一种基于蚁群算法的多无人机协同路径规划方法与流程

文档序号:12060612阅读:559来源:国知局
一种基于蚁群算法的多无人机协同路径规划方法与流程

本方法应用于无人机飞行控制、障碍规避、最短路搜索、路径平滑处理和负载均衡等领域,具体涉及voronoi图的构建和边权值的设定,蚁群算法搜索最短路以及通过对轨迹进行平滑达到协同等技术。



背景技术:

无人机技术是近年来军用民用飞行器的一个热点研究领域,在战场侦察和监视、定位校射、毁伤评估等军事用途,诸如边境巡逻、环境探测、航拍摄影、勘探资源、灾情监视、治安监控、物流运输等民事用途都有广泛的应用。与有人飞行器相比,无人机能够执行低能见度、低云层的低空飞行,从而显著增加每天可飞时间、加快作业进度,还能够实时执行高精度高分辨遥感飞行等。军事用无人机由于其本身的速度优势,以及本身机动性能好等特点被用来执行一些高难度的任务,有时甚至需要多架无人机去执行一个或多个任务,我们就需要在线或线下地提供合适的任务分配策略,以及高安全性的路径规划方案安排无人机(群)去执行任务。

针对飞行环境的不同,有理由选有合适的对抗环境去模拟实战战场。这些环境模型有基于B-Spline曲线的三维空间环境,以及基于概率路点图、voronoi图的二维无向图等。Voronoi图是一种经典的基于平面划分区域的多边形图,它由不等数量的生成点和生成点连线的垂直平分线构成,每个生成点由一个特定的多边形围绕,这些多边形里的点到本生成点的距离总小于到其他生成点的距离。将voronoi图的边作为无人机的可飞边,可以将飞行器所受的威胁降到最低。蚁群算法是一种模拟生物行为的智能算法,具有很强的鲁棒性和可解性,加入边权值的启发式信息可以使算法的解趋于最优。

考虑到无人机的可飞性,飞行的角度不可能是尖锐的角度飞行,在飞机转弯的时候需要进行平滑处理使得飞机以圆弧转弯,而且无人机的旋转角度不能大于最大旋转角。通过轨迹平滑使得路径长度略微改变,这种平滑的灵活性可以用来进行多无人机的协同。由于单无人机性能单一,负载量有限,而综合多无人机的机群在执行任务时又必须有一定的先后次序到达和执行任务,多无人机的协同的问题引起了广泛的关注。有效的利用整个飞行器机组的团队容量和能力,高效的分布式传感和综合的路径规划方法的研究是整个协同控制的主要内容。无人机之间的协同飞行被不同的需求定义为了不同的内容,但主要是以整个任务为目标,为各无人机的分配任务及规划路径使其协同安全完成。此外,协同路径规划需要考虑到的因素除了自身的运动学约束限制,还需要动态规避对方障碍,减少飞行器相撞的风险,适应敌方威胁环境改变等因素。

无人机协同路径规划,实现多无人机执行任务的可行性,也能检测对于当前的无人机是否能实现协同飞行的可能性,对于不能实现协同飞行的无人机,通过改变飞行状态或重规划使得多架无人机实现协同飞行。



技术实现要素:

本发明针对现有技术的不足之处提供了一种基于蚁群算法的多无人机协同路径规划方法,解决现有多无人机飞行过程中协同作战的难点,如需要多架无人机同时从各自起始点出发,并同时到达相应目标点,以共同完成某项任务。除此之外,该需求对算法的实时性要求也较高,计算速度要能跟得上无人机的飞行速度,这样才能使其更好的应用于多无人机协同作战。

为了实现上述目的,本发明采用的技术方案为:

一种基于蚁群算法的多无人机协同路径规划方法,包含以下步骤:

步骤(1)对无人机飞行环境进行分析,建立基于Voronoi图的环境建模;

步骤(2)计算基于Voronoi图的环境建模中边的代价;

步骤(3)利用蚁群算法为无人机规划初始路径;

步骤(4)通过对各无人机的初始路径进行平滑来判断能否达到协同,并根据结果执行相应操作。

优选地,所述步骤(1)包含如下步骤:

(1-1)确定无人机的飞行高度,截取该飞行高度的二维平面地形信息,并将地面威胁投影到该二维平面地形信息,获得地面威胁平面地形;

(1-2)将地面威胁平面地形及其他威胁源抽象为威胁点集{xi};

(1-3)确立平面内的坐标体系,得到威胁源的坐标集{(xi,yi)},并生成Voronoi图。

(1-4)输入无人机的起始点和终点,Voronoi图的环境建模完成。

优选地,所述步骤(2)包含如下步骤:

(2-1)计算地形因素威胁对边的代价:

其中,代表固定威胁源j对第i条边的代价;K是威胁源j的威胁等级;k是人为约定系数;rij是威胁源j到第i条边的距离;

(2-2)计算有侦查能力但无攻击能力的威胁对边的代价:

其中,是雷达j对第i条边的代价;Li是边i的长度;d1/8,i,j是第i条边的1/8处至雷达j的距离;Qj是雷达j的发射功率,Qj计算公式如下:

其中,P是雷达的发射功率;Pt是发射机功率;G是无线的增益;Ae是发射机的有效面积,δ是雷达的截面面积;R是距离雷达的长度;

(2-3)计算既有侦查能力又有攻击能力的威胁对边的代价:

其中,为导弹j对第i条路径的威胁;B为导弹的攻击能力;(1-α)为导弹命中率;pij为无人机在第i条边上侦测到的概率;

(2-4)计算边的长度代价:

Pi-L=λLi

其中,Pi-L为长度对边i的代价;λ为一系数;Li为第i条边的长度。

(2-5)总的边的代价计算公式:

其中a,b,c,d为常数,满足a+b+c+d=1;m为固定障碍物个数,n为雷达个数,r为导弹个数。

优选地,所述步骤(3)中所述蚁群算法为:

(3-1)蚂蚁由初始节点出发,根据转移概率公式

选择一个转移节点,并将初始节点加入禁忌表,其中

ηij(t):表示t时刻时<i,j>路径上的启发信息;

为代价的倒数;

τij(t):表示t时刻<i,j>路径上的信息素;

α,β分别表示τij(t)、ηij(t)的权重系数;

表示没有访问过的i位置的邻接点;

ηir(t):表示t时刻<i,j>路径上的启发式信息;

τir(t):表示t时刻<i,j>路径上的信息素浓度;

(3-2)蚂蚁根据转移概率选择转移节点,并将所选择的转移节点加入禁忌表;判断转移节点是否到达终点,若没有到达终点,则不断重复(3-2),直至到达终点;若到达终点则转到(3-3);

(3-3)迭代次数是否达到固定值,若没有达到固定值则转到(3-4)更新信息素,若迭代次数达到固定值则转到(3-5)更新信息素;

(3-4)根据信息素更新公式更新本次循环的路径,迭代次数+1,转到(3-6)

(3-5)根据信息素更新公式更新最近几次循环中的路径,迭代次数+1,转到(3-6);

(3-6)若迭代次数大于最大代数,搜索完成,得到最短路径,否则转至(3-1);其中,信息素更新公式如下:

ρ:表示信息素挥发系数;

Q:表示信息素浓度的常数;

Lk:蚂蚁k在本次循环中所经过的路径总长度。

优选地,所述步骤(4)包含如下步骤:

(4-1)对初始路径转弯处不满足某预定角的角度进行平滑得到平滑后的路径长度区间;

(4-2)取各无人机相应路径长度区间下限的最大值,记为A,取各无人机相应路径长度区间上限的最小值,记为B;

(4-3)判断A-B的值;

(4-4)若A-B≤0,完成协同;

(4-5)若A-B>0,不能完成协同。

与现有技术相比,本发明的优点在于:

1)通过Voronoi图进行环境建模,利用Voronoi图的构造原理在路径规划的初始最大限度确保无人机的飞行安全;

2)研究环境中对无人机飞行总代价会造成影响的因素,增加了雷达探测概率、导弹攻击概率、敌机的探测概率等相关的新因子,而不是仅仅考虑固定障碍物对无人机飞行的影响和无人机飞行的总路径,使得环境建模更加接近实际;

3)优化蚁群算法,在具有启发性的蚁群算法中对启发函数进行优化,增加信息素的最大以及最小值以防止算法的早熟,以及两种不同的信息素更新机制加快算法收敛速度;

4)针对初次规划出的路径中不符合无人机飞行约束的角度进行轨迹平滑,并且限定了需平滑角度的范围,节省计算资源;

5)利用轨迹平滑完成多无人机的协同,通过对初始路径进行平滑得到无人机路径长度区间,通过对区间操作去达到协同,而不是通过改变无人机的速度达到协同的目的,并可以满足同时到达目的地的需求。

附图说明

图1本发明的结构流程示意图;

图2本发明的整体流程示意图;

图3本发明的Voronoi环境建模示意图;

图4本发明的基于蚁群算法的初始路径流程图;

图5本发明的协同流程图。

具体实施方式

下面将结合附图及实施例对本发明作进一步的描述。

无人机隐密性高、误差小、执行力强,在执行过程中效率高、成本低,可用来替代战士完成一些对生命威胁较大的任务,近年来已成为军事领域中的研究热点技术。全世界各国争先投入大量人力、物力和财力对其展开全方位的研究和部署。大量不同类型、不同性能的无人机已被研发并投放到战场执行各种作战任务。然而,在执行一些复杂任务的过程中(如侦查打击一体化),单架无人机的能力有限,不足以完成任务。这就需要多架不同种类的无人机之间相互协作,智能地、自主地适应复杂多变的战争环境因素,动态调整自身策略,协作完成作战任务。本发明利用计算智能相关理论,研究解决多无人机路径规划等问题,为未来无人机对抗提供技术支持。

参阅图1,在算法设计之初,首先需要考虑无人机在飞行环境中可能受到的威胁,根据威胁来建立Voronoi模型,然后计算各种威胁对图中边的影响,再通过对经典蚁群算法进行改进来寻找初始路径,然后根据平滑原理得到无人机对应的路径长度区间,并以此判断协同能否达到,若可以达到,则各无人机进行协同,若不能达到,则各无人机不能满足任务需求。如图2所示,其具体设计过程如下:

一种基于改进蚁群算法的多无人机协同路径规划方法,步骤如下:

(1)对无人机飞行环境进行分析,建立基于Voronoi图的环境模型的过程如下:

(1-1)确定无人机的飞行高度,截取该高度的二维平面地形信息,并将地面威胁投影到该高度平面,获得地面威胁平面地形;

(1-2)将地面威胁平面地形及其他威胁源抽象为威胁点集{xi};

(1-3)确立平面内的坐标体系,得到威胁源的坐标集{(xi,yi)},并生成Voronoi图。

(1-4)输入无人机的起始点和终点,Voronoi图的环境建模完成,如图3所示。其中,起始点由三角形表示,目标点由星形表示。R代表敌方雷达,M代表敌方导弹,O代表地形障碍物。生成的Voronoi图中各顶点依次标号,方便后续的路径规划算法得到的最短路径的表示。

(2)对建立好的Voronoi图中的边赋权值的具体步骤如下:

(2-1)对边的代价有影响的主要考虑以下四种因素:山体等地形因素威胁(fixed),雷达(Radar)等有侦查能力但无攻击能力的威胁源,导弹(Guided missile)等既有侦查能力又有攻击能力的威胁源,以及边本身的长度(Length)代价;

(2-2)山体等地形因素威胁(fixed):

其中,代表固定威胁源j对第i条边的代价;K是威胁源j的威胁等级;k是人为约定系数;rij是威胁源j到第i条边的距离。为了便于计算,将其取为威胁源j到第i条边的中点的连线长度;

(2-3)雷达(Radar)等有侦查能力但无攻击能力的威胁:

其中,是雷达j对第i条边的代价;Li是边i的长度;Qj是雷达j的发射功率;

Qj计算公式如下:

其中,P是雷达的发射功率;Pt是发射机功率;G是无线的增益;Ae是发射机的有效面积,δ是雷达的截面面积;R是距离雷达的长度,假设R≤Rmax(Rmax是雷达最大侦查半径);

(2-4)导弹(Guided missile)等既有侦查能力又有攻击能力的威胁:

其中,为导弹j对第i条路径的威胁;B为导弹的攻击能力;(1-α)为导弹命中率;pij为无人机在第i条边上侦测到的概率。

(2-5)边的长度(Length)代价:Pi-L=λLi

其中,Pi-L为长度对边i的代价;λ为一系数;Li为第i条边的长度。

(2-6)总的代价计算公式:

其中a,b,c,d为常数,满足a+b+c+d=1。m为固定障碍物个数,n为雷达个数,r为导弹个数。

(3)利用改进蚁群算法为无人机规划初始路径的流程图详见图4,其具体步骤如下:

(3-1)蚂蚁由初始节点出发,根据转移概率公式

选择一个转移节点,并将初始节点加入禁忌表,其中

ηij(t):表示t时刻时<i,j>路径上的启发信息;

为代价的倒数;

τij(t):表示t时刻<i,j>路径上的信息素;

α,β分别表示τij(t)、ηij(t)的权重系数;

表示没有访问过的i位置的邻接点;

ηir(t):表示t时刻<i,j>路径上的启发式信息;

τir(t):表示t时刻<i,j>路径上的信息素浓度;

(3-2)蚂蚁根据转移概率选择转移节点,并将所选择的转移节点加入禁忌表;判断转移节点是否到达终点,若没有到达终点,则不断重复(3-2),直至到达终点;若到达终点则转到(3-3);

(3-3)迭代次数是否达到固定值,若没有达到固定值则转到(3-4)更新信息素,若迭代次数达到固定值则转到(3-5)更新信息素;

(3-4)根据信息素更新公式更新本次循环的路径,迭代次数+1,转到(3-6)

(3-5)根据信息素更新公式更新最近几次循环中的路径,迭代次数+1,转到(3-6);

(3-6)若迭代次数大于最大代数,搜索完成,得到最短路径,否则转至(3-1);其中,信息素更新公式如下:

ρ:表示信息素挥发系数;

Q:表示信息素浓度的常数;

Lk:蚂蚁k在本次循环中所经过的路径总长度。

(4)通过对各无人机路径进行平滑来判断能否达到协同,并根据结果执行相应操作,协同流程图如图5所示,其具体步骤如下:

(4-1)对初始路径转弯处不满足某预定角的角度进行平滑得到平滑后的路径长度区间;

(4-2)取各无人机相应路径长度区间下限的最大值,记为A,取各无人机相应路径长度区间上限的最小值,记为B;

(4-3)判断A-B的值;

(4-4)若A-B≤0,可以完成协同;

完成协同后,可在各无人机路径长度区间的交集中取任意值作为无人机路径长度基准;各无人机按照此基准,计算其与原始路径值的差值;按照路径长度差值,利用贪心算法计算每个角度对应需要增加或减少的长度,并根据此确定内切圆的位置,直至满足要求。

(4-5)若A-B>0,不能完成协同。

本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本发明并不局限于上述实施例,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。本发明的保护范围由附属的权利要求书及其等效范围所界定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1