基于DIC技术的模态应变能损伤识别方法与流程

文档序号:16599623发布日期:2019-01-14 20:11阅读:559来源:国知局
基于DIC技术的模态应变能损伤识别方法与流程

本发明涉及数字图像追踪和结构损伤检测领域,更具体的,涉及一种基于dic技术的模态应变能损伤识别方法。



背景技术:

对于大型航空航天器、核工程、桥梁以及高层建筑结构等在使用过程中由于环境等各种不利因素的影响,其材料的微观成分就会随着时间的推移而发生改变,这些将导致材料、强度、刚度等力学参数的降低,从而降低结构的使用寿命。一般的认为结构损伤表现为结构局部刚度的降低,从而导致结构模态参数的变化。

目前测量结构损伤的方法普遍采用传统的传感器进行接线测量,该方法在实际结构中测点布置受限,无法测得单元的模态转角信息,限制了模态应变能损伤指标在工程中的应用。



技术实现要素:

本发明为克服现有的结构损伤测量方法存在测点布置受限、无法测得单元的模态转角信息的技术缺陷,提供一种基于dic技术的模态应变能损伤识别方法。

为解决上述技术问题,本发明的技术方案如下:

基于dic技术的模态应变能损伤识别方法,包括以下步骤:

s1:采用dic系统获取结构损伤前后的平移向量,得到图像位移响应信号;

s2:对dic系统得到的图像位移响应信号和力锤激励系统的激励信号进行傅里叶变换,得到频响函数和振动模态;

s3:通过三次多项式对获取的振动模态进行曲线拟合,得到单元的模态转角矢量;

s4:根据单元的模态矢量,包括平移和转角矢量,构造模态应变能变化率损伤指标,对结构单元损伤情况进行识别。

其中,所述步骤s1包括以下步骤:

s11:dic系统通过高速摄像机拍摄结构损伤前后振动过程的图像;

s12:采用matlab软件对获取的图像进行相关性分析,提取结构每个单元的多个测点的的平移向量作为结构的图像位移响应信号。

其中,提取结构每个单元的平移向量的过程如下:以测点r进行跟踪,其计算公式具体为:

其中,x,y为图像的像素坐标;δx,δy为对比图像的位移;相关值随δx,δy变化;i,j分别为图像和比对图像像素的灰度值;b为子像块的面积;0≤c≤1;当c为极大值时,输出(δx,δy)向量即为r(x,y)的位移。

其中,所述步骤s2具体为:

s21:将图像位移响应信号、激励信号导入动态信号测试分析软件中,进行傅里叶变换,得到频响函数h(ω),频响函数h(ω)计算公式具体为:

其中,y(x,t)表示x点处的位移响应,f(ξ,t)表示ξ点的激励信号,为傅里叶变换运算符号;x是激励点,ξ是测点,wi(x)、wi(ξ)分别为激励点和测点的第i阶模态振型,ωi是第i阶固有频率,ω是激励频率,ψ为模态阻尼;频响函数曲线的峰值对应的频率为固有频率;

s22:根据频响函数得到振动模态,具体公式为:

在p点上进行激励,r点上测量相应,从而得到频响函数hrp(ω);

对于第i阶模态,为常数,故对n自由度系统,其n个虚频曲线在ωi处的峰值组成的向量为振动模态,具体为:

其中,所述步骤s3具体过程为:采用三次hermite插值多项式对振动模态进行曲线拟合得到模态转角信息θa、θb,得到单元模态转角矢量:

{φ}i={uaνaθaubvbθb}t

其中,u、v分别为x,y轴方向上的位移,a、b为左右端点。

其中,所述步骤s4包括以下步骤:

s41:根据单元模态转角矢量,前后第j单元i阶模态应变能分别表示为:

其中,d为damage的缩写,表示损伤的模态应变能;un为undamage的缩写,表示未损伤的模态应变能;结构损伤前后的第j单元i阶模态应变能变化率计算公式为:

s42:计算坐标系(x′,y′)下的单元刚度矩阵k′j,具体计算公式为:

其中,ea为结构单元的抗拉刚度,ei为结构单元的抗弯刚度,gi为结构单元的抗扭刚度,l为单位长度;通过坐标转换将局部坐标系下的单元刚度矩阵转换为整体坐标系(x,y)下的单元刚度矩阵,转换关系如下:

kj=ltk′jl;

其中,l为坐标转换矩阵,即:

其中,α为局部坐标系x′轴与x轴的夹角或是局部坐标系y′轴与y轴的夹角;

s43:结合步骤s41、s42计算出所有单位的模态应变能变化率,根据msecrij的值完成对结构单元损伤情况的识别。

上述方案中,采用dic这种非接触式的测量技术,无需添加外部传感器,避免了增加结构的质量或刚度而影响真正的振动状态,获取更完备的振动信息。

上述方案中,利用dic测量技术得到的平移信息,再通过三次多项式拟合得到模态转角矢量,构造模态应变能变化率指标,大大的提高了模态应变能损伤指标的识别精度,有利于模态应变能损伤指标在实际工程中的应用。

与现有技术相比,本发明技术方案的有益效果是:

本发明提供的基于dic技术的模态应变能损伤识别方法,利用dic测量技术得到的平移信息,再通过三次多项式拟合得到模态转角矢量,构造模态应变能变化率指标,大大的提高了模态应变能损伤指标的识别精度,有利于模态应变能损伤指标在实际工程中的应用。

附图说明

图1为发明过程流程图。

图2为实例实施过程示意图。

图3为dic测量装置示意图。

具体实施方式

附图仅用于示例性说明,不能理解为对本专利的限制;

为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;

对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。

下面结合附图和实施例对本发明的技术方案做进一步的说明。

实施例1

如图1、图2所示,基于dic技术的模态应变能损伤识别方法,包括以下步骤:

s1:采用dic系统获取结构损伤前后的平移向量,得到图像位移响应信号;

s2:对dic系统得到的图像位移响应信号和力锤激励系统的激励信号进行傅里叶变换,得到频响函数和振动模态;

s3:通过三次多项式对获取的振动模态进行曲线拟合,得到单元的模态转角矢量;

s4:根据单元的模态矢量,包括平移和转角矢量,构造模态应变能变化率损伤指标,对结构单元损伤情况进行识别。

更具体的,如图3所示,所述步骤s1包括以下步骤:

s11:dic系统通过高速摄像机拍摄结构损伤前后振动过程的图像;

s12:采用matlab软件对获取的图像进行相关性分析,提取结构每个单元的多个测点的的平移向量作为结构的图像位移响应信号。

更具体的,提取结构每个单元的平移向量的过程如下:以测点r进行跟踪,其计算公式具体为:

其中,x,y为图像的像素坐标;δx,δy为对比图像的位移;相关值随δx,δy变化;i,j分别为图像和比对图像像素的灰度值;b为子像块的面积;0≤c≤1;当c为极大值时,输出(δx,δy)向量即为r(x,y)的位移。

更具体的,所述步骤s2具体为:

s21:将图像位移响应信号、激励信号导入动态信号测试分析软件中,进行傅里叶变换,得到频响函数h(ω),频响函数h(ω)计算公式具体为:

其中,y(x,t)表示x点处的位移响应,f(ξ,t)表示ξ点的激励信号,为傅里叶变换运算符号;x是激励点,ξ是测点,wi(x)、wi(ξ)分别为激励点和测点的第i阶模态振型,ωi是第i阶固有频率,ω是激励频率,ψ为模态阻尼;频响函数曲线的峰值对应的频率为固有频率;

s22:根据频响函数得到振动模态,具体公式为:

在p点上进行激励,r点上测量相应,从而得到频响函数hrp(ω);

对于第i阶模态,为常数,故对n自由度系统,其n个虚频曲线在ωi处的峰值组成的向量为振动模态,具体为:

更具体的,所述步骤s3具体过程为:采用三次hermite插值多项式对振动模态进行曲线拟合得到模态转角信息θa、θb,得到单元模态转角矢量:

{φ}i={uaνaθaubνbθb}t

其中,u、v分别为x,y轴方向上的位移,a、b为左右端点。

更具体的,所述步骤s4包括以下步骤:

s41:根据单元模态矢量(包括平移和转角矢量),前后第j单元i阶模态应变能分别表示为:

其中,d为damage的缩写,表示损伤的模态应变能;un为undamage的缩写,表示未损伤的模态应变能;结构损伤前后的第j单元i阶模态应变能变化率计算公式为:

s42:计算坐标系(x′,y′)下的单元刚度矩阵k′j,具体计算公式为:

其中,ea为结构单元的抗拉刚度,ei为结构单元的抗弯刚度,gi为结构单元的抗扭刚度,l为单位长度;通过坐标转换将局部坐标系下的单元刚度矩阵转换为整体坐标系(x,y)下的单元刚度矩阵,转换关系如下:

kj=ltk′jl;

其中,l为坐标转换矩阵,即:

其中,α为局部坐标系x′轴与x轴的夹角或是局部坐标系y′轴与y轴的夹角;

s43:结合步骤s41、s42计算出所有单位的模态应变能变化率,根据msecrij的值完成对结构单元损伤情况的识别。

在具体实施过程中,采用dic这种非接触式的测量技术,无需添加外部传感器,避免了增加结构的质量或刚度而影响真正的振动状态,获取更完备的振动信息。

在具体实施过程中,利用dic测量技术得到的平移信息,再通过三次多项式拟合得到模态转角矢量,构造模态应变能变化率指标,大大的提高了模态应变能损伤指标的识别精度,有利于模态应变能损伤指标在实际工程中的应用。

显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1