一种总磷的识别方法、装置、存储介质及设备与流程

文档序号:16743036发布日期:2019-01-28 13:12阅读:111来源:国知局
一种总磷的识别方法、装置、存储介质及设备与流程

本发明涉及总磷检测领域,特别是涉及一种总磷的识别方法、装置、存储介质及设备。



背景技术:

地表水体作为水资源的主要组成部分,对其分布、调查、治理、规划和监测也具有重要意义。而在城市繁荣的进程中,工业、农业和生活废水使得城市建成区内的地表水体不再清澈,甚至出现发黑发臭的问题,成为了城市中的黑臭水体。这些黑臭水体形成的一个原因是水体富营养化,而水体富营养化主要是由水体中的总磷含量过高造成的,因此,通过对黑臭水体中的总磷进行检测,对后续黑臭水体的分布和检测具有重大的指导作用。

发明人在开展本发明的发明创造中发现,对黑臭水体的总磷的检测通常为从地面待测区域直接获取黑臭水体的样本,并通过对黑臭水体的样本的化学检测来直接获得总磷的分布情况,这种方式仅仅限于小范围区域的研究,而且需要研究人员到达待测区域进行采集,每次都需要化学检测来获得总磷,操作十分不方便。因此,如何实现对大范围区域的黑臭水体的总磷分布进行识别,成为了亟待解决的问题。



技术实现要素:

基于此,本发明的目的在于,提供一种总磷的识别方法,其具有无需到待测区域进行实地测量,也无需进行化学检定,可实现对大范围区域的黑臭水体的总磷的快速识别的优点。

一种总磷的识别方法,包括如下步骤:

获取地面黑臭水体采样点的总磷、以及地面黑臭水体采样点在各个波段的水体反射率;

根据所述地面黑臭水体采样点在各个波段的水体反射率,获得黑臭水体采样点在星载多光谱遥感摄像装置中各个波段的水体反射率;

将所述地面黑臭水体采样点的总磷、以及所述黑臭水体采样点在星载多光谱遥感摄像装置中各个波段的水体反射率进行相关性分析,确定表征总磷的最佳波段组合的水体反射率;

将在最佳波段组合的水体反射率下的总磷进行拟合,确定总磷与最佳波段组合的水体反射率的关系模型;

获取待测区域的星载多光谱影像,并确定黑臭水体图像;

根据所述关系模型和所述黑臭水体图像,确定总磷的分布。

通过确定地面黑臭水体采样点的总磷和星载多光谱遥感摄像装置的最佳波段组合的水体反射率的关系模型,进而根据待测区域的黑臭水体即可获得总磷的空间分布,从而无需到待测区域进行实地测量,也无需进行化学检定,实现了对大范围区域的黑臭水体的总磷的快速识别。

在一个实施例中,通过将所述根据所述地面黑臭水体采样点在各个波段的水体反射率进行卷积运算映射,获得黑臭水体采样点在星载多光谱遥感摄像装置中各个波段的水体反射率,其中,所述卷积运算映射的方式为:

式中,λ表示波长,且λmin为星载多光谱遥感摄像装置的起始波长,λmax为星载多光谱遥感摄像装置的终止波长;r(λ)为地面黑臭水体采样点在波长为λ的水体反射率;f(λ)为光谱响应函数;r表示星载多光谱遥感摄像装置的水体反射率。

在一个实施例中,所述总磷分布与最佳波段组合的水体反射率的关系模型的表示方式为:y=6.0728x12.725,其中,x表示最佳波段组合的水体反射率,y表示总磷含量;所述最佳波段组合的水体反射率为在波段580nm处的水体反射率与在波段650nm处的水体反射率的差值。

在一个实施例中,所述获取待测区域的星载多光谱影像,并确定黑臭水体图像的步骤,包括:

获取待测区域的星载多光谱影像;

对所述星载多光谱影像进行大气校正,获得校正后的星载多光谱影像;

通过sobel算子对校正后的星载多光谱影像进行处理,获得梯度图像;

对所述梯度图像采用8领域连通域计算方式,将所述梯度图像划分成多个连通域;

通过直方图法统计各个连通域的面积,获得各个连通域的连通面积,若连通域的连通面积未达到预设的连通面积阈值,则将所述连通域确定为非黑臭水体图像;

若连通域面积达到预设的连通面积阈值,则根据悬浮泥沙反演方法,计算所述连通域的悬浮泥沙浓度;若悬浮泥沙浓度大于100mg/l则剔除该连通域;否则,将所述连通域确定为黑臭水体图像,其中,所述悬浮泥沙反演方法的计算公式为:y=2570x2-6531x+3748;其中x=lg[r(650)]/lg[r(580)],r(650)表示中心波长为650nm处波段的反射率,r(580)表示中心波长为580nm处波段的反射率;y为悬浮物浓度浮物浓度。

通过结合sobel算子和连通域处理方式,实现对黑臭水体的快速确定。

在一个实施例中,所述待测区域的星载多光谱影像为:通过卫星搭载多光谱遥感摄像装置获取的多光谱影像。

在一个实施例中,所述待测区域的星载多光谱影像为:通过卫星搭载多光谱遥感摄像装置获取的绿光通道和红光通道的图像,通过绿光通道和红光通道以将黑臭水体与其他地物进行有效区分。

在一个实施例中,所述根据所述关系模型和所述黑臭水体图像,确定总磷的分布之后,还包括步骤:根据总磷分布的密集程度,将待测区域划分为总磷超标区和总磷正常区;在总磷超标区采用a2o进行一级总磷去除处理,再通过石灰或铝盐凝聚沉淀再进行二级总磷去除处理。

本发明还提供一种总磷的识别装置,包括:

采样点数据获取模块,用于获取地面黑臭水体采样点的总磷、以及地面黑臭水体采样点在各个波段的水体反射率;

水体反射率获取模块,用于根据所述地面黑臭水体采样点在各个波段的水体反射率,获得黑臭水体采样点在星载多光谱遥感摄像装置中各个波段的水体反射率;

波段确定模块,用于将所述地面黑臭水体采样点的总磷、以及所述黑臭水体采样点在星载多光谱遥感摄像装置中各个波段的水体反射率进行相关性分析,确定表征总磷的最佳波段组合的水体反射率;

关系模型确定模块,用于将在最佳波段组合的水体反射率下的总磷进行拟合,确定总磷与最佳波段组合的水体反射率的关系模型;

黑臭水体图像获取模块,用于获取待测区域的星载多光谱影像,并确定黑臭水体图像;

总磷分布确定模块,用于根据所述关系模型和所述黑臭水体图像,确定总磷的分布。

通过确定地面黑臭水体采样点的总磷和星载多光谱遥感摄像装置的最佳波段组合的水体反射率的关系模型,进而根据待测区域的黑臭水体即可获得总磷的空间分布,从而无需到待测区域进行实地测量,也无需进行化学检定,实现了对大范围区域的黑臭水体的总磷的快速识别。

本发明还提供一种计算机可读存储介质,其上储存有计算机程序,该计算机程序被处理器执行时实现上述任意一项所述总磷的识别方法的步骤。

本发明还提供一种计算机设备,包括储存器、处理器以及储存在所述储存器中并可被所述处理器执行的计算机程序,所述处理器执行所述计算机程序时实现如上述任意一项所述总磷的识别方法的步骤。

为了更好地理解和实施,下面结合附图详细说明本发明。

附图说明

图1为本发明实施例中总磷的识别方法的流程图。

具体实施方式

请参阅图1,其为本发明实施例中总磷的识别方法的流程图,所述总磷的识别方法,包括如下步骤:

步骤s1:获取地面黑臭水体采样点的总磷、以及地面黑臭水体采样点在各个波段的水体反射率。

其中,所述总磷为水样经消解后将各种形态的磷转变成正磷酸盐后测定的结果,以每升水样含磷毫克数计量。所述获取地面采样点的黑臭水体的总磷的步骤为:通过采集地面黑臭水体采样点的水体,再通过化学检测方式获得黑臭水体中的总磷。

其中,所述水体反射率为水体对太阳光的反射能量与入射能量的比值,且在不同波段水体的反射率不同。

其中,所述采样点的黑臭水体在各个波段的水体反射率通过同时采集水质参数以及地面高光谱,通过光谱响应函数将地面高光谱重采样到对应的波光普传感器通道。

步骤s2:根据所述地面黑臭水体采样点在各个波段的水体反射率,获得黑臭水体采样点在星载多光谱遥感摄像装置中各个波段的水体反射率。

其中,从地面获得的黑臭水体在各个波段的水体反射率,与通过在星载多光谱遥感摄像装置获得的多光谱遥感图像中的黑臭水体在各个波段的水体反射率不同,但是,这两个水体反射率存在映射关系,因此,根据所述采样点的黑臭水体在各个波段的水体反射率,可获得黑臭水体在多光谱遥感图像中各个波段的水体反射率。

其中,星载多光谱遥感摄像装置覆盖范围广,且有大量的历史积累数据,可以用于长时间序列、大范围tp等水体污染参数的识别。

步骤s3:将所述地面黑臭水体采样点的总磷、以及所述黑臭水体采样点在星载多光谱遥感摄像装置中各个波段的水体反射率进行相关性分析,确定表征总磷的最佳波段组合的水体反射率;

步骤s4:将在最佳波段组合的水体反射率下的总磷进行拟合,确定总磷与最佳波段组合的水体反射率的关系模型;

步骤s5:获取待测区域的星载多光谱影像,并确定黑臭水体图像;

步骤s6:根据所述关系模型和所述黑臭水体图像,确定总磷的分布。

通过确定地面黑臭水体采样点的总磷和星载多光谱遥感摄像装置的最佳波段组合的水体反射率的关系模型,进而根据待测区域的黑臭水体即可获得总磷的空间分布,从而无需到待测区域进行实地测量,也无需进行化学检定,实现了对大范围区域的黑臭水体的总磷的快速识别。

在一个实施例中,在步骤s2中,通过将所述根据所述地面黑臭水体采样点在各个波段的水体反射率进行卷积运算映射,获得黑臭水体采样点在星载多光谱遥感摄像装置中各个波段的水体反射率的步骤,其中,所述卷积运算映射的方式为:

式中,λ表示波长,且λmin为星载多光谱遥感摄像装置的起始波长,λmax为星载多光谱遥感摄像装置的终止波长;r(λ)为地面黑臭水体采样点在波长为λ的水体反射率;f(λ)为光谱响应函数;r表示星载多光谱遥感摄像装置的水体反射率。

在一个实施例中,在所述最佳波段组合的水体反射率内,总磷的含量较多,优选的,所述最佳波段组合的水体反射率为在波段580nm处的水体反射率与在波段650nm处的水体反射率的差值。

在一个实施例中,所述总磷分布与最佳波段组合的水体反射率的关系模型的表示方式为:y=6.0728x12.725,其中,x表示最佳波段组合的水体反射率,y表示总磷含量;所述最佳波段组合的水体反射率为在波段580nm处的水体反射率与在波段650nm处的水体反射率的差值。

在一个实施例中,所述获取待测区域的星载多光谱影像,并确定黑臭水体图像的步骤,包括:

步骤s51:获取待测区域的星载多光谱影像。

在一个实施例中,所述待测区域的星载多光谱影像为:卫星搭载多光谱遥感摄像装置拍摄的多光谱图像。

在一个实施例中,发明人在开展本发明的发明创造中发现,通过采用多光谱遥感摄像装置的绿光通道和红光通道获取的影像,可将黑臭水体与其他地物进行较明显地区分,因此,为方便后续确定黑臭水体图像,通过多光谱遥感摄像装置的绿光通道和红光通道获取的影像作为待测区域的多光谱影像。

步骤s52:对所述星载多光谱影像进行大气校正,获得校正后的星载多光谱影像;

步骤s53:通过sobel算子对校正后的星载多光谱影像进行处理,获得梯度图像。

其中,索贝尔算子(sobeloperator,简称“sobel算子”)为把图像中每个像素的上下左右四领域的灰度值加权差,在边缘处可达到极值而获得的梯度图像。

步骤s54:对所述梯度图像采用8领域连通域计算方式,将所述梯度图像划分成多个连通域;

步骤s55:通过直方图法统计各个连通域的面积,获得各个连通域的连通面积,若连通域的连通面积未达到预设的连通面积阈值,则将所述连通域确定为非黑臭水体图像;若连通域面积达到预设的连通面积阈值,则根据悬浮泥沙反演方法,计算所述连通域的悬浮泥沙浓度;若悬浮泥沙浓度大于100mg/l则剔除该连通域;否则,将所述连通域确定为黑臭水体图像,其中,所述悬浮泥沙反演方法的计算公式为:y=2570x2-6531x+3748;其中x=lg[r(650)]/lg[r(580)],r(650)表示中心波长为650nm处波段的反射率,r(580)表示中心波长为580nm处波段的反射率;y为悬浮物浓度浮物浓度。其中,传感器特定波段的中心波长,代表了一个波段的反射率,本申请用中心波长表示某一波段。

在一个实施例中,在步骤s6中,所述根据所述关系模型和所述黑臭水体图像,确定总磷的分布的步骤为:获取黑臭水体图像在所述最佳波段组合的水体反射率,再根据最佳波段组合的水体反射率计算黑臭水体中总磷的含量。

在一个实施例中,为实现对黑臭水体中的总磷进行有效处理,所述根据所述关系模型和所述黑臭水体图像,确定总磷的分布之后,还包括步骤s8:根据总磷分布的密集程度,将待测区域划分为总磷超标区和总磷正常区;在总磷超标区采用a2o进行一级总磷去除处理,再通过石灰或铝盐凝聚沉淀再进行二级总磷去除处理。

本发明还提供一种总磷的识别装置,包括:

采样点数据获取模块,用于获取地面黑臭水体采样点的总磷、以及地面黑臭水体采样点在各个波段的水体反射率;

水体反射率获取模块,用于根据所述地面黑臭水体采样点在各个波段的水体反射率,获得黑臭水体采样点在星载多光谱遥感摄像装置中各个波段的水体反射率;

波段确定模块,用于将所述地面黑臭水体采样点的总磷、以及所述黑臭水体采样点在星载多光谱遥感摄像装置中各个波段的水体反射率进行相关性分析,确定表征总磷的最佳波段组合的水体反射率;

关系模型确定模块,用于将在最佳波段组合的水体反射率下的总磷进行拟合,确定总磷与最佳波段组合的水体反射率的关系模型;

黑臭水体图像获取模块,用于获取待测区域的星载多光谱影像,并确定黑臭水体图像;

总磷分布确定模块,用于根据所述关系模型和所述黑臭水体图像,确定总磷的分布。

通过确定地面黑臭水体采样点的总磷和星载多光谱遥感摄像装置的最佳波段组合的水体反射率的关系模型,进而根据待测区域的黑臭水体即可获得总磷的空间分布,从而无需到待测区域进行实地测量,也无需进行化学检定,实现了对大范围区域的黑臭水体的总磷的快速识别。

在一个实施例中,所述水体反射率获取模块,用于通过将所述根据所述地面黑臭水体采样点在各个波段的水体反射率进行卷积运算映射,获得黑臭水体采样点在星载多光谱遥感摄像装置中各个波段的水体反射率的步骤,其中,所述卷积运算映射的方式为:

式中,λ表示波长,且λmin为星载多光谱遥感摄像装置的起始波长,λmax为星载多光谱遥感摄像装置的终止波长;r(λ)为地面黑臭水体采样点在波长为λ的水体反射率;f(λ)为光谱响应函数;r表示星载多光谱遥感摄像装置的水体反射率。

在一个实施例中,在所述最佳波段组合的水体反射率内,总磷的含量较多,优选的,所述最佳波段组合的水体反射率为在波段580nm处的水体反射率与在波段650nm处的水体反射率的差值。

在一个实施例中,所述总磷分布与最佳波段组合的水体反射率的关系模型的表示方式为:y=6.0728x12.725,其中,x表示最佳波段组合的水体反射率,y表示总磷含量;所述最佳波段组合的水体反射率为在波段580nm处的水体反射率与在波段650nm处的水体反射率的差值。

在一个实施例中,所述黑臭水体图像获取模块包括:

待测区域图像获取模块,用于获取待测区域的星载多光谱影像。

校正模块,用于对所述星载多光谱影像进行大气校正,获得校正后的星载多光谱影像。

梯度图像获取模块,用于通过sobel算子对校正后的星载多光谱影像进行处理,获得梯度图像。

连通域划分模块,用于对所述梯度图像采用8领域连通域计算方式,将所述梯度图像划分成多个连通域;

判断模块,用于通过直方图法统计各个连通域的面积,获得各个连通域的连通面积,若连通域的连通面积未达到预设的连通面积阈值,则将所述连通域确定为非黑臭水体图像;

若连通域面积达到预设的连通面积阈值,则根据悬浮泥沙反演方法,计算所述连通域的悬浮泥沙浓度;若悬浮泥沙浓度大于100mg/l则剔除该连通域;否则,将所述连通域确定为黑臭水体图像,其中,所述悬浮泥沙反演方法的计算公式为:y=2570x2-6531x+3748;其中x=lg[r(650)]/lg[r(580)],r(650)表示中心波长为650nm处波段的反射率,r(580)表示中心波长为580nm处波段的反射率;y为悬浮物浓度浮物浓度。其中,传感器特定波段的中心波长,代表了一个波段的反射率,本申请用中心波长表示某一波段。

在一个实施例中,为实现对黑臭水体中的总磷进行有效处理,还包括处理模块,所述处理模块,用于根据总磷分布的密集程度,将待测区域划分为总磷超标区和总磷正常区;在总磷超标区采用a2o进行一级总磷去除处理,再通过石灰或铝盐凝聚沉淀再进行二级总磷去除处理。

本发明还提供一种计算机可读存储介质,其上储存有计算机程序,该计算机程序被处理器执行时实现如上述任一所述总磷的识别方法的步骤。

本发明还提供一种计算机设备,包括储存器、处理器以及储存在所述储存器中并可被所述处理器执行的计算机程序,所述处理器执行所述计算机程序时实现如上述任一所述总磷的识别方法的步骤。

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1