域; 使用所述交通检测系统获得所述多个数字信号波形; 在所述视野中的一个位置处检测所述数字信号波形之一中的信号回波,所述信号回波由所述目标在所述视野中的所述存在而造成; 使用所述位置为所述目标确定在所述视野中的位置; 为所述目标存储所述位置。
2.如权利要求I所述的方法,进一步包括发送所述存储的位置到一个外部处理器。
3.如权利要求I和2中任意一项所述的方法,其中,所述检测区域是沿着道路交叉口的引桥的停止线所确定的。
4.如权利要求I至3中任意一项所述的方法,进一步包括 识别哪一个检测通道产生在其中检测到所述信号回波的所述信号波形; 使用所述状态重叠图像确定对应于所述识别出的检测通道的交通车道; 检测目标在所确定的交通车道中的存在。
5.如权利要求4所述的方法,进一步包括 为所述检测通道提供所述视野中的距所述光学单元的最小和最大检测距离; 若所述信号回波是在针对所述确定的交通车道的所述最小和最大检测距离内,则产生一个呼叫; 发送所述呼叫到交通控制器。
6.如在权利要求5中所述的方法,进一步包括在比最小检测距离更接近于光学单元的位置处检测在信号波形中的信号回波并保持所述呼叫。
7.如权利要求I至6中的任意一项所述的方法,其中,所述目标是移动目标和静止目标之一 O
8.如权利要求I至7中的任意一项所述的方法,其中,所述目标是车辆。
9.如权利要求I至8中的任意一项所述的方法,进一步包括获得所述发射脉冲的波形的复制;将每个所述信号波形与所述复制数字上相关联;其中检测所述信号回波包括在所述相关联的信号波形中检测所述信号回波。
10.如权利要求I至9中的任意一项所述的方法,进一步包括为回波提供阈值振幅,所述检测信号回波包括将信号回波的振幅与阈值振幅进行比较,所述阈值振幅是随着所述位置而变化的振幅绝对值和振幅相对值之一。
11.如权利要求I至10中的任意一项所述的方法,进一步包括确定信号回波的振幅,基于在一个回波组中的回波特性将可兼容的回波分组,所述回波组是在不同通道中的一系列信号回波,该回波特性是基本上相同的所述位置中的至少一个,所述振幅是基本上相同的,并且所述回波组的整体组位置包括所述位置。
12.如权利要求11所述的方法,进一步包括将该组与一种目标类型进行匹配。
13.如权利要求I至12中的任意一项所述的方法,其中,所述发射器模块是光学发射器模块,所述脉冲是短光脉冲,所述发射区域是照明区域,所述接收器模块是光学接收器模块,所述反射的脉冲是所反射的光脉冲。
14.如权利要求13所述的方法,其中,所述光学发射器模块发射人眼不可见的波长的短光脉冲。
15.如权利要求14所述的方法,进一步包括为所述光学接收器模块提供一个滤波器,该方法进一步包括接收一个反射波长的所述反射光的脉冲,该反射波长与由所述光学发射器模块发射的短光脉冲的发射波长相匹配。
16.如权利要求I至15中的任意一项所述的方法,其中,所述交通检测系统进一步包括用于所述光学单元的一个云台组件,所述云台组件被适配为以围绕三个正交轴中的至少一个以受控的方式转动所述光学单元;该方法进一步包括确定所述云台组件的方位以粗略地将所述光学单元指向所述检测区域。
17.如权利要求16所述的方法,进一步包括使用所述状态重叠图像和所述云台组件来转动所述光学单元,并且允许朝向所述检测区域的光学单元公共视线的精确指向。
18.如权利要求17所述的方法,进一步包括识别在所述状态重叠图像中的永久标记,并且使用所述识别的永久标记来使用所述云台组件精确地对准所述光学单元。
19.如权利要求I至18中的任意一项所述的方法,进一步包括提供至少一个传感器,每个传感器是温度传感器、倾斜仪、罗盘、加速计及全球定位系统中的至少一个,所述方法进一步包括使用由所述至少一个传感器捕获的信息用于所述定位所述视野、所述检测所述信号回波及所述确定所述位置中的至少一个。
20.如权利要求I至19中的任意一项所述的方法,进一步包括提供一个角位置传感器用于产生关于光学单元的当前角位置的信息,所述方法进一步包括使用所述关于所述当前角位置的信息用于所述定位所述视野。
21.如权利要求I至20中的任意一项所述的方法,进一步包括重复对于多次重复的所述获取、检测及确定步骤;追踪所述目标在每次重复中的所述视野中的所述位置;使用针对所述目标的所述追踪位置的连续若干个来确定所述目标在所述视野中的位移速度。
22.如权利要求I至21中的任意一项所述的方法,进一步包括发送所述状态重叠图像到外部处理器。
23.如权利要求I至22中的任意一项所述的方法,进一步包括重复所述由所述图像感测模块提供包含视野的图像以获得一系列图像,对所述一系列图像进行压缩,产生压缩视频输出并且发送所述压缩视频输出到外部处理器。
24.如权利要求I至23中的任意一项所述的方法,进一步包括在所述图像上应用图像处理以检测候选目标,从所述图像中提取所述候选目标在所述视野中的位置,使用所述提取的位置来指引所述为所述目标确定所述位置。
25.如权利要求3所述的方法,进一步包括在所述图像上应用图像处理以检测候选目标,从所述图像提取所述候选目标在所述视野中的位置,使用所提取的位置产生所述呼叫。
26.如权利要求I至25中的任意一项所述的方法,其中,所述发射器模块和所述接收器模块提供一个测距仪器,所述使用所述位置为所述目标确定在所述视野中的所述位置包括计算所发射的脉冲从光学单元行进到目标并返回到光学单元所花费的时间,所述接收器模块在所述脉冲的发射之后在数值上处理所获得的信号波形持续一段时间。
27.如权利要求I至26中的任意一项所述的方法,其中所述定位所述接收器模块的视野以使用所述状态重叠图像覆盖所述检测区域进一步包括 发送所述状态重叠图像到外部处理器; 接收检测区域位置信息; 使用所述检测区域位置信息定位所述视野。
28.如权利要求27所述的方法,其中,所述检测区域定位信息包括所述检测区域的轮廓、交通车道的宽度、所述光学单元的安装高度、所述最小距离和所述最大距离中的至少一个。
29.如权利要求I至28中的任意一项所述的方法,其中所述定位所述接收器模块的视野以使用所述状态重叠图像覆盖所述检测区域进一步包括 发送一系列所述状态重叠图像到外部处理器; 接收在所述一系列状态重叠图像中的至少一个上的所述检测区域中定位的检测目标的验证; 基于所述验证确定所述检测区域位置; 使用所述检测区域位置定位所述视野。
30.如权利要求I至29中的任意一项所述的方法,其中,所述定位所述接收器模块的视野以使用所述状态重叠图像覆盖所述检测区域进一步包括 发送所述状态重叠图像到外部处理器; 存储区域环境的鸟瞰图并且包括所述检测区域; 接收关于所述光学单元的安装数据; 对所述状态重叠图像与所述鸟瞰图进行比较,并且使用所述数据以确定在所述状态重叠图像中的所述检测区域的检测区域位置; 使用所述检测区域位置定位所述视野。
全文摘要
在此提供了一种使用交通检测系统在检测区域中检测目标存在的系统和方法。交通检测系统包括一个光学单元,该光学单元具有在预定的发射区域中发送脉冲的一个发射器模块;一个接收器模块,该接收器模块接收由在发射区域中的一个目标朝向接收器模块的视野反射的脉冲的一部分,该视野包括多个相邻检测通道,该接收器模块获取所接收到的脉冲并将其转换为相应的多个数字信号波形;一个图像感测模块,该图像感测模块提供包含发射器模块的发射区域和接收器模块的视野的图像。该方法包括为所述视野提供一个状态重叠图像,该图像包括上述图像和在多个相邻检测通道的轮廓的图像上的视觉指示;定位接收器模块的视野以使用状态重叠图像覆盖检测区域;使用交通检测系统获得多个数字信号波形;在视野中的一个位置上检测数字信号波形之一中的信号回波,该信号回波由目标在视野中的存在而造成;使用该位置为该目标确定在视野中的位置;为该目标存储该位置。
文档编号G01S17/10GK102959599SQ201080058905
公开日2013年3月6日 申请日期2010年12月22日 优先权日2009年12月22日
发明者伊万·米梅奥特, 路易斯·佩罗, 马丁·杜波依斯 申请人:莱达科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1