传感器的制作方法

文档序号:15737563发布日期:2018-10-23 21:44阅读:199来源:国知局
传感器的制作方法

本发明涉及一种传感器,该传感器例如可以被布置用于检测行程或位置。这种传感器例如可以安装在汽车中,以便检测测量变量、例如踏板或调节器的当前位置。



背景技术:

已知的传感器通常在构造和布线方面较为复杂。



技术实现要素:

所以本发明的目的在于,提供一种传感器,该传感器与已知的传感器相比可替选、例如更简单地构成。

这一点根据本发明通过根据权利要求1所述的传感器来实现。有利的设计方案例如可以由从属权利要求获悉。权利要求的内容通过明确的引用而属于说明书的内容。

本发明涉及一种传感器。该传感器具有电路载体。传感器具有一定数量的附设电感。此外传感器具有至少一个电路板电感,所述电路板电感与附设电感联接。在此,尤其可以是磁联接、电联接或电磁或者说电和磁联接。

附设电感优选以SMD-技术设置在电路载体上。

这种传感器被证明易于制造和使用。这种传感器尤其是能精确地检测例如在车辆中存在的多个测量变量。

当然,术语“电感”在此通常表示为构件形式或其它物理实施形式的线圈。

在电路板电感和附设电感之间的联接尤其可以与外部情况、例如确定的测量变量相关。这种情况允许例如以下面详细描述的方式检测测量变量。

电路板电感尤其可以在附设电感之下在电路载体中构成。上述情况能实现有利的联接、尤其是磁联接。以这种方式能避免不必要的距离。换句话说,附设电感可以直接构成在电路板电感之上。

电路板电感尤其能以一定数量的印制导线的形式在电路载体中构成。该电路板电感例如可以包含于电路载体的表面处或包含于电路载体中。上述情况还可以组合。例如能以这种方式使用两个、三个或多个平面,其中每个平面具有一定数量的或多个印制导线。然而还可以仅使用一个平面。

尤其是下述情况被证明是有利的,在每个平面中有如下数量的印制导线在附设电感之下穿过,该数量与所选择的电路载体技术所能许可的最大数量相同。在附设电感的连接面中,能有利地使用的空间位置典型地被限定为接线的间隔;在另外的平面中,还可以有利地横跨附设电感的边缘区域。

示例性地,作为可能的实施方式可以使用十根印制导线,其中例如上部平面具有四根印制导线,并且下部平面具有六根印制导线。

传感器尤其可以具有多个电串联的附设电感。上述情况能实现一起评估所有附设电感。

传感器还可以具有多个附设电感,所述附设电感分别单独地与电子控制单元连接。上述情况能实现单独地评估附设电感。这一点尤其能有利地与进一步在下面描述的布线相关地实现。

应该指出,在该申请的范围内一定数量的元件原则上应理解成一个这种元件或多个这种元件,而“多个”应理解成至少两个这种元件。

优选地,传感器此外具有测量体,所述测量体能相对于电路载体运动。所述测量体尤其可以影响已述的联接,这一点能在测量电感处测量。

测量体尤其可以在位置和/或姿态方面相对于电路载体运动。上述情况能实现测量体与待测量的测量变量、例如踏板或调节器的当前位置的关联。

测量体尤其可以是铁磁的和/或能导电的。即测量体可以是铁磁的且不能导电,测量体可以是非铁磁的且能导电,或者测量体可以是铁磁的且能导电。这种材料可以有利地影响在电路板电感和测量电感之间的联接,上述情况能在评估的范围内测量。

测量体尤其可以扁平地和/或多件式地构成。这一点能实现匹配于特殊的情况。

根据一种改进放案,测量体嵌入能弹性变形的物体中。所述物体例如可以连接到另一个元件上或者说能以适合的方式与其连接,从而当待测量的变量、例如踏板的位置改变时,物体弹性变形。替代能弹性变形的物体,还可以使用通常能变形的物体。测量体相应地在物体内部一同移动,这一点如所述那样能通过评估测量电感来检测。

传感器尤其可以实施为位置传感器和/或力传感器。这相当于传感器被证明特别适合的典型应用情况。

附设电感例如可以沿着路径布置或沿周向布置。这使得能够匹配于确定的测量情况。所述路径例如可以是直线的或线形的路径。然而还可以是弯曲的路径。例如该路径还可以相应于圆弧区段或椭圆或其它几何物体的区段。例如测量体可以被设计用于,沿着路径移动。上述情况能实现特别有利地检测测量体的位置。

根据一种实施方式,电路板电感是参考电感,附设电感是相应的测量电感。根据替代于此的实施方式,附设电感中至少一个是参考电感,并且电路板电感是测量电感。

参考电感尤其理解成一种电感,该电感通过电路来激励并且产生磁场,该磁场穿过测量电感并且在其中感应能测量的信号。与此相应,测量电感尤其理解成下述电感,所述电感用于检测或测量这种磁场或其它相应的信号。

测量电感尤其可以电串联和/或并联。在此可以考虑任意变型。从而例如可以串联测量电感中的几个,其他则可以并联。通过串联或并联可以一起评估各个或多个测量电感。这一点例如能实现更快地检测或使用确定的结果。

优选地,参考电感在电流流经时产生磁场,所述磁场穿过测量电感,优选地,所述磁场由测量体与测量体的位置和/或姿态相关地改变。上述情况能实现已经在上面详细描述的测量原理,该测量原理基于在参考电感和测量电感之间的联接或者说磁场的改变。

参考电感例如还可以称为联接电感,因为该参考电感典型地产生磁场,该磁场耦入到测量电感中。

根据一种改进放案,传感器此外具有电容,该电容与参考电感连接成并联谐振电路。此外根据这种改进方案,传感器具有电子控制单元,电子控制单元直接与并联谐振电路连接。上述情况例如可以意味着直接导电连接,例如布线或设计成相应的印制导线,或者还意味着借助一个或多个电阻的连接。

电子控制单元被配置用于,利用激励频率振荡地激励并联谐振电路,所述激励频率由电子控制单元的时钟推导出。上述情况能激励并联谐振电路,从而交流电流流经参考电感,该交流电流导致了相应的交变磁场,该交变磁场可以用于进行测量。

此外,电子控制单元直接与测量电感中的每个连接并且被配置用于,在各测量电感处测量出表明至少一个测量变量的值。这种测量变量例如可以是测量体的位置或其姿态。然而例如还可以是机动车的踏板、调节器的位置或者说姿态或者其它待评估的变量。也可以说,通过这种测量变量影响所述值。

这种实施方式尤其能有利地使用测量原理,该测量原理在无明显耗费的情况下几乎能任意地调整。这尤其意味着,可以使用多个测量电感,并且因此能实现非常高的分辨率或者说清晰度和/或特别长的测量区域,而无需复杂的接线。基本上仅每个所应用的测量电感需要电子控制单元的输入以及相应的电连接。激励频率优选能以最大25%、优选最大20%、特别优选最大15%、进一步优选最大10%区别于并联谐振电路的谐振频率。上述情况在实践中被证明是有利的。

激励频率尤其能被调节,其中该激励频率尤其可以通过一元件以能改变的频率来控制。

有利地,锁定放大器可以用于测量。

第一电感、测量电感和/或电容例如可以是具有在1%和10%之间、优选1%或小于1%的各个公差的构件。这种公差已经被证明是有利的。

测量电感例如能以电或磁的方式与参考电感联接。

根据一种改进放案,并联谐振电路可以具有最大等级,该等级通过使值Vt*Vt/V0最大化来获得。在此,Vt表示当在并联谐振电路的谐振频率中电容和参考电感与其相应值具有最大偏差时线圈电流和输入电流的比例。V0表示在并联谐振电路的谐振频率中电容和参考电感的相应值时线圈电流和输入电流的比例。这种方式已经被证明针对典型应用情况特别有利。

最大等级(Güte)尤其可以通过并联谐振电路中连接电阻来限定。

电子控制装置尤其可以设计成,通过测量电感来测量下述特征值中的一个或多个:

-自电感或电感,

-损耗电阻,

-整体阻抗,

-损耗角,

-针对第一电感的配对电感。

有利地,传感器可以具有两个、三个或三个以上的测量电感。例如传感器还可以具有四个、五个或五个以上的测量电感。尤其是在上述电路中,可以特别简单地调整测量电感的数量。

根据另一种改进方案,传感器具有多个测量电感,其中每个测量电感具有配属于其的磁芯。测量电感沿着一路径布置并且电串联。在此,测量电感具有沿着该路径在一个方向上增高的相应电感或者说电感值。在此称为电感的特征是作为线圈的电性能的电感。

上述情况能借助各个电感的不同值一起评估所有测量电感。而且上述情况能对多个电感进行简单的调整。

根据一种实施方式,测量电感在此沿着路径串联。上述情况能实现简单的评估。然而不言而喻,还能实现其它连接方式,该连接方式未在该路径上定向。

在这种实施方式中,测量体尤其可以沿着该路径移动,由此能有利地测量其位置。

在此传感器优选被设计用于,与测量体沿着该路径的位置相关地产生共同的输出信号、尤其是总电感。

测量体例如可以是铁磁的高磁导的体、能导电的体或永磁体。

各个磁芯优选不具有剩余磁化。

电路载体尤其可以是印刷电路板、引线框架(Leadframe)或模塑互连器件-载体载体(Molded-Interconnected-Devices(MID)-)。

测量电感优选如此接近地彼此间隔开,使得在测量体沿着所述路径移动时产生总电感的特征曲线,其至少通过所述路径的一半、优选通过所述路径的至少四分之三或者通过整个路径单调地升高或下降。上述情况能实现有利的评估并且避免了歧义。

传感器例如可以具有引导部,该引导部引导测量体。这种引导部可以尤其是沿着所述路径引导测量体。

传感器可以具有操纵机构,借助所述操纵机构能使测量体从外部例如沿着所述路径移动。

通常将SMD-电感用作感应传感器的元件是有利的,因为由此可以实现多种多样的布置,其中传感器的磁场可以通过SMD-元件特定于应用地形成,因为所述元件在电路载体上的布置是成本经济的、能良好控制的技术,并且所述元件本身成本经济。

此外如已经在各个实施方式中所述的那样,给出了特别好的可定标性/或者说可调整性(Skalierbarkeit)。上述情况允许使用特别是多个测量电感。

多个测量参数例如可以用于,利用感应系统来确定多个无关的测量变量。这还可以包括矢量参量,该矢量参量相应于矢量分量的数量可以被理解成多个参量。

感应系统的横向灵敏度可以通过下述方式来去除:附加测量的参量以计算的方式从测量结果中去除,其方法是,例如方程组利用所有的测量变量来建立并且在计算单元中求解。

分辨率或者说清晰度和/或灵敏度可以通过下述方式来提高:不同的测量范围针对相同测量变量被组合,例如通过排列用于测量范围扩展的各个组成部分或者通过应用游标原理。

所述系统例如还可以理解成测量变压器。例如可以说,参考电感利用由其产生的磁通量来作用于测量电感,其中测量变量确定了在初级侧和次级侧之间的联接。

在SMD-电感时例如可以考虑紧邻并排或前后相继地安装在电路载体的相同侧上或者重叠地安装在对置侧上。后面的变型例在设计原则方面未构成限制。

通常还可以谈及,电路板电感和SMD-电感被组合,从而它们彼此间形成明确的磁通链。为此,SMD-电感例如可以焊接在电路载体,尤其是以传统的方式。在电感之下横跨着属于印刷电路板的印制导线。为此,SMD-电感有利地具有敞开的磁路,即对于电感的磁通不应形成高磁导的路径,该磁通仅在构件内部延伸。通过这种布置,两个电感的磁通量有效彼此链接,其中两个电感的导体与SMD-电感的内芯材料的距离典型较小,并且磁通链仅有限地受到制造工艺的公差的影响。

所述布置还可以称为SMDPT(SMD-平面变压器)。磁通链在此典型地很大程度或者几乎仅仅通过围绕SMD-电感的高磁导的内芯的附近区域来确定。

支承在SMDPT上的感应系统例如可以具有一个或多个SMDPT、即具有一定数量SMDPT,且不具有、具有一个或多个电感——该电感不是SMDPT。因此总的来说,还能实现与以其它方式构成的电感组合。

因为SMDPT的磁通链——如在其它变压器中——是双向的,所以原则上考虑两个电感作为初级电感和次级电感,由这两个电感组成SMDPT。

因为SMDPT的磁通部分地在电路载体之上而且在其之下延伸,所以通常两侧可以被考虑用于磁通链受到能导电的或铁磁的体或还受到其它体的影响。

支承在SMDPT上的感应系统可以将SMDPT的初级电感和/或次级电感连接成串联电路和/或并联电路。从而在多个SMD-电感之下横跨的印制导线例如可以特别有利地形成唯一一个线圈。同样有利地,多个SMD-电感作为初级电感串联。

当然,电路载体还可以用于,将测量电路与感应系统集成。例如以这种方式,上述电子控制单元能集成在电路载体上。

支承在SMDPT上的传感器系统典型地具有带有至少一个SMDPT的感应系统和测量电路,其能通过至少一个电感发送交变电流并且在至少一个电或磁联接的电感处测量至少一个电参数,例如阻抗的实数部分或虚数部分。用于这种传感器系统的特别优选的测量电路进一步在下面参照图1进行描述

附图说明

其它特征和优点从下面参照附图描述的实施例由本领域技术人员获悉。其中示出了:

图1示出了测量电路,

图2示出了SMD-平面变压器,

图3示出了传感器,

图4示出了在能变形的物体中的测量体。

具体实施方式

图1示出了测量电路的实施例,该测量电路可以有利地与根据本发明的传感器一起应用。其中,电子控制单元以微型控制器μC的形式设置。该微型控制器具有总共六个接口,它们用于P1,P2,P3,P4,P5和P6来标注。

在接口P1和P2上连接并联谐振电路,该并联谐振电路在此由参考电感LP和与此并联的电容器CP组成。

在接口P3上连接电阻R1,在其上又连接滤波电容器C1。滤波电容器C1另一侧接地。

以这种方式,在电阻R1的、与接口P3对置的电极上可以设定定义的电压,并且尤其是通过在接口P3上适合的脉宽调制。所述电极与三个测量电感LS1,LS2,LS3连接,这三个测量电感与接口P4,P5和P6直接电连接。测量电感LS1,LS2,LS3与参考电感LP磁耦合。如果这种耦合受到未示出的测量体影响,则测量体的位置和/或姿态可以通过评估测量电感LS1,LS2,LS3的相应的信号来确定。

参考电感LP尤其可以是进一步在下面描述的电路板电感。测量电感LS1,LS2,LS3尤其可以是进一步在下面描述的附设电感。

图2示出了SMD-平面变压器(SMDPT)的基本布置,其能以多种组合形成感应系统。在此,在以截面图示出的电路载体10上装配SMD-电感或附设电感20。所述电感具有内芯26,该内芯由线圈25包围。未单独示出的接头利用焊料27连接至电路载体10上的相应的板件13。

在附设电感20之下,附设电感20横跨两层印制导线14。该印制导线14是电路板电感的组成部分。如图所示,该印制导线在两个平面中构成,其中在上面的平面中,四个印制导线14在板件13之间经过,并且在下面的平面中安装六个印制导线14,在那里不再设置板件。所有印制导线14有助于磁通链,即使该磁通链在边缘处可能略微较小。

磁通链本身通过代表性的场力线30示出。当然,SMD-平面变压器的磁场还具有在该代表性的曲线的外部和内部的场力线。

传感器或感应系统优选由多个如在图2中示出的布置结构组成。从而例如可以垂直于图2的纸面并排布置多个附设电感,以便确定预期沿着这个方向的测量变量的变化。为了针对这个电感总地引起与电路板电感的印制导线14的磁通链,该印制导线14应有利地仅垂直于纸面在所有附设电感20之下直线延伸。这是平面电感如何可以与多个附设电感连接的最简单的情况。在其它布置中,印制导线14例如相应于附设电感的根据应用的分布来引导,其中印制导线例如可以被卷绕。

图3示出了根据本发明的实施例的传感器1。这种传感器1可以有利地用于较小的位置变化或者用作力传感器,其中可以使用上述方法步骤,以便特别有利地实现一种能够在多维立体空间中检测各个测量变量的传感器。为此使用下面描述的且在图3中示出的结构。

在此处是印刷电路板的电路载体10上设置总共四个附设电感,即第一附设电感20、第二附设电感21、第三附设电感22和第四附设电感23,它们横跨电路板电感15。电路板电感15是电路载体10的一部分。在电路板电感15和附设电感20,21,22,23之间的每个交叉点如在图2中那样构成,其中在图3中未同样详细地示出构造的细节。由此在附设电感20,21,22,23的位置上分别设置SMD-平面变压器。在电路载体10之上、在其下或在两侧设置导电或铁磁体11,用于影响在每个SMD-平面变压器中的磁通链。因此这个体11在此为测量体11。

测量体11的移动现在可以在下述情况下通过感应系统在多个维度中进行检测:该感应系统与测量电路连接。为此优选可以考虑下述电路,该电路在图1中示出并且进一步在上面进行描述。布线的有利的示例性可行方案在于,电路板电感15用作参考电感LP并且附设电感20,21,22,23中的每一个用作测量电感LS。为此,在图1中示出的电路有利地扩展了另一个信道,用于测量另一个测量电感。以简单的方式且以较低的成本实施的该可行方案构成了该电路的重要优点。

附设电感20,21,22,23以SMD-技术安装在电路载体10上。

对测量体11的移动的测量沿垂直于电路载体10的方向以下述方式实现,测量体11接近所有附设电感20,21,22,23或从它们离开,由此均匀地影响在所有四个SMD-平面变压器中的磁通链。在沿着电路载体10的两个维度内,测量体11的边棱位于SMD-平面变压器的附近区域内。由此测量体11的移位引起了,测量体11或多或少位于各个SMD-平面变压器的紧邻的磁作用区域内。因此,在附设电感20,21,22,23处对磁通链的影响成对地差别地实现。由于测量体11在不同的维度中的移动对磁通链的影响线性不相关,所以能够根据在四个SMD-平面变压器处测量磁通链而单独地以计算的方式来确定各维度。

图3的布置原则上对于所述体11在五个维度中移动来说是灵敏的,因为所述体11围绕位于电路载体10的平面内的轴线旋转还导致了磁通链的有差别的变化。因此,该布置还可以用于测量这种旋转。然而还可以测量更少的维度、例如三个维度。

在应用这种实施方式时有利地要注意,有可能不可区分的维度不一起出现或者相应的转动和线性移动结果重叠的情况不起作用。替选地,该布置可以由其它SMD-平面变压器补充,其允许其它不同方案。

当然,测量体11不必须具有在图3中示出的形状。因为通常重要的仅是测量体11的位于SMD-平面变压器的附近的组成部分,所以测量体11也可以是圆形或十字形或其它形状。测量体11例如还可以分解成四个或其它数量的单部件、即多件式地构成,其中这些单部件可以有利地位于SMD-平面变压器的附近并且与结构元件连接,其磁性对于该功能来说不重要。还可以使用其它任意数量的测量体11部件,例如三个、两个、五个或六个部件。

在图4中示出了测量体3在能弹性变形的物体40中的布置,这一点尤其是对于用作三维力传感器来说是有利的。测量体11针对这种应用嵌入到能弹性变形的物体40中,该物体例如可以具有柱形。然而还可以具有其它形状,例如锥形、截锥形或球形。能弹性变形的物体40的面如此设计,使得该面可以与在此未示出的电路载体10和其附件连接。电路载体10和测量体11在此有利地如上所述那样彼此定位。现在如果在能弹性变形的物体40的上侧引入力,这种情况如在图4中通过力箭头Fx,Fy,Fz示出,则可以测量通过力作用引起的弹性变形,如已经在上面进行详细描述那样。本申请要求对此的进一步保护。

如果在该方法的过程中证明,一个特征或一组特征并非绝对必要,则在申请人方面现在致力于表述至少一个不再具有该特征或该组特征的独立权利要求。在此例如可以是在申请日提交的权利要求的子组合或者是在申请日提交的权利要求的通过其它特征限定的子组合。这种新型要表述的权利要求或特征组合可以理解成由该申请的公开内容所涵盖。

此外应指出,本发明的设计方案、特征和变型——其在不同的实施方式或实施例中描述和/或在附图中示出——彼此可任意组合。单个或多个特征可以任意相互交换。由此形成的特征组合可以理解成由该申请的公开内容所涵盖。

在从属权利要求中的引述不应理解成放弃获得对引述的从属权利要求的特征的独立的主题保护。这些特征还可以任意地与其它特征组合。

仅在说明书中公开的特征或者在说明书中或在权利要求中仅与其它特征相关地公开的特征原则上对于本发明来说是必不可少的。所以,所述特征还可以单独地被采纳以用于区分权利要求中的现有技术。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1