对数线性功率检测器的制作方法

文档序号:11449048阅读:312来源:国知局
对数线性功率检测器的制造方法与工艺

本发明一般涉及射频(rf)信号功率检测器领域,尤其涉及对rf信号的线性功率检测的方法和装置。

背景

许多通信和雷达(radar)系统以ku频带或更高频带的射频(rf)频率来操作。在这些系统中的许多系统中,需要持续地监视和调节所传送rf信号的功率电平和接收机(或发射机)的增益,以便补偿变化的链路状况,诸如天气状况中的大气变化、干扰、移动或终端取向的变化。为了实现这一点,使用rf功率检测器对rf功率电平进行采样,并且恰适地调节rf增益或信号电平。

功率检测器的输出通常是表示rf信号的功率的电压。然而,功率与电压之间存在平方率关系,给出为:

p=v2/r式1

其中,v是rf信号的振幅,并且r是呈现给rf信号的电阻。如式1中所示,随着rf信号的振幅增加,所得到的功率指数地增加。图1解说了典型功率检测器响应的曲线图5,其中x轴是以dbm计的功率,并且y轴是以伏特计的输出检测器电压,被标记为vdetect。如曲线图5中所示,功率检测器的vdetect对以每毫瓦分贝(dbm)计的信号功率的线性增加呈现一般性指数响应。因此,在低功率密度处,功率检测器呈现非常低的灵敏度,而在高功率密度处呈现高灵敏度。

输出电压的变化在较高功率输出处是非常迅速的,其通常超出正确地读取信号的能力(其优选地被约束在200mv至800mv的范围中)。

所期望且现有技术未提供的是一种呈现增加的动态范围且针对低和高功率电平两者具有类似灵敏度的功率检测器。

发明概述

因此,本发明的主要目的是克服现有技术功率检测器的缺点。这在一个实施例中由一种功率检测器实现,该功率检测器包括:跨导元件,其被安排成输出经整流的检测电流,该经整流的检测电流的幅值被安排成响应于输入信号的功率以dbm计的线性增加而指数地增加;以及至少一个基于p-n结的器件,经整流的检测电流的函数被安排成流经该至少一个基于p-n结的器件。该功率检测器的输出是跨该至少一个基于p-n结的器件的电压的函数。

优选地,这种器件提供了检测器输出电压与输入功率的对数表达之间的线性关系。

在一些细节中,实现了一种对数线性功率检测器,其包括:输入端口,其被安排成接收射频(rf)功率信号;第一跨导元件,其被安排成从输入端口接收rf功率信号,第一跨导元件被安排成在该第一跨导元件的输出处输出经整流的检测电流,该经整流的检测电流的幅值被安排成响应于所收到的rf功率信号的功率的指数增加而指数地增加;至少一个第一基于p-n结的器件,经整流的检测电流的预定函数被安排成流经该至少一个第一基于p-n结的器件;以及输出电路系统,其被安排成输出跨该至少一个第一基于p-n结的器件的电压的表示。

在一个实施例中,该功率检测器进一步包括比较电路系统,该比较电路系统被安排成:将所输出的电压表示与第一参考电压进行比较;以及输出所输出的电压表示与第一参考电压之差的指示。在一个进一步实施例中,该比较电路系统包括:第一差分放大器;以及第一偏置电流源,该第一差分放大器被安排成响应于第一偏置电流源而放大所输出的电压表示的函数与第一参考电压的函数之差,其中,第一偏置电流源被安排成生成第一偏置电流,所生成的第一偏置电流的温度响应是至少一个第一基于p-n结的器件的温度响应的预定函数,以使得该至少一个第一基于p-n结的器件的温度响应的非线性度响应于第一偏置电流源而被补偿。在另一进一步实施例中,该功率检测器进一步包括第二基于p-n结的器件,其被安排成为第一预定参考电流提供电流路径,第一参考电流是跨第二基于p-n结的器件的电压的函数。

在一个实施例中,该功率检测器进一步包括:差分放大器,该差分放大器的第一输入被安排成接收第一跨导元件的输出处的电压的指示,并且该差分放大器的第二输入被安排成接收第二参考电压;以及可调节电流路径,其被安排成响应于该差分放大器的输出电压而调节流经该可调节电流路径的电流的幅值,经整流的检测电流被安排成流经该可调节电流路径。在一个进一步实施例中,该功率检测器进一步包括:第二跨导元件,其被安排成输出预定的第二参考电流;以及偏置电流消除节点,其中,第一跨导元件被进一步安排成输出预定的第二偏置电流,预定的第二参考电流的预定函数被安排成在偏置电流消除节点处消除预定的第二偏置电流的预定函数,并且其中,第二参考电压包括第二跨导元件的输出处的电压。

在一个实施例中,至少一个第一基于p-n结的器件包括一对第一基于p-n结的器件,该对第一基于p-n结的器件中的每一者包括二极管,经整流的检测电流的函数被安排成流经该对二极管。在另一实施例中,第一跨导元件包括双极结型晶体管(bjt),该bjt的基极被安排成接收rf功率信号,并且该bjt的集电极被安排成输出经整流的检测电流。在又一实施例中,该功率检测器进一步包括电流镜像,该电流镜像的输入被安排成接收经整流的检测电流,并且该电流镜像的输出被安排成输出经整流的检测电流的函数。

独立地实现了一种对数线性功率检测方法,该方法包括:接收射频(rf)功率信号;生成经整流的检测电流,所生成的经整流的检测电流的幅值被安排成响应于所收到的rf功率信号的功率的指数增加而指数地增加;响应于所生成的经整流的检测电流而生成检测电压,所生成的检测电压被安排成响应于所生成的经整流的检测电流的指数增加而线性地增加;以及输出所生成的检测电压的表示。

在一个实施例中,该方法进一步包括:将所输出的电压表示与第一参考电压进行比较;以及输出所输出的电压表示与第一参考电压之差的指示。在一个进一步实施例中,所生成的检测电压包括:在所生成的经整流的检测电流的函数流经第一基于p-n结的器件时跨该第一基于p-n结的器件的电压,并且其中该方法进一步包括:生成第一偏置电流,所生成的第一偏置电流的温度响应是第一基于p-n结的器件的温度响应的预定函数;以及响应于所生成的第一偏置电流而放大所输出的电压表示的函数与第一参考电压的函数之差,该比较响应于该差的放大,以使得第一基于p-n结的器件的温度响应的非线性度响应于所生成的第一偏置电流而被补偿。在另一进一步实施例中,所生成的检测电压包括:在所生成的经整流的检测电流流经第一基于p-n结的器件时跨该第一基于p-n结的器件的电压,并且其中,第一参考电压包括:在第一预定参考电流流经第二基于p-n结的器件时跨该第二基于p-n结的器件的电压的函数。

在一个实施例中,经整流的检测电流是由第一跨导元件生成的,并且其中该方法进一步包括:放大第一跨导元件的输出处的电压的指示与第二参考电压之差;以及响应于经放大的差,控制可调节电流路径以调节流经该可调节电流路径的电流的幅值,经整流的检测电流被安排成流经该可调节电流路径。在一个进一步实施例中,该方法进一步包括:生成预定的第二偏置电流,所生成的预定的第二偏置电流是由第一跨导元件输出的;生成预定的第二参考电流,所生成的预定的第二参考电流是由第二跨导元件输出的;以及响应于所生成的预定的第二参考电流而在偏置电流消除节点处消除所生成的预定的第二偏置电流的预定函数,其中,第二参考电压包括第二跨导元件的输出处的电压。在另一进一步实施例中,经整流的检测电流是由双极结型晶体管(bjt)生成的,该bjt的基极被安排成接收rf功率信号,并且该bjt的集电极被安排成输出所生成的经整流的检测电流。

在一个实施例中,所生成的检测电压包括:在所生成的经整流的检测电流的函数流经至少一个第一基于p-n结的器件时跨该至少一个第一基于p-n结的器件的电压。在一个进一步实施例中,至少一个第一基于p-n结的器件包括一对第一基于p-n结的器件,每一者包括二极管,经整流的检测电流的函数被安排成流经该对二极管。

在一个实施例中,所生成的经整流的检测电流被安排成在电流镜像的输出处被接收,该检测电压生成进一步响应于该电流镜像的输出。

本发明另外的特征及优势由以下附图及描述而变得明显。

附图简述

为更好地理解本发明以及示出相同的方法如何被实行,现将参照附图(纯粹作为示例),其中贯穿附图相同的附图标记指代对应的元件或部分。

现在具体参照附图,需要强调的是,所示的细节仅作为示例且出于对本发明的优选实施例的解说性讨论的目的,并且是为了提供对本发明的原理及概念性方面被认为是最有用且容易理解的描述而给出的。就此而言,未做出尝试以示出比基本理解本发明所需更为具体的本发明的结构细节,结合附图的描述使得本领域技术人员明了本发明的若干形式如何在实践中实施。在附图中:

图1解说了因变于功率的典型现有技术功率检测器响应;

图2解说了根据某些实施例的包括跨导元件和基于p-n结的器件的功率检测器的高级示意图;

图3a解说了根据某些实施例的包括一对跨导元件和基于p-n结的器件堆叠的功率检测器的第一实施例的高级示意图;

图3b解说了图3a的功率检测器因变于以db计的功率的响应;

图4解说了根据某些实施例的包括一对跨导元件和基于p-n结的器件堆叠的功率检测器的第二实施例的高级示意图;

图5解说了根据某些实施例的比较电路系统的高级示意图;以及

图6解说了根据某些实施例的对数线性功率检测方法的高级示意图。

优选实施例的详细描述

在详细解释本发明的至少一个实施例前,需要理解的是,本发明在其应用中并不限于以下描述中或阐述附图中解说的构造细节和组件安排。本发明适用于其它实施例或者以各种方式被实践或实行。另外,需要理解的是,本文中所采用的措辞及术语是为了描述并且不应被视为限制。

图2解说了根据某些实施例的对数线性功率检测器10的高级示意图。对数线性功率检测器10包括:输入端口20;跨导元件30;基于p-n结的器件40;以及输出电路系统50。跨导元件30的第一端子耦合到输入端口20,并且跨导元件30的第二端子耦合到基于p-n结的器件40的第一端子。基于p-n结的器件40的第二端子耦合到输出电路系统50的相应输入。在一个实施例中,如以下将描述的,跨导元件30包括双极结型晶体管,并且基于p-n结的器件40包括二极管。在一个进一步实施例中,如以下将关于功率检测器100所描述的,提供多个基于p-n结的器件40,每一者都包括二极管。

在操作中,输入端口20被安排成接收rf信号。跨导元件30被安排成响应于收到的rf信号而输出经整流的检测电流。输出的经整流的检测电流(被标示为idet)的幅值相对于传入rf信号的振幅的变化而线性地变化。检测电流idet流经基于p-n结的器件40,跨基于p-n结的器件40的电压被安排成响应于检测电流idet的幅值的线性增加而对数地增加。输出电路系统50被安排成输出跨基于p-n结的器件40的电压的表示。如以下将描述的,跨基于p-n结的器件40的电压呈现与传入rf信号的功率的对数表达的线性关系,从而允许增加的动态范围并允许功率检测器10在整个范围上大体相等的灵敏度。

图3a解说了根据某些实施例的对数线性功率检测器100的高级示意图。对数线性功率检测器100包括:输入节点110;dc阻隔元件,其被非限制性地解说为电容器c1并在本文中如此描述;第一跨导元件,其被非限制性地解说为bjtq1并在本文中如此描述;第二跨导元件,其被非限制性地解说为bjtq2并在本文中如此描述;电感元件,其被非限制性地解说为电感器l1并在本文中如此描述;一对电阻元件,每一者被非限制性地解说为电阻器re并在本文中如此描述;电流镜像120;电流镜像130;第一差分放大器140,其被非限制性地解说为运算放大器(op-amp)并在本文中如此描述;第一基于p-n结的器件堆叠150,其包括一对第一基于p-n结的器件,每一者被非限制性地解说为二极管d1并在本文中如此描述;第二基于p-n结的器件堆叠160,其包括一对第二基于p-n结的器件,每一者被非限制性地解说为二极管d2并在本文中如此描述;第一电流源170;第二电流源180;可调节电流路径,其被非限制性地解说为p沟道金属氧化物半导体场效应晶体管(pfet)p1并在本文中如此描述;比较电路系统190;以及偏置电路系统200。电流镜像120包括:一对可调节电流路径,其被非限制性地解说为pfetp2和pfetp3并在本文中如此描述。电流镜像130包括:一对可调节电流路径,其被非限制性地解说为pfetp4和pfetp5并在本文中如此描述。功率检测器100另外包括一对可调节电流路径,其被非限制性地解说为pfetp6和pfetp7并在本文中如此描述。

电容器c1的第一端耦合到输入端口110。电容器c1的第二端耦合到bjtq1的基极和电感器l1的第一端。电感器l1的第二端耦合到bjtq2的基极和偏置电路200的输出。bjtq1和bjtq2中的每一者的发射极经由相应的电阻器re耦合到共用电势。bjtq1的集电极在偏置电流消除节点125处耦合到电流镜像120的pfetp2的漏极、电流镜像130的pfetp4的漏极、以及op-amp140的非反相输入。bjtq2的集电极耦合到电流镜像120的pfetp3的漏极、pfetp2和p3中的每一者的栅极、以及op-amp140的反相输入。pfetp2和p3中的每一者的源极耦合到电源电压(被标示为vdd)。op-amp140的输出耦合到pfetp4和p5中的每一者的栅极。pfetp4和p5中的每一者的源极耦合到电源电压vdd。

pfetp5的漏极耦合到pfetp6的源极,并且pfetp6的栅极耦合到电压vcasc。pfetp6的漏极耦合到第一电流源170的第一端子、比较电路系统190的第一输入、以及第一基于p-n结的器件堆叠150的第一二极管d1的阳极。第一二极管d1的阴极耦合到第二二极管d1的阳极,并且第二二极管d1的阴极耦合到共用电势。第一电流源170的第二端子耦合到电源电压vdd。pfetp1的源极耦合到其栅极和电源电压vdd。pfetp1的漏极耦合到pfetp7的源极,并且pfetp7的栅极耦合到电压vcasc。pfetp7的漏极耦合到第二电流源180的第一端子、比较电路系统190的第二端子、以及第二基于p-n结的器件堆叠160的第一二极管d2的阳极。第一二极管d2的阴极耦合到第二二极管d2的阳极,并且第二二极管d2的阴极耦合到共用电势。第二电流源180的第二端子耦合到电源电压vdd。

在操作中,在输入端口110处接收rf信号(被标示为rfin),并且电容器c1被安排成阻隔输入端口110处的任何dc分量并将dc被阻隔的rfin信号馈送到bjtq1的基极。bjtq1的偏置由偏置电路系统200经由电感器l1来提供。响应于经阻隔的rfin信号,q1通过bjtq1的集电极生成检测电流,所生成的检测电流被标示为idet,其相对于由偏置电路系统200的偏置引起的静态集电极电流是非常大的。检测电流idet不能低于零,并且由此实际上是经整流的值,当该值在信号rfin的周期上被积分时具有与输入信号rfin的峰到峰幅值线性相关的幅值。如以上关于图1所描述的,rf信号rfin的振幅的指数增加对应于rf信号rfin的功率(在以dbm测量时)的线性增加。

偏置电路系统200被安排成输出dc偏置电压。响应于偏置电路系统200的dc偏置电压,bjtq1和q2各自被安排成通过其集电极生成dc偏置电流,该dc偏置电流被标示为ibias。电流镜像120被安排成从偏置电流消除节点125汲取dc偏置电流ibias,并且由此消除由bjtq1的集电极在偏置电流消除节点125处输出的dc偏置电流ibias,以使得pfetp4的漏极仅接收经整流的检测电流idet。op-amp140被安排成通过控制pfetp4的栅极电压来保持pfetp2和p3的漏极电压相等。电感器l1充当rf扼流,以使得rf信号不会显著影响bjtq2的基极。有利地,电感器l1避免了具有包括电阻器的rf扼流的缺点。具体而言,假如在bjtq1与q2之间存在rf扼流电阻器,则由bjtq1从偏置电路系统200汲取的dc电流将生成跨rf扼流电阻器的电压降。bjtq1的dc偏置电流ibias由此将不同于bjtq2的dc偏置电流ibias,并且作为结果,它们将不会在偏置电流消除节点125处彼此抵消。

经整流的检测电流idet由电流镜像130的pfetp5输出并流经二极管d1。跨二极管的电压近似给出为:

vdiode=n*vt*ln(i/is)式2

其中,n是理想因子,vt是热电压,i是流经二极管的电流,并且is是反向偏置饱和电流。由此,经整流的检测电流idet的幅值的指数增加/减小引起跨二极管d1的电压vdiode的线性增加/减小。如上所述,经整流的检测电流idet的幅值的增加/减小与输入信号rfin的振幅的增加/减小线性相关,并且如关于式1所解释的,输入信号rfin的振幅的增加/减小对应于输入信号rfin的功率的指数增加/减小。作为结果,rf信号rfin的功率的指数增加/减小引起电压vdiode的相应线性增加/减小。因此,在收到的rf信号rfin的功率(在以dbm测量时)与以伏特计的电压vdiode之间存在线性关系,如图3b的曲线图210所解说的,其中x轴表示以dbm计的功率并且y轴表示以伏特计的电压。

通过pfetp1生成参考电流iref,从而创建跨二极管d2的参考电压vdref。电压vdiode通过比较电路系统190与参考电压vdref进行比较,并且比较电路系统190的输出表示输入信号rfin的实际功率与如由vdref决定的输入信号rfin的期望功率之差。有利地,通过pfetp1和二极管d2生成参考电压vdref提供了比固定电压源更准确的参考电压。具体而言,通过使用在结构上与pfetp5和二极管d1基本上等同的元件,因非限制性的温度和元件老化引起的电压vdiode的任何变化类似地影响参考电压vdref。在一个实施例中,比较电路系统190的输出由模数转换器(未示出)接收。

第一电流源170和第二电流源180被安排成生成彼此相等的dc偏置电流,这减小了偏置电流ibias与参考电流iref之间的任何变动。另外,pfetp6被安排成确保pfetp5的漏极处的电压等于pfetp4的漏极处的电压。具体而言,在没有pfetp6的情况下,pfetp5的漏极电压将由跨二极管d1生成的电压来偏置。这种偏置在pfetp4的漏极处看不到,因此,由于pfetp5和pfetp4的漏极电压将不相等,电流镜像130将不会正确地操作。pfetp6的操作使得其源极电压(其也是pfetp5的漏极电压)等于pfetp4的漏极电压。根据电路操作状况来选择单个vcasc以确保该结果。pfetp1和p7被添加到第二基于p-n结的器件堆叠160的参考干线,以使得参考干线的组件与第一基于p-n结的器件堆叠150的检测干线的组件基本上等同。

如上所述,第一基于p-n结的器件堆叠150和第二基于p-n结的器件堆叠160各自分别包括一对二极管d1、d2。有利地,使用两个堆叠的二极管使电压vdiode对经整流的检测电流idet的变化的灵敏度加倍。另外,使用两个堆叠的二极管允许电压vdiode和vdref的增加的dc偏置,由此允许用于比较电路系统190的改善的电路,如以下将描述的。以上已描述了第一基于p-n结的器件堆叠150和第二基于p-n结的器件堆叠160各自包括二极管的情况,然而,这并不意味着以任何方式进行限制,并且可以利用其他基于p-n结的器件(诸如晶体管)而不会超出范围。

图4解说了根据某些实施例的功率检测器300的高级示意图。功率检测器300在所有方面类似于图3a的功率检测器100,不同之处在于,未提供电流镜像120并且op-amp140的反相输入耦合到参考电压vref。功率检测器300的操作在所有方面类似于图3a的功率检测器100的操作,不同之处在于,偏置电流ibias是在偏置电流消除节点310处被消除的。

图4解说了根据某些实施例的比较电路系统400的高级示意图。在一个实施例中,功率检测器100的比较电路系统190被实现为比较电路系统400。比较电路系统400包括:动态范围扩展器410;以及温度补偿电路系统420。动态范围扩展器410包括:多个第一可控电流路径p12和p13,其被解说为pfet并在本文中如此描述;多个第二可控电流路径n11、n12、n13、n14、n15和n16,其被解说为n沟道金属氧化物半导体场效应晶体管(nfet)并在本文中如此描述;以及电流源430。温度补偿电路系统420包括:多个第一可控电流路径p15、p16、p17、p18、p19和p20,其被解说为pfet并在本文中如此描述;多个第二可控电流路径n17、n18、n19和n20,其被解说为nfet并在本文中如此描述;电流源440;电流源450;以及输出电阻元件rout,其被解说为电阻器并在本文中如此描述。

nfetn11的栅极被安排成接收电压vdiode,即,跨第一基于p-n结的器件150所检测到的电压。nfetn11的漏极耦合到电源电压vdd,并且nfetn11的源极耦合到pfetp12的栅极和nfetn12的漏极。nfetn12的源极耦合到共用电势,并且nfetn12的栅极耦合到nfetn13的栅极。nfetn13的源极耦合到共用电势,并且nfetn13的漏极耦合到pfetp13的漏极。pfetp13的源极耦合到电流源430的输出和pfetp12的源极。电流源430的输入耦合到电源电压vdd。pfetp12的漏极耦合到nfetn14的漏极以及nfetn14和n15中的每一者的栅极。nfetn14和n15中的每一者的源极耦合到共用电势。nfetn15的漏极耦合到pfetp13的栅极和nfetn16的源极。nfetn16的漏极耦合到电源电压vdd,并且nfetn16的栅极被安排成接收电压vdref,即,跨第二基于p-n结的器件160的电压。

pfetp15的栅极耦合到pfetp12的栅极,此处的电压被标示为vi。pfetp16的栅极耦合到pfetp13的栅极,此处的电压被标示为vr。电流源440的输出耦合到pfetp15和p16中的每一者的源极,并且电流源440的输入耦合到电源电压vdd。pfetp15的漏极耦合到nfetn17的漏极以及nfetn17和n18中的每一者的栅极。nfetn17和n18中的每一者的源极耦合到共用电势。nfetn18的漏极耦合到pfetp17的漏极以及pfetp17和p18中的每一者的漏极。pfetp17和p18中的每一者的源极耦合到电源电压vdd。pfetp16的漏极耦合到nfetn19的漏极。nfetn19的源极耦合到共用电势,并且nfetn19的栅极耦合到nfetn20的栅极。nfetn20的源极耦合到共用电势。nfetn20的漏极在节点460处耦合到pfetp18和p19中的每一者的漏极以及pfetp19和p20中的每一者的栅极。pfetp19和p20中的每一者的源极耦合到电源电压vdd。pfetp20的漏极耦合到电流源450的输出以及电阻器rout的第一端。电阻器rout的第二端耦合到共用电势,并且电流源450的输入耦合到电源电压vdd。

在操作中,动态范围扩展器410被安排成:响应于由电流源430生成的电流(被标示为ire),将电压vdiode与电压vdref之差增加预定量,以使得电压vi与vr之差等于增加预定量之后的电压vdiode与vdref之差。具体而言,电压vdiode与vdref之差创建了电压vi与vr之间的对应差,其进而决定电流ire流经pfetp12的部分与电流ire流经pfetp13的部分之比率。在电压vdiode大于电压vdref的情况下,电流ire流经pfetp13的部分大于电流ire流经pfetp12的部分。在电压vdiode小于电压vdref的情况下,电流ire流经pfetp12的部分大于电流ire流经pfetp13的部分。

电流ire流经pfetp12的部分经由包括nfetn14和n15的电流镜像被添加到nfetn16的电流,nfetn16的电流被标示为idref。电流ire流经pfetp13的部分经由包括nfetn12和n13的电流镜像被添加到nfetn11的电流,nfetn11的电流被标示为idiode。当电压vdiode大于电压vdref时,电流ire被添加到电流idiode的部分大于被添加到电流idref的部分,从而增加了idiode与idref之差。作为结果,电压vi增加的值大于电压vr的增加。当电压vdiode小于电压vdref时,电流ire被添加到电流idref的部分大于被添加到电流idiode的部分,从而增加了idiode与idref之差。作为结果,电压vr增加的值大于电压vi的增加。由此,电压vi与vr之差等于响应于电流ire而增加预定量之后的电压vdiode与vdref之差。

温度补偿电路系统420被安排成补偿对电压vdiode的温度影响。具体而言,图3a的第一基于p-n结的器件堆叠150的二极管d1的操作受到其组成二极管的二极管温度的影响。作为结果,对于任何检测电流idet,电压vdiode的值将响应于温度而变化。如以上关于式3所描述的,电压vdiode是二极管d1的热电压vt的函数,电压vdiode响应于热电压vt的增加而增加。热电压vt给出为:

vt=(k*t)/q式4

其中,k是波尔兹曼(boltzmann)常数,q是元电荷,并且t是二极管d1的温度。因此,电压vdiode响应于温度t的增加而增加,并且响应于温度t的降低而减小。

由电流源440生成的电流(被标示为ibt)为分别由电压vi、vr在pfetp15、p16处生成的电流提供了偏置。电流ibt被生成为使得其幅值响应于温度增加而减小并且响应于温度减小而增加,从而补偿因温度引起的vdiode和vdref的变化。在一个实施例中,因变于温度的电流ibt的幅值的导数是根据因变于温度的二极管d1和d2的电流的导数来确定的。

如以上关于电流ire所描述的,电流ibt的第一部分流经pfetp15,并且电流ibt的第二部分流经pfetp16,第一部分与第二部分之比率响应于电压vi与电压vr之比率。电流ibt的第一部分的表示(被标示为ibt1)经由包括nfetn17和n18的电流镜像以及包括pfetp17和p18的电流镜像被输出到节点460。电流ibt的第二部分的表示(被标示为ibt2)经由包括nfetn19和n20的电流镜像被输出到节点460。电流ibt1与ibt2之差的表示(被标示为ibtd)由包括pfetp19和p20的电流镜像输出。

在电压vi大于电压vr(即,电压vdiode大于电压vdref)的情况下,电流ibt2大于电流ibt1。作为结果,电流ibtd被添加到由电流源450输出的电流(其流经电阻器rout),从而电压vout大于从电流源450的电流流经电阻器rout所生成的电压。

在电压vi小于电压vr(即,电压vdiode小于电压vdref)的情况下,电流ibt1大于电流ibt2。作为结果,从由电流源450输出的电流(其流经电阻器rout)减去电流ibtd,从而电压vout小于从电流源450的电流流经电阻器rout所生成的电压。

如上所述,第一和第二基于p-n结的器件堆叠150、160各自包括多个二极管。有利地,多个二极管的偏置电压允许动态范围扩展器410和温度补偿电路系统420的正确操作。

图6解说了根据某些实施例的对数线性功率检测方法的高级流程图。在阶段1000中,接收rf功率信号。在阶段1010中,生成经整流的检测电流。所生成的经整流的检测电流的幅值随着阶段1000的收到的rf功率的振幅线性地增加/减小,并且由此响应于阶段1000的收到的rf功率信号的功率的指数增加/减小而指数地增加/减小。可任选地,经整流的检测电流由第一跨导元件生成。可任选地,第一跨导元件是双极结型晶体管(bjt),bjt的基极被安排成接收rf功率信号,并且经整流的检测信号是bjt的集电极电流。

在可任选阶段1020中,放大参考电压与在阶段1010的可任选第一跨导元件的输出处的电压的指示之差。响应于经放大的差,控制可调节电流路径以调节流经该可调节电流路径的电流的幅值。阶段1010的所生成的经整流的检测电流流经该可调节电流路径。

在可任选阶段1030中,生成偏置电流。该偏置电流由阶段1010的可任选第一跨导元件输出。另外,生成参考电流,该参考电流由第二跨导元件输出,可任选阶段1020的参考电压包括第二跨导元件的输出处的电压。响应于所生成的参考电流,在偏置电流消除节点处消除所生成的偏置电流的函数。可任选地,所生成的偏置电流在偏置电流消除节点处由电流镜像(其输入接收所生成的参考电流)所输出的电流消除。

在阶段1040中,响应于阶段1010的所生成的经整流的检测电流而生成检测电压。所生成的检测电压呈现与阶段1010的经整流的检测电流的对数关系,并且由此响应于阶段1000的收到rf信号的功率的指数增加/减小而线性地增加/减小。当收到的rf功率信号的功率以分贝来测量时,所生成的检测电压响应于收到的rf功率信号的以dbm计的线性增加/减小而线性地增加/减小。可任选地,提供至少一个第一基于p-n结的器件,所生成的经整流的检测电流的函数被安排成流经该至少一个第一基于p-n结的器件。所生成的检测电压包括:在所生成的经整流的检测电流的函数流经至少一个第一基于p-n结的器件时跨该至少一个第一基于p-n结的器件的电压。可任选地,所生成的经整流的检测电流的函数包括:在电流镜像(其输入接收所生成的经整流的检测电流)的输出处所生成的电流。可任选地,该至少一个第一基于p-n结的器件包括二极管。进一步可任选地,该至少一个第一基于p-n结的器件包括一对串联连接的第一基于p-n结的器件,每一者包括二极管,该对二极管中的第一二极管的阴极耦合到该对二极管中的第二二极管的阳极。

在阶段1050中,输出阶段1040的所生成的检测电压的表示。在可任选阶段1060中,将阶段1050的检测电压表示与不同于可任选阶段1020的参考电压的参考电压进行比较。可任选地,提供至少一个第二基于p-n结的器件,与可任选阶段1030的所生成的参考电流不同的参考电流被安排成流经该至少一个第二基于p-n结的器件。参考电压包括:在参考电流流经至少一个第二基于p-n结的器件时跨该至少一个第二基于p-n结的器件的电压的函数。可任选地,该至少一个第二基于p-n结的器件包括二极管。进一步可任选地,该至少一个第二基于p-n结的器件包括一对第二基于p-n结的器件,每一者包括二极管。输出检测电压表示与参考电压之差的指示。

在可任选阶段1070中,生成与可任选阶段1030的偏置电流不同的偏置电流,所生成的偏置电流的温度响应是阶段1040的至少一个第一基于p-n结的器件的温度响应的函数。另外,阶段1050的检测电压表示的函数与可任选阶段1060的可任选参考电压的函数之差响应于所生成的偏置电流而被放大。可任选阶段1060的比较响应于可任选阶段1070的放大,以使得阶段1040的至少一个第一基于p-n结的器件的温度响应的非线性度响应于所生成的偏置电流而被补偿。

将领会,为清楚起见,在分开的实施例的上下文中所描述的本发明的某些特征也可以在单个实施例中组合提供。相反,为简洁起见,在单个实施例的上下文中描述的本发明的各种特征也可以分开地提供或者在任合适当的子组合中提供。

除非另行定义,否则在本文中所使用的所有技术和/或科学术语具有与本发明所属技术领域的普通技术人员所通常理解的相同的含义。虽然类似于或等同于本文中描述的方法可以用于实践或用于本发明的测试,但是本文中描述了合适的方法。

本文中所提及的所有公开、专利申请、专利和其他参考通过援引本整体纳入于本文中。在冲突的情况下,将以包括定义的本专利说明书为准。此外,材料、方法和示例仅为解说性的而不旨在作为限制。

如本文所使用的术语“包括”、“包含”和“具有”及其变型意味着“包括但不必限于”。

本领域技术人员将会领会,本发明并不限于上文中所具体示出和描述的部分。确切而言,本发明的范围由所附权利要求定义,并且包括上文所描述的各个特征的组合和子组合二者,以及本领域技术人员在阅读先前的描述之际将会做出的其变形和修改。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1