场敏感型电磁脉冲防护材料性能测试装置的制作方法

文档序号:13176060阅读:423来源:国知局
技术领域本实用新型涉及电磁兼容实验技术领域,尤其涉及一种场敏感型电磁脉冲防护材料性能测试装置。

背景技术:
理想的场敏感型环境自适应电磁防护材料在平时低场强情况下为绝缘材料,对电磁波没有屏蔽作用,当受到外部强电磁脉冲干扰或攻击的时候,即外部电磁场突然显著增加且超过某临界场强的时候,由于材料特有的电化学和能量结构特征,能够感知外部电磁环境的变化并能快速调节其电磁性能,可以在微纳秒时间内即刻发生绝缘/导电相变现象,电导率可以提升102~105数量级,使平时为绝缘体的材料迅速变为高导电的类金属材料,对外来电磁波产生高反射和屏蔽,将强电磁脉冲能量阻挡在防护壳体之外,当外部干扰和攻击强场消失以后,材料恢复到原始状态;而基于这种工作机理研制的电磁防护材料能不能在微纳秒的时间内发生相变,不进行相应测试是无法获知的,而这类电磁防护材料本身属于新材料,如何测试其在强电磁脉冲下的绝缘体/导体相变响应时间和电阻率还未有相关报道。现有的材料电磁测试方法中的自由空间法、谐振法、同轴传输/反射法可以用来测试材料的介电常数、磁导率,但这些方法都属于材料的静态测试方法,无法测量电磁防护材料的动态响应时间;而目前对于响应时间的测量主要用于半导体器件,比如:瞬态抑制二极管,在进行测量时,被测半导体器件可以通过焊接或直接插入相应测试管脚固定在测试夹具上,而由于电磁防护材料本身的特殊性质,无法进行焊接或插入等操作;四探针法只可以用来测试半导体材料的电阻率,其测试电压很低,无法满足强场下场敏感型电磁防护材料的电阻率测试,因此,急需研制一种可以用来测试在强电磁脉冲下场敏感型电磁防护材料响应时间和电阻率的测试装置。

技术实现要素:
本实用新型所要解决的技术问题是提供一种场敏感型电磁脉冲防护材料性能测试装置,解决现有技术中无法测试场敏感型电磁防护材料响应时间、电阻率的问题。为解决上述技术问题,本实用新型所采取的技术方案是:一种场敏感型电磁脉冲防护材料性能测试装置,包括屏蔽壳体、高频电路板、地线、第一镀银铜板、第二镀银铜板、微带信号线、信号输入端口和信号输出端口,所述高频电路板竖向安装在屏蔽壳体内,高频电路板上部过孔安装地线,高频电路板正面下方安装微带信号线,微带信号线两端连接位于屏蔽壳体两侧的信号输入端口和信号输出端口,所述微带信号线、地线和高频电路板背面覆铜,高频电路板背面与屏蔽壳体电气连接、且高频电路板、地线和屏蔽壳体等电位,第一镀银铜板垂直焊接在微带信号线中部,所述第二镀银铜板焊接在地线上,第一镀银铜板和第二镀银铜板呈上下布置,第一镀银铜板和第二镀银铜板形成固定待测材料的空间,第一镀银铜板和第二镀银铜板的相对面积与相对距离的比值为20:1—10:1。所述第一镀银铜板和第二镀银铜板结构相同,均包括上部镀银铜板和下部镀银铜板,上部镀银铜板和下部镀银铜板借助于螺钉安装,所述第一镀银铜板的下部镀银铜板与微带信号线焊接,第一镀银铜板的上部镀银铜板借助于螺钉安装在下部镀银铜板正上方,所述第二镀银铜板的结构与第一镀银铜板的结构呈上下对称结构。所述第一镀银铜板与信号输入端口之间的距离为微带信号线长度的2/3,所述第二镀银铜板与信号输入端之间的水平距离等于地线长度的2/3。所述微带信号线的长为103.3mm,宽为2.74mm,所述微带信号线、信号输入端口的特性阻抗为50Ω。所述屏蔽壳体为铝质壳体。采用上述技术方案所产生的有益效果在于:通过在屏蔽壳体内安装高频电路板和地线,使得高频电路板、地线和屏蔽壳体等电位,第一镀银铜板和第二镀银铜板平行设置,外部设备施加电压后能够提供均匀的场强,通过调整第一镀银铜板和第二镀银铜板之间的距离调整被测材料所处场强的大小,与现有装置相比,具有结构简单、体积小、测试结果重复性好和稳定度高的优点。附图说明图1是本实用新型的结构示意图;图2是本实用新型应用系统原理图;其中:1、屏蔽壳体;2、微带信号线;3、地线;4、信号输入端口;5、信号输出端口;6、第一镀银铜板;7、第二镀银铜板;8、高频电路板。具体实施方式下面结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。在下面的描述中阐述了很多具体细节以便于充分理解本实用新型,但是本实用新型还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本实用新型内涵的情况下做类似推广,因此本实用新型不受下面公开的具体实施例的限制。如图1所示,本实用新型公开了一种场敏感型电磁脉冲防护材料性能测试装置,包括屏蔽壳体1、高频电路板8、地线3、第一镀银铜板6、第二镀银铜板7、微带信号线2、信号输入端口4和信号输出端口5,高频电路板8竖向安装在屏蔽壳体1内,高频电路板8上部过孔安装地线3,高频电路板8正面下方安装微带信号线2,微带信号线2两端连接位于屏蔽壳体1两侧的信号输入端口4和信号输出端口5,微带信号线2、地线3和高频电路板8背面覆铜,高频电路板8背面与屏蔽壳体1电气连接、且高频电路板8、地线3和屏蔽壳体1等电位,第一镀银铜板6垂直焊接在微带信号线2中部,第二镀银铜板7焊接在地线3上,第一镀银铜板6和第二镀银铜板7呈上下布置,第一镀银铜板6和第二镀银铜板7形成固定待测材料的空间,第一镀银铜板6和第二镀银铜板7的相对面积与相对距离的比值为20:1—10:1;第一镀银铜板6和第二镀银铜板7结构相同,均包括上部镀银铜板和下部镀银铜板,上部镀银铜板和下部镀银铜板借助于螺钉安装,第一镀银铜板6的下部镀银铜板与微带信号线2焊接,第一镀银铜板6的上部镀银铜板借助于螺钉安装在下部镀银铜板正上方,第二镀银铜板7的结构与第一镀银铜板6的结构呈上下对称结构;第一镀银铜板6与信号输入端口4之间的距离为微带信号线2长度的2/3,第二镀银铜板7与信号输入端之间的水平距离等于地线3长度的2/3;微带信号线2的长为103.3mm,宽为2.74mm,微带信号线2、信号输入端口4的特性阻抗为50Ω;屏蔽壳体1为铝质壳体。本实用新型在使用过程中,使用高频噪声模拟器作为信号源,高频噪声模拟器通过同轴电缆连接测试装置的信号输入端口,测试装置的信号输出端口连接衰减器,经过衰减的信号通过示波器显示,高频噪声模拟器作为信号输入源,为测试系统提供方波信号输入;同轴电缆连接高频噪声模拟器的输出端和测试装置的信号输入端口,如果两者的端口类型不一致,还需添加相应的转接头,由于输出方波的电压值达到上千伏,示波器的电压承受范围仅有几十伏,因此在测试装置和示波器之间需要连接相应参数的衰减器,最后,由示波器显示输出波形,通过观察示波器的波形来确定被测材料的响应时间以及电阻率。由于被测材料为场敏感型电磁防护材料,这种材料在平常情况下是绝缘状态,在强电磁脉冲下会发生相变,变成类金属材料,这样就需要使被测材料在很高的场强下进行试验,进而要求电路板基材、输入端口和输出端口能够承受高电压,电路板采用聚四氟乙烯,厚度1mm,输入端口和输出端口采用的是能够承受高压的N型接头。在进行测试前,需要先进行验证试验,判断测试装置本身对测试结果不产生任何影响,判断的方法是:在测试装置不带测试材料的情况下,给测试装置的信号输入端口输入一个方波信号,如果测试装置具有良好的阻抗匹配以及耐高压特性,那么通过测试装置信号输出端口在示波器上显示的输出信号应该与原输入方波完全一致,这也证明该测试装置不会影响到被测材料特性的测试。通过试验验证,输入波形和输出波形的幅值、脉冲宽度、上升沿均一致。将测试材料固定在两组镀银铜块之间,使被测材料保证良好的电气连接,调节高频噪声模拟器的输出电压和脉冲宽度,为测试装置提供输入波形,使被测材料处在一个均匀场强下,通过示波器观察输出波形,如果输出波形和原输入波形一致,那就是被测材料还处于绝缘状态,被测材料在测试电路中未起作用,然后逐步调高输入波形的电压,进而提高被测材料所处的场强,如果输出波形发生了变化,就说明被测材料由原来的MΩ级在很短的时间内下降到百Ω级,通过观察输出波形电压幅值的变化可以估算出被测材料的电阻率,通过观察输出波形发现的突变来计算其响应时间,发生变化的场强就是能够使被测材料发生相变的场强阈值,对于场强的调整,主要是通过调整输入波形的电压实现的,电压调整采用逼近法进行调整,比如起始升压步距为500V,当被测材料发生相变时,输入电压下降500V,再一次采用逼近法进行调整,第二次调整步距缩小,可以选用100V的步距,重复上述步骤确定使被测材料发生相变的场强阈值。通过试验发现,所述测试装置对被测材料的性能有一定的要求,如果被测材料达不到这个要求就无法进行测试,这是因为测试装置中的微带信号线、输入端口、输出端口、示波器输入阻抗均为50Ω,当被测材料在强场下发生了相变,使其从绝缘材料突变为类金属材料,突变后类金属材料的等效电阻如果能够达到1kΩ以下,微纳秒级的响应时间,所述测试装置就可以对被测材料进行测试。总之,本实用新型通过在屏蔽壳体内安装高频电路板和地线,使得高频电路板、地线和屏蔽壳体等电位,第一镀银铜板和第二镀银铜板平行设置,外部设备施加电压后能够提供均匀的场强,通过调整第一镀银铜板和第二镀银铜板之间的距离调整被测材料所处场强的大小,与现有装置相比,具有结构简单、体积小、测试结果重复性好和稳定度高的优点。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1