五轴/六轴激光测量系统的制作方法

文档序号:6134214阅读:350来源:国知局
专利名称:五轴/六轴激光测量系统的制作方法
技术领域
本发明总的来说涉及精密测量系统,尤其是涉及一种配用改进的五轴探测系统和精密激光横滚探测器的六轴精密位置测量系统。
背景技术
现实中存在一种能用于精确测定物体位置的精密测量系统的需要。这些测量系统尤其是用在校正和检验机床中,以及在工业应用中用于监控机器人的操作。
已经研制的有五轴精密激光测量系统,例如本发明人在美国专利4,714,339中所公开的5-D激光跟踪系统。这种系统在五个方位,即x、y和z位移,纵倾和横探,进行定位探测。滚动方位的激光探测具有很多困难问题,这是因为滚动不一定导致滚动部件的部位和观察位置之间距离的任何改变。
Bockman的美国专利5,064,289中公开一种激光干涉计量系统,它是利用一个激光器和两个光电探测器来探测滚动。然而,Bockman使用两个分开的光路和反光镜组件来测量滚动。
Chaney的美国专利5,056,921和Cameron的美国专利5,363,196类似于Bockman的专利,他们所表示的滚动测量系统使用分开的光路来测量滚动。而Miller等人的U.S.专利4,804,270利用一个衍射光栅提供多束部位来探测滚动。
Huang等人的U.S.P 5,418,611公开一种纵倾和横摆测量装置,它是利用一个偏振分束器,两个临界角棱镜和两个光电两极管来探测角度变化。然而,该装置没有提供滚动探测。
Michigan大学研制一种探测系统,它是使用两个在共用传感器头上偏心的后向反射器,调准两个偏心激光束,以此来探测滚动。这种通用的技术相对不精确,因此不适合于精密机床的应用。
本发明者的公司与North Carolina-CharloHe大学合作进行在激光滚动探测领域内的研究。研究的结果是开发一种激光滚动探测器,它使用一束调制和偏振的激光束,使它通过一个法拉第(Faraday)元件,一个格兰-汤姆逊(Glan-Thompson)棱镜,然后入射到一个强度光电探测器上。光束受到调制频率(例如17hz)的振动,然后利用振动频率对强度输出进行滤波,得到基本上不受光束强度变化影响的输出。
Orloff的U.S.P 3,915,572展示一种激光Doppler速度计,其中两个光电探测器的输出连接至一个差分放大器,以消除对测量光束共有的扰动。然而,还没有提议可将这种技术用在偏振光束中对滚动的测量。
这些先前的研究中没有一个提供一种相当满意的精密激光滚动探测器,而对于可以单独使用或作为多轴位置探测系统的一个部件使用的精度得到提高的激光滚动探测器却存在着一种需要。另外,这些技术中没有一种提供了一个完全满意的5-D探测系统。
发明摘要所以,本发明的总的目的是提供改进的5轴和6轴精密激光测量系统。
本发明的其它目的是提供一种精密的激光滚动测量系统。
本发明的更为特殊的目的是提供一种精密滚动探测系统,它是使用对多个光传感器的输出进行微分处理,以确定物体的滚动取向。
本发明的其它目的是提供一种激光滚动探测器,它利用一束激光,一个偏振棱镜和至少两个光电探测器,以测定物体的滚动取向。
本发明还有一个目的是提供一种激光滚动探测系统,其中激光束受到线性偏振,并通过一个偏振分束棱镜,由该棱镜将光束分束成为多个偏振分量,其强度相对于偏振的激光束来说,是随探测器的滚动取向而改变的。
本发明的其它目的是通过高增益微分放大器微分测量激光束的偏振强度分量,利用激光来探测物体的滚动取向。
本发明的附加的目的是提供一种采用温度稳定的激光器的5轴和6轴精密激光测量系统。
本发明通过提供一种改进的能同时测量纵倾,横摆和x、y和z位移的5-D激光测量系统来取得上述这些目的。
在一个优选的实施例中,使5-D系统与一个精密激光滚动探测装置相结合,形成一个6-D系统。该激光滚动探测器使用一个偏振分束棱镜,例如Glan-Thompson棱镜,以及至少两个光电探测器。一束线性偏振激光束进入该棱镜,使激光束分成两束偏振光分量,其每束的强度相对于偏振激光束是随着探测器的滚动取向的不同而改变。将两个光电探测器的输出分别连接到提供滚动输出的高增益微分放大器的正和负输入端。
附图简述

图1表示本发明的激光滚动探测系统的第一实施例的示意方框图;图2表示本发明的激光滚动探测系统的第二实施例的示意方框图;图3表示由一个五轴位置探测系统和上图1或2所示的滚动探测系统而形成一个六轴探测系统的示意方框图;图4表示本发明其它优选实施例的组合图,其中激光头和干涉仪设置在分开的机座内,用一个保持偏振的纤维光学接线连接它们;图5表示本发明所用的探测输出处理电路的方框示意图;图6表示设在工具座上的传感器的无线连接的方框示意图;图7表示本发明的温度稳定的激光器的多个部件的组合示意图。
优选实施例的详细描述本发明提供一种测量系统,它包括一种新颖的五轴激光测量系统和一种新颖的滚动传感器。所述五轴系统和滚动传感器可以分开使用,或者结合在一起使用,以此提供一个六轴系统。
下面将参见图1描述滚动传感器的特征。在本发明的第一实施例中,一个精密的滚动传感器l00包括,激光器102,Glan-Thompson棱镜偏振器104和测量传感器105。测量传感器105包括Glan-Thompson偏振分束器106,光电二极管Dl和D2,微分放大器108和计算机110。
激光器102最好配用一个微处理器控制的光强稳定器,以保持稳定的频率输出。一个环境补偿器对波长进行补偿。
Glan-Thompson棱镜偏振器104对激光器102的光束输出的线偏振进行钝化。这种线偏振作用可以分成二个垂直的矢量分量,在此把它们规定为水平和垂直矢量分量,需知这二个分量的实际角取向可以根据棱镜偏振器104的取向和结构而变化的。
在本实施例中所用的Glan-Thompson偏振器104和Glan-Thompson分束器106可以给出一种自稳定的光束系统。在激光束射到偏振分束器106时,激光束分成水平偏振的和垂直偏振的分量,这是由于分束器l06的特性所致。光束的水平偏振部分通过分束器106至光电二极管D2,产生一个相当于光束的水平偏振部分的光强度的输出。光束的垂直偏振部分通过分束器106射到光电二极管D1上。
将光电二极管D1和D2的强度测量输出分别连接到高增益微分放大器108的正和负输入端,由它们提供表示Glan-Thompson棱镜偏振器104和测量传感器105之间滚动的输出。
依据偏振器104和测量传感器105之间的精确滚动取向将光束发成二束不同偏振的部分。在45°滚动取向时,光电二极管D1和D2将接收到相同的光束强度。然而,当探测器滚动到任一方向时,其中一个探测器将接收大于另一个的光强度。由微分放大器108测量这些输出之间的差,以提供滚动的指示。减法操作微分放大器108也有利于对背景和额外噪声的补偿,例如那些由光束强度和/或背景光所产生的起伏。对于可能出现的光束输出的变化以及其它的信号噪声可以由二个光电二极管来测量,并且通过微分放大器操作来消除。这种特性明显地提高系统的灵敏度和精度。
激光滚动探测器的输出提供给计算机110,利用所提供的软件进行记录和分析,在测量滚动输出中作出合适的补偿。
利用计算机110,系统对滚动测量中的非线性自动校正,这种非线性的校正已由经验使用,和通过仪器标定及确认步骤予以证实。作为其它的例子,该系统可以包括一个温度补偿装置。通过对相同物体在不同温度下相同滚动的经验测量建立一个计算机温度灵敏度模型,根据这一模型,可以测出环境温度并对由温度引起的测量滚动变化进行校正。
图2表示本发明激光滚动探测部分的另一个实施例。设置一个偏振激光器102和一个Glan-Thompson棱镜偏振器104以产生一个完全线性偏振的激光束。最好,偏振的方向对水平成45°取向,以此可将偏振分解成水平和垂直矢量分量。
在该实施例中,稳态激光束产生装置设置一个参考传感器201,它包括分束器204,偏振分束器206,光电二极管D3和D4以及微分放大器212。微分放大器212提供一个随着在棱镜偏振器104处测得的光束的偏振而改变的输出。
分束器204将入射的偏振激光束分成两路光,分别射向参考传感器201和测量传感器202。
测量传感器202包括偏振分束器208,光电二极管Dl和D2,微分放大器210。微分放大器210相对于棱镜偏振器104的位置提供一个指示测量传感器202的滚动的输出,采用方式与上述参考图1所描述的相同。
基本上,偏振分束器206和208分别传输光束的水平偏振的分量至光电二极管D3和D2,同时分别将垂直偏振光束的分量射至光电二极管D3和D4。光电二极管D3和D4的输出被分别连接至微分放大器212的正和负输入端。光电二极管D1和D2的输出被分别连接至微分放大器213的正和负输入端。
微分放大器210和212的输出被分别连接至微分放大器214的正和负输入端,由放大器214将滚动输出信号提供至计算机110。测量传感器202和参考传感器201的输出以差动方式组合在微分放大器214中,产生一个滚动输出信号,它受到补偿,相对于图1的构型它对最终的滚动测量有降低激光源误差f倍的效果。
在该实施例中,不使用Glan-Thompson棱镜,偏振分束器206和208是很常用的和不太昂贵的偏振分束器,它们是用二块45°棱镜胶合构成,棱镜的胶合面之间具有偏振灵敏的介电膜层。
在上述实施例中使用Glan-Thompson偏振器和分束器,因为他们提供特别精确的光束偏振作用并将偏振光束分束,这些对于产生相当精确的滚动探测是所需要的。Glan-Thompson棱镜对偏振光具有高的消光比,通常约为105量级。
本文所公开的传感器在200弧-秒范围内的灵敏度超过0.2弧-秒,利用本文所公开的技术可以取得优于0.1弧-秒的灵敏度。然而,由于Chan-Thompson部件的价格原因,希望利用偏振滤光器来替代Glan-Thompson棱镜偏振器,这种替代将根据所需的精度要求以及这种精度是否可以通过其它的补偿机构来取得而定。
参见图3,这里所述的精密滚动传感器最好与将要详述的一种新颖的五轴测量系统结合起来使用。利用将精密滚动探测器与能够测量x、y和z位移,纵倾和横摆的系统相结合,该系统可以测量包括x、y和z位移,纵倾、横摆以及滚动在内的六个轴向的运动。另,图3所示的新颖五轴系统可在不需要探测滚动的情况下单独地使用。
激光滚动探测器最好构成一个立方单元,其每边的尺寸约为3.8cm。以这种方式,激光滚动探测器可以容易地被集成到五轴测量传感器。只需要稍微增加外壳的尺寸以适合安置附加的传感器就可。参见图3,按照本发明构成的一个六轴测量系统300,它包括激光器102,偏振器104和传感器座302。激光器102包括一个测量x位移的稳频激光干涉仪103。传感器座302的尺寸优选为适用5-D系统的100mm×75mm×45mm,而对于6-D系统要稍大一些。在典型的分析机械系统性能的操作中,机座302安装在机床的工具头上,激光器102和偏振器104安装在机床上。然后对机床提供运动指令,由系统300产生最终运动的数据,并进行记录分析。
现在,详细介绍装置的五轴部分的构成和操作。通常,在激光束进入传感器座302时,部分光束能量通过分束器322入射至双轴横向效果探测器312上。探测器312最好选用由加利福尼亚的Hawthorne的United Detector Technology(UDT)传感器公司生产的型号为SC10-D光电探测器。探测器312的输出是对二个横向运动进行的测量,或者是传感器座302相对于光轴的直线度误差(Δy和Δz)进行的测量。
余下部分的激光束能量由分束器322入射至后向反射器310。后向反射器310对光束反射,并再次把反射光束射至分束器322的另一部位上,在该部位上有一部光再次转回至激光器位置。由后向反射器310产生的光束反射由位于激光器位置处的干涉仪103进行干涉处理,以此测定x位移。干涉仪103设置在激光传输位置,它包括四个PIN光电二极管,和一个产生常规的A-正交(quad)-B干涉仪输出的电路,譬如由CMX系统公司制造的型号为510A的光学相位解码器。干涉仪103的输出由计算机110处理,并对由于激光器与传感器座302之间的距离改变时所产生的干涉环移位进行计数,并测量部分环的运动,所得的测量精度大于只依靠环计数的测量精度。
从后向反射器310传输来的剩余的光束能量通过分束器322,并入射至一个聚焦透镜306,然后将光束聚焦到一个双轴横向效果探测器308上。探测器308,例如可以是一个由UDT传感器公司制做的DL-4探测器。探测器308放置在聚焦透镜306的焦平面上,聚焦透镜306有效地执行双轴电子自动准直器的基本功能。由此,探测器308测量相对于入射光轴的传感器座302的角位移(纵倾和横摆)。探测器308由它的光路布置使其对于传感器座302的横向位移相对地不灵敏,所述光路中包括聚焦透镜306。聚焦透镜306倾向于对横过其宽度的输入光聚焦至一个单焦点上。然而,光在聚焦透镜306上的入射角的改变(由相对于光束装置的纵倾和横摆的改变所引起的)会使该焦点移位,用探测器308来测量这种移位。
探测器308设置在由反光镜314,316所形成的长光程的末端,较长的光程可增加灵敏度。由此相比于先前同样的5-D设计在性能方面具有实质性的提高。调整螺丝320可以从传感器座302的外侧对入射至角探测器308的中心上的光束方向进行细调。
于是,凭借干涉仪和二个探测器308和312可以同时获取五个角度和位置测量。干涉仪103的输出是一个A-正交-B格式的信号,而探测器308和312分别提供四个管脚的输出D1和D2。探测器308和312的输出可利用探测器制造者专门设计的求和以及差分放大电路进行处理,再次对所得信号数字化。数字化的信号输到计算机110,予以储存,分析和显示。
在本发明的其它优选实施例中,如图4所示,激光器102(见图1-3)被分成二个分离的部件,一个干涉仪头402,它包含干涉仪,接收器光学,传感器和干涉条纹计数电路;另一个是遥控的激光器头404,它包含稳频的激光器。干涉仪头402和激光器头404由一个保持偏振(PM)的纤维光缆406连接。在执行机床上操作或其它测量应用中,遥控激光头404可以放置在任何方便的位置,而干涉仪头402需放置在一个牢固和固定的位置,通常放置在机床台上,对机床应用性能进行评估。
这种单元部件的分开设置具有几个明显的优点。第一,本实施例中移动作为热源的激光器,使它远离干涉仪头内的精密探测器,由此可以降低温度变化对探测器的影响,从而增加测量精度。第二,由于激光器的移去,使干涉仪头内的尺寸减小,从而使对干涉仪头的安装和调整更为容易。第三,本发明者发现,利用PM光纤有利于对激光束的整形,从而提高激光束的稳定性,克服光束的漂移。PM光纤的长度至少选用几英寸长为好,可凭借光纤的偏振特征提供所要求的稳定的激光束。然而,对于实际使用来说,PM光纤可以是2米或2米以上的长度,这样做有可能对激光器件在机床的外围区域中提供多个安置的位置。
对五轴系统传感器的输出和测量传感器105的输出进行处理,并利用上述电路(参见图5)连接至计算机110。
图5表示激光头,传感器座302和计算机110之间用于连接的接口电路500。接口电路500具有信号处理和数字化功能,同时利用RS-232接口提供所得测量数据至计算机110。接口电路500包括微控制器502,连接逻辑电路504,模拟至数字转换器506,放大器508,510和512,数字转换器514,计数器516,高速处理电路518和RS-232接口520。
如图5所示,气象站522通过放大器510连接至A/D转换器506。气象站测量在所感兴趣范围内的大气压力,气温和材料温度,并提供表示每个这些量的模拟输出信号。传感器座302(尤其是图3所示的探测器308和312),通过放大器512连接至A/D转换器506。对激光器102输出进行稳频的稳频控制器524连接至激光器102,并通过放大器508连接至A/D转换器506。A/D转换器506对微控制器502提供14位高分辨多路数字输出,以指示来自稳频控制器524,气象站522和传感器座302的模拟信号的状态。为了进行反馈控制,逻辑电路504提供一个从微控制器502至稳频控制器524的接口。
干涉仪103连接至数字转换器514,该数字转换器接收来自干涉仪的仪号,并在将该信号传输至计数器516之前转换成数字化格式。如果干涉仪103以A-正交-B数字格式提供输出,则可以不用数字转换器514,可把干涉仪的输出直接连接至计数器516。计数器516连接至微控制器502,并提供干涉条纹数的指示数据。这种干涉条纹在目标相对于激光器102移动时是已经探测到的。根据需要,如果需要跟踪的是高速运动,则可以设置高速处理电路518。
微控制器502通过RS-232接口520连接至计算机110。微控制器502控制接口电路500,对来自气象站,位置和角度传感器的原始数据进行收集,并把这些数据以数字形式传输至计算机110,以便进行适当的补偿,分析和显示。
计算机110设有软件,通过RS-232接口(在接口电路500内的)接收原始测量数据,并提供给使用者的操作面板,供系统控制以及结果的显示和分析。
计算机110对原始数据进行温度和压力补偿。计算机110也对干涉仪的输出采用计算条纹之间的内插方法进行激光高精度的细分。最后,软件记录最后的测量输出,为方便用户,采用数字和图表方式显示结果。
五轴传感器相对于一个常规的激光干涉仪进行定标,以保证系统的测量精度。在所有的传感器予以标定后,在计算机110中执行计算机误差变换和补偿处理,以提高系统的测量精度。
图6表示本发明的其它实施例。其中,传感器座302设置一个无线发射机,例如一种无线电或红外线发射机,以便将传感器的数据传输至测量系统。在该优选实施例中,传感器座302设置一个连接至探测器308和312的输出的放大电路702。放大电路702连接至多路模拟-数字转换器704,该转换器704连接至微控制器706。微控制器706接收来自传感器座302内的传感器的数字化原始输出,并例如利用红外驱动电路708发射该输出信息。传感器座302内的电路702,704,706和708由电池供电,最好采用放置在传感器座302内的可再充电的电池。
激光器102(或,在图4的实施例情况下为干涉仪头402)设置一个用于传输数据的合适的接收器710。一个连接至接收器710的微控制器712将所接收的数据传输至接口电路500的输入,在接口电路500,以前面所述的方式处理该数据。上述实施例有一个明显的优点,因为它不需使用将传感器座302连接至系统的其它设备的金属连接线。在机床应用中,传感器座302一般是安置到一个运动的工具头上。由此,当存在金属连接线时,运动的距离将受到连接线长度的限制,还存在工具运动时出现缠结或拌住连接线的潜在危险。利用红外或其它无线技术来代替连接线是一个重要的改进。
参见图7,本发明的其它特征在于,利用使所设计的激光器件机体保持在环境温度以上的指标温度的加热元件和反馈控制系统来提供激光器件的温度稳定性。这种设计布局将对激光器的稳定和可预测的操作有重要的贡献。该温度稳定机构缩短了对激光器的预热时间,并清除环境温度起伏的影响,由此增加系统的位置测量的精确度。
如图7所示,使激光器件座720能容纳上述的任何稳定的光束激光器件的应用,例如激光器件座720可以容纳激光头102(见图1、2、3、5或6所示),或激光头404(图4所示)。激光器件座720可以由金属铝或其它热导性相当均匀的材料制做,激光器件座720具有5/8英寸原的铝底座721。
温度传感器722和加热衬垫724分别用金属导线728和730连接至温度控制器726。加热衬垫724最好是一种电阻性加热元件,它由绕在柔性粘结带内的电阻性铜合金构成。加热衬垫724可以采用由Minko.Co.of Minneapolis,Minnesota制造的型号为NOHK5402R12.8 L12B的加热衬垫。加热衬垫724的粘结带被粘贴到器件座720的基底721的座表面内约2-3mm深的精磨的凹槽上。外盖732贴合到器件座720的底部,以保护加热衬垫724。加热衬垫724的尺寸可以约为50mm×75mm。
温度传感器722最好安装在基底721的上表面,温度传感器722探测激光器件座720内侧的温度。温度控制器726是一个反馈控制器,它有选择地将电流加到加热衬垫724,以利用常规的反馈控制技术,在温度传感器722保持一个恒定的温度。
基于激光器的操作温度范围来测定激光器件座720内目标升高温度。选择该温度使得激光器的输出具有最大的稳定性。
本发明提供的5-D测量设计相比已有的测量系统具有明显的优点。这种设计布置相比传统的系统更加紧凑,坚固,多用性,灵敏和经济。已有的系统对于线性的,直线度和角度测量需要分别用多个单独的装置,而本发明可以用一个装置进行所有的这些测量,可节省使用时间80%。本测量系统也可用于进行1-D(只是线性的)和3-D(线性和二个角度)的测量。本测量系统对线性的测量,一般测量精度到0.1p.p.m,对角度测量,精度为±0.1弧度秒,对于直线度测量,精度为0.2μm,当然利用本设计提高测量精确度也是可能的。
权利要求
1.一种激光滚动探测系统,它包括一个产生激光束的激光器;偏振装置,它与激光器配用,对激光器输出的激光束在至少第一和第二方向内进行偏振;一个滚动测量传感器,它包括,偏振分束器,用于将第一方向内偏振的部分光束从在第二方向偏振的部分光束中分离出来;第一强度传感器装置,用于测量在第一方向内偏振的部分光束的强度,并提供相应的光强度输出;第二强度传感装置,用于测量在第二方向内偏振的部分光束的强度,并提供相应的光强度输出;以及差分放大装置,具有分别连接至第一和第二强度传感装置的输出的正和负输入端,用于提供指示滚动测量传感器相对于激光和偏振装置的滚动取向的输出。
全文摘要
一个六轴激光测量系统(300),包括一个新颖的5-D测量装置和精密的激光流动探测器系统(100),5-D系统具有一个激光头(102)和探测器座(302)对纵倾,横摆、x、y、z位移进行测量,激光滚动探测器(100)利用偏振棱镜(104),例如Glan-Thompson棱镜,以及至少二个光探测器(D1,D2,D3,D4),一束线性偏振激光束进入棱镜(104),光束被分成二束偏振分量,其强度随着探测器(104)相对偏振光束的滚动取向而改变,将二个探测器(D1,D2)的输出分别连接至提供滚动输出的高增益差分放大器(108)的正和负输入端。
文档编号G01D5/34GK1205077SQ97191384
公开日1999年1月13日 申请日期1997年8月15日 优先权日1996年8月16日
发明者K·C·刘, Y·Q·廖 申请人:自动精密公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1