基于互补数字电桥的液体电导率测量方法与系统的制作方法

文档序号:8921360阅读:674来源:国知局
基于互补数字电桥的液体电导率测量方法与系统的制作方法
【技术领域】
[0001] 本发明属于仪器仪表测量技术领域,涉及一种液体电导率测量系统与方法。
【背景技术】
[0002] 液体电导率测量技术是一项非常重要的工程技术。其主要原理是对液体的电导特 性进行测量,对便于对液体组分进行分析,主要用于工业生产用水、人类生活用水、海水特 性、电池电解液等测量与检测。
[0003] 平衡电桥法是电导率高精度测量的主要方法,适合在高级实验室使用。其基本思 路是将电导率传感器的作为电桥的一臂,其余三个电阻采用高精度的电阻,高精度电阻具 有较好的一致性,有类似的温漂特性,以确保高精度。
[0004] 通常电导率传感器是由电导池构成的,不同的电导池的电导池常数不同,为了克 服电导池常数对测量结果的影响,两个上桥臂均采用电导池,其中一个电导池中放标准溶 液,另一个电导池中放待测溶液。系统按照一定的流程进行操作可以计算出电导池常数,并 进行补偿。
[0005] 图1是现有的平衡电桥法测量液体电导率原理图。由平衡电桥原理可得,电桥平 衡时待测电阻R。的计算公式如下:
[0007] 即电导率
[0009] 其中,Rs为标准溶液电阻,R i、R2为待测电阻,R c为待测溶液电阻,P c为待测溶液 电导率,Ps为标准溶液电导率。
[0010] 采用该电桥测量的时候,有以下问题会影响测量精度:
[0011] ⑴由于Rs为标准溶液,从上式可以看出,p c的测量精度受到^和心精度的 影响;
[0012] (2)为了实现数字化,Ri通常采用数字电位器,目前数字电位器的抽头数不够,分 辨率低,难以满足高精度测量的需要;
[0013] (3)为了防止溶液产生极化,影响电阻率的测量,通常采用交流电桥,但交流电桥 的波形和频率一般是固定的;
[0014] (4)由于溶液非纯阻性,在采用交流电桥测量的时候,存在波形畸变,严重影响测 量精度;
[0015](5)激励源、检流计和电桥在电气上不完全隔离,电路干扰可能会影响测量精度。

【发明内容】

[0016] 本发明的目的在于针对现有电桥式电导率测量方法的不足,提出一种新型的,基 于互补电桥式的高精度液体电导率测量系统和方法。
[0017] 本发明的技术方案是:基于互补数字电桥的液体电导率测量系统,包括激励源、与 激励源相连的平衡电桥和数字检流计,还包括主控电路、输入变压器和输出变压器;主控电 路分别与激励源和数字检流计相连;
[0018] 平衡电桥的四个桥臂分别为待测电阻R。、标准电阻Rs和两个等效互补电阻R :和 R2,其中待测电阻R。的第二端与等效互补电阻R :的第一端,构成一条支路,标准电阻Rs的第 二端与等效互补电阻馬的第一端相连构成一条支路;两条支路上的待测电阻R。的第一端与 标准电阻馬的第一端相连;输入变压器次级线圈的两端分别连接到R c与的第一端和等效互 补电阻&和R 2的第二端,互补电阻R :和R 2满足以下互补条件:
[0021] 其中,k为可调系数,1^为R :和R2的参考电阻;
[0022] 当k给定后,根据电桥平衡原理,待测电阻
。因此,k值和馬值 决定待测电阻的精度。
[0023] 互补电阻札和R 2采用N级R-2R电阻网络结构,其支路上的电阻分别为2R 和 RMf,R-2R电阻网络的首条2RMf支路与标准电阻1的第二端相连;其余2U路通过双向 选择开关跟别与待测电阻R c的第二端和标准电阻1的第二端相连;
[0024] 输出变压器初级线圈的两端分别接标准电阻馬的第二端和待测电阻R。的第二端, 其次级线圈的两端与数字检流计相连;
[0025] 主控电路包括信号采集单元、互补电阻计算单元和激励波形产生单元;信号采集 单元接收数字检流计的反馈信号,进行同步采样与滤波,激励波形产生单元产生激励信号, 将激励信号传递到激励源,互补电阻计算单元根据反馈信号计算等效电阻&和1? 2的阻值, 以便调整R-2R电阻网络结构与平衡电桥的连接结构。
[0026] 优选的是:数字检流计包括信号调理电路和模拟数字转换电路,经模拟数字转换 电路与主控电路相连;输出变压器的初级线圈连接到待测电阻R c的第二端和标准电阻1的 第二端;次级线圈与信号调理电路相连,变压器的信号经信号调理电路放大后传递到模拟 数字转换电路进行模数转换,数字量传递到主控电路。
[0027] 优选的是:激励源包括数字模拟转换单元、信号双极性变换单元和功率驱动单元, 激励信号传递到激励源的数字模拟转换单元,转换成模拟信号后,传递到信号双极性变换 单元;信号双极性变换单元将单极性信号转变为双极性信号后传递到功率驱动单元,功率 驱动单元经输入变压器与平衡电桥的输入端相连,功率驱动单元驱动变压器产生激励信 号,经变压器传递到平衡电桥。
[0028] 本发明的有益效果是:
[0029] (1)本发明的提供的测量系统和方法较传统的电桥式液体电导率测量系统的精度 有较大提高。传统的平衡电桥测量精度取决于&、1? 2和Rs,而本系统采用互补式数字电桥, 减少了电桥下桥臂分支电阻精度对于测量的影响;当k精确给定后,互补式电桥的精度只 取决Rs,不受&和R2的影响,降低了测量的不确定性,提高了精度。
[0030] (2)互补式数字电桥采用R-2R电阻网络结构,增加R-2R电阻网络结构的阶次N, 可以有效提高系统的测量精度。
[0031] (3)激励波形可以编程,可以根据不同的溶液特性,设定激励的波形参数,减少极 化现象对精度的影响。
[0032] (4)采用同步采样和滤波技术,提高了系统的精度和测量的稳定性。
[0033] (5)激励源、检流计和电桥在电气上完全隔离,减少了电路的干扰。
[0034] (6)采用内插算法,在电桥达到准平衡的时候,预测平衡时的参数,进一步提高精 度。
【附图说明】
[0035] 图1为平衡电桥法测量液体电导率原理图结构示意图。
[0036] 图2为本发明结构示意图。
[0037] 图3为本发明平衡电桥简化结构示意图。
[0038] 图4本发明基于R-2R电阻网络的平衡电桥结构示意图。
[0039] 图5主控电路程序流程图。
[0040] 图6数字检流计同步采样结构示意图。
[0041] 图7为互补电阻优化算法流程图。
【具体实施方式】
[0042] 如图2所示,基于互补数字电桥的液体电导率测量系统,包括激励源、与激励源相 连的平衡电桥和数字检流计,还包括主控电路、输入变压器和输出变压器;主控电路分别与 激励源和数字检流计相连。
[0043] 平衡电桥的四个桥臂分别为待测电阻R。、标准电阻Rs和两个等效互补电阻R种 R 2,其中待测电阻R。的第二端与等效互补电阻R :的第一端,构成一条支路,标准电阻Rs的第 二端与等效互补电阻馬的第一端相连构成一条支路;两条支路上的待测电阻R。的第一端与 标准电阻馬的第一端相连;输入变压器次级线圈的两端分别连接到心与R s的第一端和等 效互补电阻札和1?2的第二端。等效互补电阻1^和1?2的阻值大小满足以下关系:
[0046] 其中,k为可调系数,RreA R :和R2的参考电阻。
[0047] 如图4所示,互补电阻&和R2采用N级R-2R电阻网络结构,其支路上的电阻分别 为2R Mf和R,ef,R-2R电阻网络的首条2R,e^路与标准电阻1^的第二端相连;其余2U 路通过双向选择开关跟别与待测电阻R c的第二端和标准电阻1的第二端相连。
[0048] 其检测原理为:
[0049] 假设采用N级R-2R电阻网络,Di代表第i个开关的状态,"0"表示开关接在"A" 端,"1"表示开关接在"B"端,则定义:
[0051] 其中,
[0052]
表示接入的组合开关数。
[0053] 进一步可以得到待测电阻为
[0055] 电阻率:
[0057] 也就是说待测溶液电导率由标准溶液的电导率P s、R-2R网络的阶次N、电桥平衡 时的开关组合数n决定。
[0058] 数字检流计包括信号调理电路和模拟数字转换电路,经模拟数字转换电路与主控 电路相连;输出变压器的初级线圈连接到待测电阻R c的第二端和标准电阻Rs的第二端;次 级线圈与信号调理电路相连,变压器的信号经信号调理电路放大后传递到模拟数字转换电 路进行模数转换,数字量传递到主控电路。
[0059] 激励源包括数字模拟转换单元、信号双极性变换单元和功率驱动单
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1