一种复合式线激光测量系统多轴空间坐标系标定方法与流程

文档序号:21354944发布日期:2020-07-04 04:23阅读:296来源:国知局
一种复合式线激光测量系统多轴空间坐标系标定方法与流程

技术领域:

本发明属于光学测量领域,涉及一种基于平面目标的复合式线激光测量系统多轴空间坐标系标定方法,以及利用球形目标进行多轴空间坐标系标定优化的方法。



背景技术:

光学测量是一种在运用计算机技术的基础上,通过将光电技术与机械测量的结合,从而达到快速、准确测量工作的一门新技术。目前广泛应用于电子、机械、齿轮加工等精密作领域,其测量结果准确,偏差极小。对比传统接触式测量方式,光学三维测量由于具有非接触、高精高和速度快的优势,已在工业制造、动画特技制作、游戏娱乐和医学等行业崭露头角。激光线扫描测量法,是以一条或多条激光光线(光刀)图像来重现物体三维形貌,即从光刀图像中提取光刀中心位置,然后利用三角测量原理对光刀中心逐点进行求解,来获得型面三维数据。该技术以其非接触性、灵敏度高、实时性好、抗干扰能力强等优点。

光学测量系统通常把光学传感器安装到三坐标测量机上,光学传感器可精确非接触测量被测物体轮廓,通过标定光学传感器和三坐标测量机的位置关系,可以把光学传感器测量数据转化为三坐标机坐标系数据。

光学测量系统的标定是测量系统中重要的一步,它需要标定出光学测量系统到接触式测量系统的转换关系,其标定精度直接决定了测量结果的精度。现有的标定方法有基于标准球的点激光光学测头的系统标定方法,有将光学测头的激光束等效成接触式测头的测针进行标定的方法。但对于线激光二维传感器组成的复合式多轴测量系统标定,一方面线激光传感器为二维传感器,利用点激光标定的方法无法同时标定出线激光传感器的二维坐标轴方向,一方面利用球状物体进行标定会因为线激光二维传感器对于激光入射法线方向不同,导致精度有所差异,存在球面拟合误差。还有一些方法要求获知线激光传感器原始采集图像。而有些线激光传感器无法获知原始图像。所以,对于原始图像不可获得的二维线激光传感器测量系统的标定,没有有效的标定方法。



技术实现要素:

针对现有技术的以上缺陷或改进需求,本发明提出了一种基于平面目标的复合式线激光测量系统多轴空间坐标系标定方法,以及利用球形目标进行多轴空间坐标系标定优化的方法。本方法适用于四轴测量机结构,对于原始图像不可获得的二维线激光传感器和测量机接触式测头之间的标定。本方法能同时标定出二维线激光传感器的两个方向以及线激光传感器到接触式测头的平移关系,同时能减小采用球形目标标定的球拟合误差。

本方法利用两个测头,线激光传感器以及接触式测头分别测量同一标准平面,两测头测量值理论上同时符合同一个平面方程。可求解出两测头之间的转换关系初值。后续通过两个测头测量多个角度的标准球,可以优化整个系统的误差,得到两测头之间的精确转换关系,该方法包含以下步骤:

步骤一、利用接触式测头直接在标准平面上采集测量点,利用最小二乘法拟合平面方程。得到平面方程:

ax+by+cz+d=0

步骤二、利用线激光传感器扫描同一平面,得到一系列线激光传感器采集点sn和与之对应的机床光栅坐标值为δpn,其中用齐次坐标表示

重复扫描另外两个平面,得到相应数据。

步骤三、建立数学模型,使得线激光传感器所有测量点符合相应的接触式测头测量的平面方程。

其中i0,i1,j0,j1,k0,k1为线激光传感器坐标系到接触式测头坐标系旋转矩阵中的元素,x0,y0,z0为线激光传感器坐标系到接触式测头坐标系平移矩阵中的元素,及

数学模型可以写成矩阵形式为:

(ksn+δpn)tx=0

式中:

步骤四、牛顿迭代法求解方程。选取目标函数为测量的点到拟合的平面的距离作为误差值,非线性优化目标函数达到最小。

步骤五、放置已经校准后标准球在转台上,标准球半径为rsphere,通过接触式测头测量标准球的方法,先标定出转台坐标系。之后接触式测头和线激光传感器同时测量同一角度下的标准球,得到相同角度θ下标准球的轮廓数据。转台带动标准球进行旋转,重复测量标准球。

接触式测头测量得到的标准球数据,通过转台拼接,得到转台坐标系的标准球球心坐标ocenter=[xcenterycenterzcenter]t。线激光传感器测量数据带入下述公式:

[1111]·[rzkrot(ksn+δpn)-ocenter]o[rzkrot(ksn+δpn)-ocenter]-rsphere2=0

式中:k,sn,δpn为步骤三所述;

符号ο代表的含义为(aοb)i,j=(a)i,j(b)i,j。

步骤六、采用levenberg-marquardt迭代法求解方程。选取目标函数为线激光测量点到接触式测量球面的距离,优化目标函数使距离和最小。

本发明与现有技术相比,能够取得下列有益效果:

1.本标定方法不需要知道二维线激光传感器的原始图像,只需要知道其测量数据就可进行标定。

2、本方法可以同时标定出二维线激光传感器到接触式测头坐标系的旋转矩阵和平移矩阵,不需要分别进行标定。

3、本方法基于平面目标进行参数初始标定,避免小角度的标准球拟合误差和线激光传感器入射法向不同导致的精度不同问题。

4、本方法最后利用不同角度的标准球进行标定,可以优化得到系统全局最优的标定参数。

附图说明:

图1复合式线激光测量系统结构图

图2线激光位移传感器测量原理图

图3线激光位移传感器测量输出值示意图

图4线激光位移传感器标定模型简化图

具体实施方式:

下面结合附图对本发明做进一步详细描述:

一种基于平面目标的复合式线激光测量系统多轴空间坐标系标定方法,以及利用球形目标进行多轴空间坐标系标定优化的方法。其硬件结构类似图1所示,

在复合式四轴测量系统中,接触式测头1和线激光传感器2通过刚性结构3进行连接,并同时安装在坐标机轴4上。四轴坐标机附有转台5。

线激光传感器为二维传感器,其测量原理为激光三角法,不同于采用点光源逐点扫描的方式,线激光传感器采用线光源对物体形貌进行测量,具有更高的测量速度和效率。如图2所示为线激光传感器的测量系统图,其中ro为入射光源,光线经过物体反射通过透镜在ccd上成像。a点成像于ccd的a'点,b点成像于ccd的b'点,而位置o对应成像于ccd的中心位置o'。由图可以看出,高度不同的点对应ccd不同的位置。

对于可以获取ccd图像的线激光传感器,通常利用标定相机的原理,通过拍摄标定板标定出传感器到测量机的转换关系。而当无法获取ccd图像时,上述方法不再适用,只能通过传感器的输出值作为计算依据。

如图3所示,线激光传感器是一个二维系统,其线长方向为测头坐标系下的xl轴方向,光源出射方向为yl轴方向,坐标系的原点ol(0,0)位于标准工作平面内激光线长的中点位置,即线激光器在标准平面上的光心。如图三所示,记任意被测点a在传感器中的输出值为(xal,yal),则yal为a点到标准工作平面的距离,xal为a点在基准平面上的投影点距离坐标系原点ol(0,0)的距离。

为获取线激光传感器与测量机之间的位姿关系,本专利提出一种基于标准平面目标的标定方法,利用两个测头分别测量同一标准平面,通过拟合该平面的方程即可求得两测头坐标系间的变换矩阵。标定模型及具体步骤如下:

步骤一、利用接触式测头直接在标准平面上采集测量点,利用最小二乘法拟合平面方程。

ax+by+cz+d=0

步骤二、利用线激光传感器扫描同一平面,得到一系列线激光传感器采集点sn和与之对应的机床光栅坐标值为δpn,其中用齐次坐标表示

重复扫描另外两个平面,得到相应数据。

步骤三、简化线激光测量系统数学模型,如图4所示,om-xyz为机床坐标系,三个坐标轴方向与机床光栅方向相同,原点om为光栅处于零位时,接触式测针的红宝石球心位置。在此零位时,线激光传感器标准工作平面上的光心在om-xyz中的坐标为p0(x0,y0,z0)。

当激光器测量某一标准平面时,设正对光心的一点为n0,则此时p0n0的方向则为激光出射方向,记其方向向量为(i0,j0,k0),激光线长方向向量为(i1,j1,k1)。设光线上任意一点为m0,m0距n0的距离为w0,距标准工作平面的距离为l0,则此时m0在om-xyz中的坐标为(x0,y0,z0)+l0·(i0,j0,k0)+w0·(i1,j1,k1)。

令机床带动激光器在标准平面上滑扫测量,δx,δy,δz分别为机床各轴光栅尺读数的增量,则初始测量点m0随之变化为任意测点m1,m2,…,mn,其距n0的距离变化为w1,w2,…,wn,距标准工作平面的距离变化为l1,l2,…,ln。

此时,m1,m2,…,mn坐标改变为:

这些点坐标符合该平面的平面方程ax+by+cz+d=0,(c≠0),而这一平面方程可通过接触式测头采点拟合得到。

把mn的坐标轴带入平面方程ax+by+cz+d=0,连列形成方程组如下:

写成矩阵形式如下:

(ksn+δpn)tx=0

式中:

其中r可以转换为3个自由度的矩阵,t有3个未知数,其余参数为已知数。

r为旋转矩阵,根据罗德里格斯变换,旋转矩阵可以仅用一个向量来表示绕坐标轴的旋转。向量的长度表示旋转角度,向量本身表示旋转轴。设罗德里格斯转换的向量为r=[rx,ry,rz],则所以方程组共有6个未知参数。采用牛顿迭代法求解[rx,ry,rz]和t。

步骤四、牛顿迭代法求解方程。由于系统误差的存在,实际被测点无法完全分布在标准平面上,选取目标函数为测量的点到拟合的平面的距离作为误差值,

非线性优化目标函数达到最小。牛顿迭代的过程就是要使该项误差值达到最小,

从而获得此时的未知参数为线激光传感器标定参数。

即令如下目标函数达到最小:

式中:

进一步简化为:

fi2(x)=(a(x0+δxi+lii0+wii1)+b(y0+δyi+lij0+wij1)+c(z0+δzi+lik0+wik1)+d)2

上式中的fi(x)是非线性函数,且f(x)存在连续偏导数。求解非线性最小二乘的基本思想是通过解一系列线性最小二乘问题求非线性最小二乘问题的解。

步骤五、放置已经校准后标准球在转台上,标准球半径为rsphere,通过接触式测头测量标准球的方法,先标定出转台坐标系。转台坐标系到接触式测头坐标系的转换关系为:

其中

之后接触式测头和线激光传感器同时测量同一角度下的标准球,得到相同角度θ下标准球的轮廓数据。转台带动标准球进行旋转,重复测量标准球。

接触式测头测量得到的标准球数据,通过转台拼接,得到转台坐标系的标准球球心坐标ocenter=[xcenterycenterzcenter]t。线激光传感器测量数据带入下述公式:

[1111]·[rzkrot(ksn+δpn)-ocenter]o[rzkrot(ksn+δpn)-ocenter]-rsphere2=0

式中:k,sn,δpn为步骤三所述;

符号ο代表的含义为(aοb)i,j=(a)i,j(b)i,j。

步骤六、采用levenberg-marquardt迭代法求解方程。选取目标函数为线激光测量点到接触式测量球面的距离,优化目标函数使距离和最小。

即目标函数为:

式中:

可以代替为:

fn2(x)=([1111]·[rzkrot(ksn+δpn)-ocenter]ο[rzkrot(ksn+δpn)-ocenter]-rsphere2)2

最终得到全局最优的线激光测量系统标定参数。

当前第1页1 2 
网友询问留言 已有1条留言
  • 198611... 来自[中国] 2020年07月16日 08:15
    太她妈黑了
    0
1