一种基于非线性调频激励的变信噪比的频率特性测量方法与流程

文档序号:16763744发布日期:2019-01-29 17:52阅读:359来源:国知局
一种基于非线性调频激励的变信噪比的频率特性测量方法与流程

本发明属于动态频率扫描的方法研究和技术应用领域,具体涉及一种基于非线性调频激励的变信噪比的频率特性测量方法。



背景技术:

系统的频率特性是指该系统在不同频率的正弦输入信号激励下的稳态响应,很大程度上决定了系统在动态输入条件下的性能。在传感器的标定、仪器仪表的校准等技术领域中,频率特性测量是必不可少的,对频率特性测量方法的研究具有很高的工程应用价值。

频率特性测量的基本原理就是使用不同频率成分的激励信号输入待测系统,对系统的响应信号进行测量和分析,得到系统的频率响应特性曲线。传统的静态扫描方法是对系统在单频正弦信号输入作用下产生的稳态响应信号进行测量,这种方法需要在待测频段内选取大量测量频点,在每个频点处需要等待响应稳定并进行多周期重复测量,测量效率极低。且该方法一般情况下需要人工进行输入频率调整、响应测量等,无法实现自动化测量与分析。

本发明设计的方法属于动态频率扫描方法,将一个有限时长的带限激励信号输入待测系统,在输出端对响应信号进行动态采集,然后利用傅里叶变换进行频域分析,得到系统的频率特性曲线。这种方法相对于静态频率扫描方法,能够显著提高测量效率,在各种传感器和仪器仪表的频率特性测量中已经提现出了优越性。

调频信号的设计工作在雷达信号领域开展最为广泛,尤其对于非线性调频信号的研究充分表明,线性调频信号模型单一的缺陷可以很好地得到解决。在频率特性测量领域,广泛应用于动态频率扫描的激励形式为线性调频信号,目前尚未见到利用非线性调频信号作为激励信号的测量方法。

通过对非线性调频信号的调频函数进行设计,可以调节激励信号在不同频段的调频速度,从而实现频域能量的非均匀分布,在局部特征频段或常用频段内提高测量系统的信噪比,而在其余频段内牺牲一定的信噪比来提高扫频速度,通过变信噪比测量的方式兼顾测量的精度与效率,从而进一步优化频率特性测量的整体性能



技术实现要素:

本发明要解决的技术问题为:利用线性调频激励动态扫频对振动传感器进行频率特性测量时,由于设计参数较少、模型单一,当待测频率范围较大,且对于需要局部提高测量精度时,必须大幅度降低扫频速度来满足局部的高精度要求,这将使得整个动态扫频测量效率大大降低,难以同时兼顾测量效率与测量精度。针对该问题,本发明提出一种采用非线性调频信号作为激励的频率特性测量方法,可以通过调整调频函数的形式,实现在局部频带内提高信噪比,而不必降低其他频段内的测量效率,具有针对性地解决动态频率特性测量中存在的测量精度与效率的矛盾。

本发明解决上述技术问题采用的技术方案为:一种基于非线性调频激励的变信噪比的频率特性测量方法,利用非线性调频信号频谱能量分布不均匀的特征,实现变信噪比测量。步骤一,根据待校准的振动传感器的最大工作范围确定频率特性校准的扫频频率范围,并根据该振动传感器的常用工作范围确定高精度测量频段;步骤二,设计调频速度函数,在高精度测量频段保持较低的调频速度,在其余频段采用较高的调频速度以保证整体测量效率;由调频速度函数积分可得调频函数,调频函数再积分可得相位函数,从而得到非线性调频激励信号的函数表达;步骤三,将激励信号通过数模转换卡输出至待测传感器的激励端,并采集传感器的响应信号,在计算机中对激励信号与响应信号进行离散傅里叶变换,通过频域分析得到被测传感器的频率特性曲线。

其中,步骤一中采用振幅A为待测振动传感器输入范围的60%~80%的等幅非线性调频正弦波作为扫频激励,实现变信噪比的频率响应测量;

其中,步骤二中非线性调频正弦激励的设计要根据测量需求,在重要频段内采用较低的调频速度,在其他频段内采用较高的调频速度,对激励信号的频谱能量进行合理分配;非线性调频激励的设计步骤包括由测量信噪比需求确定激励能量分配、由激励能量谱与调频速度的反比关系得到调频速度函数f'(t)、对f'(t)积分得到调频函数f(t)、对2πf(t)积分得到相位函数最后生成初始相位为0的非线性调频正弦激励函数对存在若干重要频段的测量情况,采用调频速度函数,在各重要频段内采用低速线性调频函数,在其他频段内采用高速线性调频函数,并在重要频段两侧的频率邻域内,设置足够的过渡带,使得调频速度函数以一次或二次函数形式连续变化完成调频速度的高低过渡;

其中,步骤三中以测量频段最高频率的10倍为采样率,计算激励波形的采样值,利用数模转换卡将离散采样点转换为连续激励信号,将此连续激励信号输入现有扫频测量系统的激励端;被测系统的响应端用与生成激励信号相同的采样率对输出信号进行采集;对响应信号与激励信号进行离散傅里叶变换,将响应信号的频谱与激励信号频谱相除得到被测系统的频率响应曲线。

其中,对提高某频点邻域内的信噪比的测量需求,调频速度函数在该邻域外使用恒定值,即线性调频,而在该邻域内调频速度函数设计为开口向上的二次函数,函数极小值点落在该频点处,实现该频点邻域内激励能量的集中分布。

其中,调频函数一般情况下为分段函数,分段依据频率特性测量对不同频段的信噪比需求而定,且调频速度函数要保持连续,避免调频速度出现跳变。

其中,设计调频函数时,应使调频函数具有较易计算的原函数,提高激励信号生成时的准确度。

本发明的关键点在于非线性调频信号的设计与产生。利用任意信号发生器将设计好的非线性调频激励信号生成并连接到待测系统的输入端,在待测系统输出端通过模数采集卡,将响应信号实时采集并传输至上位机。对于非线性调频信号的发生,任意信号发生器采用直接数模转换方法,将计算好的采样点数据通过模数转换器得到模拟信号。

本发明的原理:

非线性调频信号的频谱能量分布取决于调频函数的瞬时调频速度f'(t),信号在任意频点附近的频谱能量与该频率点附近的调频速度近似成反比,即:

也就是说,调频斜率越大,频点附近的能量分布越多,调频斜率较小的频率范围内,能量的分布较少。通过设计非线性调频函数,可以调整调频信号能量的频域分布,从而可以对其中某些重要频段或噪声集中的频段进行突出,有针对性地提高局部信噪比。这种频段能量的可控分配,是通过改变调频函数的瞬时斜率来实现的,在需要提高信噪比的频段采用较低的调频速度,而在其他频段保持较高的调频速度,使得在局部加强信噪比,改善局部测量精度的同时,兼顾了整个测量的测量效率。

本发明与现有技术相比的优点:

(1)本发明提出的基于非线性调频信号的激励形式,具有多样的信号模型、丰富的可设计参数,可以提高动态扫描频率法进行频率特性测量的适应性,满足多样化的工程需求;

(2)本发明采用非均匀频谱的非线性调频激励,在待测频段内的变信噪比测量,相比于传统的线性调频激励,可以在对整体测量效率影响较小的情况下,实现局部高精度测量。

附图说明

图1为本发明的系统框图;

图2为本发明提出的非线性调频激励的频率-时间曲线和频谱,其中,图2(a)为本发明设计的非线性调频激励频率与时间的关系,为一分段函数;图2(b)为该调频激励的频谱,在1kHz以内具有较高能量分布;

图3为本发明在一定噪声环境下的测量相对误差-频率关系。

具体实施方式

下面结合附图以及具体实施例进一步说明本发明。

如图1所示,本发明提出的基于非线性调频激励的变信噪比的频率特性测量方法的测量系统包括信号发生模块、待测系统、信号采集模块和进行数据处理的上位机等。本发明提出的频率特性测量方法的性能主要是由激励信号的形式决定的,所以对非线性调频信号模型的设计和激励信号的产生是该测量方法的关键技术。目前很多的数字式信号发生器均具有任意信号发生的功能,但常见的信号发生器存储深度较小,无法满足扫频测试信号的需求,所以本测量方法中采用具有模拟输出功能的数模转换卡。

本发明对一个可测振动频率范围为1~20kHz的振动传感器进行频率响应校准,则动态扫频激励的频带应该覆盖1~20kHz的频率范围。但该传感器的常用工作频段为1kHz以内,也就是说,在1kHz~20kHz的频率范围内的频率响应特性与传感器在绝大部分工作状态下的性能是无关的。在这种情况下,如果用线性扫频激励,提高测量的精度,将大大增加整个测量的时间,且大部分时间增量耗费在不重要的频段,为了解决这个精度与效率的问题,采用一个分段式的非线性调频激励。

在1~1kHz频段内,采用较低的调频速度200Hz/s来增加该频段内的激励能量,从而提高测量过程在常用工作频段内的信噪比;在1kHz~2kHz范围内,采用线性增大的调频速度函数,在这个过程调频速度由200Hz/s线性增加至2000Hz/s,形成一个过渡带;在2kHz至20kHz范围内,采用较高的调频速度2000Hz/s,以实现较高的扫频速度,保证测量的高效性。

由此可以得到调频速度-时间函数f'(t)如下式所示:

其中t1,t2,t3分别为调频函数频率扫描至1kHz、2kHz、20kHz的时间,在上述参数条件下,通过计算可以得到t1=4.995s,t2=5.904s,t3=14.904s,将其代入(2)式,进行一次积分,可以得到该非线性调频函数的调频函数f(t)如图2(a)所示。可以看到,该调频信号的频率在t1内以较低的速度增至1kHz,而后经过一个较短的二次调频过渡带,最后在t2~t3段内以较快的速度增大至20kHz。f(t)的表达式为:

根据相位函数与频率函数的关系,可得到该非线性调频信号的表达式为:

为了进行数字处理,以200kHz的采样率,将该信号进行采样得到的离散信号进行离散傅里叶变换,结果为该非线性调频激励信号的频谱,如图2(b)所示。由图中可以看到,该信号在1kHz内具有较高的能量分布,而在高频段具有较低的能量分布。在噪声分布不变的情况下,通过本发明中的设计,将1kHz以内的信噪比大大提高,从而提高了该频段内频率响应特性的测量精度,而在极少用到的高频段内保持原有信噪比,大大节省了扫频时间,从而保持较高的测量效率。

本发明工作流程举例说明如下:

利用上述设计的非线性调频激励模型,取单位振幅激励输入,并在激励端加入-30dBW的高斯白噪声,对被测系统进行动态扫频测量,测得幅频特性的测量值与参考值的相对误差如图3所示。图3中,1kHz以内频段的测量误差明显得到了改善,这是由于该激励信号提高了该频段的信噪比,而在1kHz以上的频段保持较高的扫频速度,使得测量误差相对较大。可以看出,本发明提出的频率特性测量方法,在上述噪声条件下,在1~20kHz频率范围内通过变信噪比的测量方式,在1kHz以上的频段内保持6~8%的相对测量误差,而在1kHz以内将相对误差降低到了2%以内,而此扫频过程仅需14.9秒。

本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1