一种新型微控智能形变、稳定性及疲劳测试设备的制造方法

文档序号:9324929阅读:434来源:国知局
一种新型微控智能形变、稳定性及疲劳测试设备的制造方法
【专利说明】
[0001](一)
技术领域
本发明涉及一种体育训练、比赛竞技器材单杠、双杠、高低杠、平衡木、吊环的新型微控智能形变、稳定性及疲劳测试设备,重点是采用自动化技术实现以上五种器材形变的智能测试的新型微控智能形变、稳定性及疲劳测试设备。
[0002](二)
【背景技术】
国内,通常采用人工往器材上悬挂重物,进行下拉的方式测试其形变、用人工拉拽的形式进行稳定性测试、采用电动机带动简单的偏心结构,并用人工计数的方式来测试器材的疲劳寿命,偏心尺寸测量有误差。悬挂重物的方式比较原始笨拙,记录数据的准确度难以保证,读数误差受人为因因素影响,且存在潜在的砸伤、磕碰等安全风险,且对器材形变的测试结果与实际差别较大,所述问题急需改进。
[0003](三)

【发明内容】

本发明为了弥补现有技术的不足,提供了一种新型微控智能形变、稳定性及疲劳测试设备,所述设备能够实现自动化检测,测试出单杠、双杠、高低杠、平衡木、吊环的实际形变数值,双杠的稳定性及单杠、双杠、高低杠的疲劳寿命。
[0004]本发明是通过如下技术方案实现的:
一种新型微控智能形变、稳定性及疲劳测试设备,包括伺服牵引系统,该伺服牵引系统包括位移传感器、形变拉力电机,还包括将被测器材拉紧的拉力系统,拉力系统及位移传感器均与微机系统相连。
[0005]本发明的新型微控智能形变、稳定性及疲劳测试设备,所述拉力系统包括伺服电机及梯形丝杠,伺服电机运转通过梯形丝杠传递动力。
[0006]本发明的新型微控智能形变、稳定性及疲劳测试设备,位移传感器置于可前后、左右移动的测试平台上,所述测试平台通过滑块与导轨连接,测试平台上从下至上依次设置形变拉力电机、拉力传感器、牵引绳索,形变拉力电机、拉力传感器均与拉力系统连接,拉力传感器的两侧分别设置滚珠丝杠且通过牵引工作台固定。
[0007]本发明的新型微控智能形变、稳定性及疲劳测试设备,被测双杠的杠面中部悬挂牵引绳索并通过滑轮与拉力传感器连接,滑轮通过滑轮支柱固定。
[0008]本发明的新型微控智能形变、稳定性及疲劳测试设备,所述微机系统还分别与变频电机、拉力传感器、自动计数器、偏心量调节电机相连,拉力传感器、自动计数器位于测试平台上,测试时,测试平台移动至待测器材的下方,偏心量调节电机上设置偏心量调节丝杠,所述丝杠上设有偏心滑块,该偏心滑块上设置悬挂绳索。
[0009]本发明的新型微控智能形变、稳定性及疲劳测试设备,微控智能形变、稳定性及疲劳测试设备还包括强、弱电测控系统,该系统包括电源控制及保护部分、程控气动控制部分、位置检测及控制部分、测力传感器供电、信号调理部分、数据采集卡、计算机通信接口部分,数据采集卡采用PCI总线结构。
[0010]本发明的新型微控智能形变、稳定性及疲劳测试设备,测试平台包括滑动平台及左右移动平台。
[0011]—种根据所述的新型微控智能形变、稳定性及疲劳测试设备的形变测试方法,包括以下步骤:
(1)根据要检测的器材,通过微机系统给拉力系统输入拉力数值,四个部位的拉线伺服电机同时运转,靠梯形丝杠传递动力,四个角的拉线同时拉紧到设定的数值;
(2)将测试平台移动到待测器材的下方,悬挂好相应的牵引绳索,通过微机系统输入所需的牵引力与伺服电机的转速,点击确定后,测试命令传出,即进入测试状态;
(3)达到设置的牵引力后,主伺服电机停止,位移传感器测出形变的尺寸并传入微控系统。
[0012]本发明的新型微控智能形变、稳定性及疲劳测试设备的稳定性测试方法,包括以下步骤:将被测试的双杠放置到相应位置,在杠面中部悬挂好相应的绳索,通过滑轮与伺服牵引系统连接,微机系统内输入主伺服电机的转动方向与转速,使牵引工作台向下慢慢移动,牵引力通过滑轮变成水平拉动双杠杠面的力,用角度测量仪测出倾斜的角度,慢慢施加力,直到双杠倾斜10°为止,测出的牵引力在微机上显示并存储、记录。
[0013]本发明的新型微控智能形变、稳定性及疲劳测试设备的疲劳测试方法,包括以下步骤:
(O根据要检测的器材,给拉力系统输入拉力数值,四个部位的拉线伺服电机同时运转,靠梯形丝杠传递动力,四个角的拉线同时拉紧到设定的数值;
(2)将测试平台移动到待测器材的下方,悬挂好相应的绳索,通过微机系统输入主机的转速,偏心量数值,点击确定后,测试命令传出,即进入测试状态;
(3)自动计数器自动计数,拉力值低于规定的数值后测试系统自动停止。
[0014]本发明的新型微控智能形变、稳定性及疲劳测试设备的测试方法,通过微机系统,在测控软件界面内完成测试设备测试动作的控制,在完成测试过程后,数据自动整理、计算,打印、存储、输出测试记录。
[0015]本发明的有益效果:本发明的设备主要由拉线系统、主机升降系统、位移传感器测量传输系统、强弱电测控系统、计算机及测控软件等部分组成;实现数据自动整理、计算、存储、打印、输出测试记录等。由原来的人工测试,变成专用设备进行的自动化测试。方便快捷,且数据准确度高,避免了潜在的砸伤、磕碰等安全风险,避免了单杠、双杠、高低杠原偏心尺寸测量有误差,测试次数不准确等弊端,结构简单、方便实用,值得推广。
[0016](四)
【附图说明】
下面结合附图对本发明作进一步的说明。
[0017]附图1为本发明的结构示意图;
附图2为附图1右侧的结构示意图;
附图3为本发明稳定性测试部分的结构示意图;
附图4为本发明的角度测量仪的结构示意图;
附图5为附图3测试状态图;
附图6为本发明疲劳测试部分的结构示意图;
附图7为附图6中间部分的结构示意图;
附图8为附图6右侧部分的结构示意图;
附图9为附图7的正面示意图; 图中:I器材,2位移传感器,3拉力系统,4微机系统,5滑块,6导轨,7形变拉力电机,8拉力传感器,9牵引绳索,10滚珠丝杠,11牵引工作台,12滑动平台,13左右移动平台,14滑轮,15滑轮支柱,16变频电机,17自动计数器,18偏心量调节电机,19偏心量调节丝杠,20偏心滑块,21悬挂绳索,22角度测量仪。
[0018](五)
【具体实施方式】
附图为本发明的一种具体实施例。该实施例包括伺服牵引系统,该伺服牵引系统包括测试被测器材I高度及形变量的位移传感器2、形变拉力电机7,还包括将被测器材I拉紧的拉力系统3,强、弱电测控系统,该强、弱电测控系统包括电源控制及保护部分、程控气动控制部分、位置检测及控制部分、测力传感器供电、信号调理部分、数据采集卡、计算机通信接口部分,数据采集卡采用PCI总线结构,拉力系统3及位移传感器2均与微机系统4相连。所述拉力系统3包括伺服电机及梯形丝杠,伺服电机运转通过梯形丝杠传递动力。伺服电机数目可以为4。位移传感器2置于可前后、左右移动的测试平台上,所述测试平台通过滑块5与导轨6连接,测试平台上从下至上依次设置形变拉力电机7、拉力传感器8、牵引绳索9,形变拉力电机7、拉力传感器8均与拉力系统3连接,拉力传感器8的两侧分别设置滚珠丝杠10且通过牵引工作台11固定。被测双杠的杠面中部悬挂牵引绳索9并通过滑轮14与拉力传感器8连接,滑轮14通过滑轮支柱10固定。所述微机系统4还分别与变频电机16、拉力传感器8、自动计数器17、偏心量调节电机18相连,拉力传感器8、自动计数器17位于测试平台上,测试时,测试平台移动至待测器材I的下方,偏心量调节电机18上设置偏心量调节丝杠19,所述偏心量调节丝杠19上设有偏心滑块20,该偏心滑块20上设置悬挂绳索21。测试平台包括滑动平台12及左右移动平台13,二者均通过滑块5与导轨6相连。
[0019]1、适用范围
该测试仪主要用于单杠、
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1