空气质量实时监测系统和监测方法_2

文档序号:9726151阅读:来源:国知局
触发次数的显示条。
[0025]此外,本发明还提供一种空气粒子浓度和荧光强度数据的实时监测方法,其应用于前述的空气粒子浓度和荧光强度数据的实时监测系统,该系统包括监控端和检测装置,所述监控端和检测装置之间通过有线或无线方式连接,该方法包括如下步骤:S1、监控端向检测装置发送控制指令,要求检测装置检测并发送当前的各粒径通道的空气粒子数和荧光强度数据;S2、检测装置根据所述控制命令检测当前的各粒径通道的空气粒子数和荧光强度数据,并将其进行数字化和编码后作为检测数据发送给所述监控端;S3、所述监控端对所述检测数据进行解析,分别得到各粒径通道的空气粒子数数据和荧光强度数据;S4、所述监控端根据所述各粒径通道的空气粒子数数据和荧光强度数据实时显示多通道空气粒子数分布图形和多通道荧光强度数据分布图形。
[0026]根据本发明的一种【具体实施方式】,所述步骤S4还包括显示指示条、用户标注线、用户操控界面、用户标注数据显示区中的至少一种。
[0027](三)有益效果
[0028]本发明在同一时间能实时对多通道粒子浓度数据和荧光强度数据图形化处理,用于提高尘埃粒子计数的效率,对空气质量实时快速分析和判断。
[0029]并且,本发明允许用户点击鼠标二维坐标系上的某点,能在显示框中实时观测该点处所处的通道上的粒子浓度和荧光强度数据。
【附图说明】
[0030]图1是本发明的一个实施例空气粒子浓度和荧光强度数据的实时监测系统的架构图;
[0031]图2是本发明的另一实施例空气粒子浓度和荧光强度数据的实时监测系统的架构图;
[0032]图3是本发明的监控端的一个实施例的模块组成架构图;
[0033]图4是本发明的一个实施例的显示模块所显示的多通道粒子数分布在某一时刻的显示图形;
[0034]图5是本发明的一个实施例的显示模块在同一显示界面上显示实时的多通道粒子数分布图形和多通道荧光强度数据分布图形;
[0035]图6是本发明的一个实施例的显示条图形;
[0036]图7是本发明的一个实施例的用户标注线图形;
[0037]图8是本发明的一个实施例的由显示模块显示的整体图形;
[0038]图9是利用本发明的监控系统的监控方法的流程图。
【具体实施方式】
[0039]为了解决上述技术问题,本发明提出一种空气粒子浓度和荧光强度数据的实时监测系统,以及利用该系统实时监测空气粒子浓度和荧光强度数据的方法。
[0040]为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
[0041 ]图1是本发明的一个实施例空气粒子浓度和荧光强度数据的实时监测系统的架构图。如图1所示,本发明的监测系统包括监控端1和检测装置2,检测装置2也称下位机,其能够根据控制指令实时输出空气粒子浓度和荧光强度数据的检测数据。监控端1也称上位机,用于向检测装置2发送控制指令,并接收由检测装置2输出的检测数据,对该检测数据进行处理后进行实时显示。
[0042]根据本发明,监控端1和检测装置2之间可以通过有线或无线方式连接,并且可以采用现有的各种通信接口和协议,例如串口、LAN、蓝牙、WiF1、USB等。
[0043]根据本发明的另一种实施例,如图2所示,本发明的实时监测系统也可以包括多个检测装置2、2’、2”,其均可通过有线或无线方式与监控端1连接。由此,各个检测装置2可以置放于各个不同空气环境中,例如一个城市的多个不同地段,以便实时检测多个地段的空气质量。
[0044]根据本发明,所述检测装置2输出的检测数据是数字化并经编码的数据。也就是说,检测装置2将其检测到的空气粒子数和荧光强度数据进行特定的编码后生成一个数据流后进行输出。并且,检测装置2以一定的时间间隔发送所述编码的检测数据,该时间间隔可以是固定的0.5秒、1秒、3秒等,也可以根据实际需要手动设定。
[0045]图3是本发明的监控端1一个实施例的模块组成架构图。如图3所示,本发明的监控端1包括主控模块10、输入输出模块11、数据解析模块12、粒子数最大值查找模块13、荧光强度最大值查找模块14、绘图模块15和显示模块16。
[0046]输入输出模块11用于输入和输出数据,在本发明的该实施例中,其用于将来自主控模块10的控制指令发送给检测装置2,并接收由检测装置2发送来的检测数据。如前所述,本发明的检测数据是经编码的空气粒子数据和荧光强度数据组成的数据流。
[0047]数据解析模块12用于对输入输出模块11接收的检测数据进行解析,从中分别提取空气粒子数数据和荧光强度数据。由于检测数据是编码的数据,因此数据解析模块12按照数据的编码格式进行解码。例如,在一种【具体实施方式】中,所述检测数据是多通道检测数据,所述的多通道检测数据是一组以255,1开头和以255,2结尾的6764个数据的数据链,如果判断一组6764个数据链的开头为255,1,结尾为255,2,那么所述的多通道检测数据即是有效的数据,可以对此多通道检测数据进行解析并得到空气粒子数数据和荧光强度数据。举例来说,数据解析模块12的解析方法如下:通过解析每个数据链的固定位置即可得到空气粒子数数据和荧光强度数据,例如读取空气粒子数据11FF,它是在数据链的第512,513位置的数据,512位置存放的是高位数据1100,513位置存放的是低位数据FF,高位和低位相加得到1 IFF数据,该数据即是所得到的空气粒子数据1 IFF。
[0048]数据解析模块12将所提取的空气粒子数数据分别输入到粒子数最大值查找模块13和绘图模块15,将所提取的荧光强度数据则分别输入到荧光强度最大值查找模块14和绘图模块15。
[0049]粒子数最大值查找模块13用于从空气粒子数数据包含的各通道的粒子数数据中查找其中的最大值,并输入到绘图模块15;同样,荧光强度最大值查找模块14则用于从荧光强度数据包含的各通道的荧光强度数据中查找其中的最大值,也输入到绘图模块15;
[0050]所述绘图模块15根据从数据解析模块13接收到的检测数据,以及从粒子数最大值查找模块13和荧光强度最大值查找模块14接收到的最大值,生成实时的绘图数据后输出到显示模块16。
[0051]根据本发明的一种实施方式,所述绘图数据包括空气粒子数坐标数据、荧光强度数据坐标数据、空气粒子数多通道分布数据以及荧光强度数据多通道分布数据。
[0052]空气粒子数据坐标数据是指用于绘制空气粒子数分布图形的坐标轴的数据,包括横坐标数据以及纵坐标数据,横坐标表示各个空气粒径通道的空气粒径,纵坐标表示空气粒子数。由于一般来说,检测装置2检测得到的通道数N是固定的,因此横坐标的刻度值通常是固定的,而所检测到的各通道的粒子数的值可能因所检测的空气环境而存在很大差异,因此需要为纵坐标设定合适的坐标值。根据本发明,绘图模块15根据粒子数最大值查找模块13得到的粒子数最大值来设定纵坐标的刻度值,例如,如果粒子数最大值查找模块13查到的粒子数最大值为867,那么就将粒子数最大值对10向上取整得到870,绘图模块15则设定870为纵坐标的最大刻度值。
[0053]荧光强度数据坐标数据是指用于绘制荧光强度数据分布图形的坐标轴的数据,也包括横坐标数据以及纵坐标
当前第2页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1