热轧过程在线计算板带温度的有限元方法

文档序号:6290261阅读:317来源:国知局

专利名称::热轧过程在线计算板带温度的有限元方法
技术领域
:本发明属于轧制
技术领域
,特别涉及热轧过程中在线计算板带温度的有限元方法。技术背景轧制过程中温度是最重要的参数之一。由于温度直接影响到轧制力,因此精确预报生产过程中各阶段的温度是保证厚度、宽度和板形等控制精度的关键。过去在生产中使用的温度计算方法或受其求解机理限制或过于简化,难以适应生产环境的变化,计算偏差较大。作为一种数值计算方法,有限元法能够准确地计算轧制过程中轧件的温度场。过去由于受有限元法计算时间的限制和有限元计算瞬态温度场时震荡现象等原因的影响,在线应用受到限制。随着计算机技术的迅猛发展,有限元分析瞬态温度场基本理论的完善和一些针对有限元方法快速算法的提出,用有限元法在线计算热轧过程中的温度成为可能,但是目前还没有将有限元方法应用到轧制过程中。
发明内容本发明的目的就是要克服传统温度计算方法精度低的缺点,将有限元方法引入到板带热轧过程中,提高温度的计算精度。实现本发明目的的技术解决方案是考虑到板带材热轧过程的实际情况,采用如下假设-(1)轧向尺寸远远大于宽度和厚度方向尺寸,忽略轧向热传导;(2)几何对称面两侧的温度分布对称,在对称面上没有热量交换;(3)忽略因摩擦力引起的钢板表面生热;①有限元模型的建立对轧件横断面进行单元划分,建立有限元分析模型如图1所示,对单元节点进行编号,计算节点坐标。根据单元划分数据、轧件宽度和厚度尺寸建立有限元分析模型,单元和节点编号沿厚度方向和宽度方向逐渐增加,图1中,i为单元编号,j为节点编号,H为厚度,W为宽度。AB和AD为边绝热界,BC和CD为换热边界。以A点坐标为零,计算各节点坐标,在宽度方向和厚度方向上单元均匀划分。②计算所需参数计算中所需数据包括初始信息,轧制参数,材料热物性参数,单元划分信息,控制参数。初始信息轧件初始厚度,轧件初始宽度,轧件温度;轧制参数轧制各阶段的厚度,环境温度,除磷水流量,内热源强度;.材料热物性参数热传导系数,比热,密度,黑度;单元划分信息宽度方向单元数和厚度方向单元数;控制参数各阶段的迭代次数;其它参数各阶段的换热系数,单元的形函数。以上各参数的确定如下(1)初始信息的确定计算过程中所需的轧件初始信息由过程控制系统给出。(2)轧制参数的确定除了轧制期间的内热源强度外,计算过程中所需的轧制参数主要由过程控制系统给出。轧制阶段内热源强度按照下式计算-《=70rff.(1)其中,7为修正系数,o"为等效流动应力,e为等效变形速率。空冷和除鳞阶段的内热源强度为0。(3)材料热物性参数的确定材料的热物性参数由材料的成分和温度确定。(4)单元数和各阶段迭代次数的确定有限元模型各方向上的单元数和轧制各阶段的迭代次数决定了温度计算的精度;一般情况下单元数和迭代次数越多,计算的精度越高,但是计算效率也越低;因此为保证有限元温度模型的在线应用,应该综合考虑单元数和迭代次数的设定量。(5)轧制各阶段边界换热系数的确定(a)辊道上的空冷过程换热系数的确定在空冷过程中,轧件自由表面与外界的热交换方式主要有热辐射和热对流两种,在此期间的综合热交换系数可表示为&=((7;厂7;)1/3+7(7^+7;2)(7^+7;))(2)其中,a为修正系数,7;,.为节点处的温度;f为钢的黑度;^T为斯蒂芬-玻尔兹曼常数;r。为室内温度。(b)除鳞过程换热系数的确定在高压水除鳞过程中,带钢表面温度、水压以及水量密度对热交换系数的影响较大,其垂直表面的主要换热方式见(2)式,水平表面的换热方式主要为强迫对流,对流系数表达式为、="lO7.20o663xl(T,47r'x1.163(3)其中,7;为钢板表面温度,H虔正系数,w为水量密度。(c)轧制过程换热系数的确定在轧制过程中,钢板垂直表面的主要换热方式见(2)式,钢板水平表面与轧辊发生接触时,总的热交换系数可通过下式计算<formula>formulaseeoriginaldocumentpage7</formula>(4)其中,p为修正系数,f为轧件与轧辊接触时间。(6)形函数的确定利用有限元基本原理,计算四边形等参单元的形函数。③有限元求解方程组的建立利用空间域有限元离散和时间域有限差分相结合法建立温度场有限元求解的线性方程组。(1)以热力学第一定律为依据建立热传导微分方程,假设材料导热各向同性,二维热传导的基本方程为-<formula>formulaseeoriginaldocumentpage7</formula>(5)其中:r瞬时温度(《)材料密度(紐/m3)c材料比热/时间(s)A:热传导系数(『/(mi))^内热源强度(J/w3)(2)利用欧拉方程在给定边界条件和初始条件下将二维热传导问题变为等效泛函表达式求极值问题每个单元的等效泛函表达式表示为<formula>formulaseeoriginaldocumentpage7</formula>(6)乂"乂根据热传导问题的变分原理,对泛函式(6)求一阶偏导数并置零,根据常用的有限元组合方法,对离散单元进行组装,把单元的刚度矩阵装配成整体刚度矩阵,得到二维有限元法求解温度场的系统方程<formula>formulaseeoriginaldocumentpage7</formula>(7)其中[&]-温度刚度矩阵,fc]=£fcw]+[4)]);[A]-变温矩阵,{W常数项列式'{p}=£k(";{7>温度列式;五-单元总数;上标e表示每个单元。对每个单元来说,刚度矩阵、变温矩阵和常数项可以通过式(8)求解7<formula>formulaseeoriginaldocumentpage8</formula>其中/t热传导系数(『/(m.A:));p材料密度(松/W);C材料比热换热系数,7V形函数;"/节点编号。(3)利用二点向后差分格式,将系统方程转化为瞬态温度场求解的线性方程组。将系统方程(7)中的温度对时间偏导数表示为二点向后差分格式将时间向后差分格式(9)带入系统方程得到温度场求解的线性方程组我们认为z-"时刻的温度场己知,然后利用上式求出t时刻的温度场,将此时所得温度作为新的初始条件,反复迭代求解下去,可得出任意时刻的温度场。④依据温度场求解的线性方程组得出每道次开轧温度板带热轧过程温度计算有限元程序如图2所示,在热轧过程中用于设定和控制的往往是各道次开始轧制时的温度(道次开轧温度),图2例给出了各道次开轧温度的计算流程。如果是第一道次,应从加热炉开始依次计算出加热炉空冷阶段、高压水除鳞阶段、第一道次轧前空冷阶段和轧制除鳞阶段,得出此时有限元网格各节点的温度值,然后由各节点温度值计算出钢板的表面温度、心部温度和平均温度。如果是其它道次的计算,首先读入上道次计算结束时各节点的温度值,接着依次计算上道次的轧制阶段、本道次轧前空冷阶段和本道次的轧制除鳞阶段,得出此时有限元网格各节点的温度值,得出本道次开始轧制时钢板的表面温度、心部温度和平均温度。⑤热轧过程有限元方法的在线应用如图3所示,轧制过程控制系统组成,当前轧制控制系统分为四级基础自动化系统,过程控制系统,生产控制系统,管理控制系统。基础自动化系统的主要功能有轧件跟踪、运送控制、顺序控制、逻辑控制和设备控制等。过程控制系统的主要通过基础自动化系统返回的实测数据进行处理实现轧件的过程跟踪和温度、轧制力、压下量和速度等参数的设定计算,并将设定值下送基础自动化系统执行。为了不影响过程控制系统的整体运行和方便有限元温度模型的修改,本文采用如下方法实现有限元温度模型的在线应用。首先定义一个类作为公用数据区用于实现有限元温度模型和过程控制系统之间的数据传输,将有限元温度模型计算时需要从过程控制系统中传入的初始信息和轧制参数以及有限元温度模型的计算结果作为变量定义在该类内。然后把道次开轧温度有限元计算程序封装成动态链接库模块,嵌入过程控制系统中,替代原有的温度计算模块。有限元温度程序模块的数据流程如图4所示。这样过程控制系统运行时自动将相关参数传给有限元温度计算模块并将计算结果调入过程控制系统,从而实现了有限元温度计算模块的在线应用。⑥过程优化为保证有限元温度程序模块的计算精度,还应将有限元温度程序模块的计算结果和过程控制系统从基础自动化系统传入的实测的温度值在线作进一步比较,如果二者相差较大,则对各阶段的换热系数公式中的修正系数和黑度在线进行适当调整使得二者的差值在15'C以内。本发明的最大效果是将有限元方法应用于板带热轧过程中在线计算温度,提高了温度的计算精度,为轧制力、厚度和板形等的精确设定和控制提供了必要条件。本发明适用于热连轧和中厚板轧制过程。图1本发明的有限元模型图,图2本发明的开轧温度的计算流程图,图3本发明的过程控制原理图,图4本发明的有限元温度计算程序模块的数据流程图,图5本发明的中厚板生产的工艺布置图,图6本发明的轧制温度计算值与实测值的比较图,图中i为单元编号,j为节点编号,H为轧件的厚度,W为轧件的宽度,l为换热边界,2加热炉,3除鳞系统,4四辊轧机,5层流冷却系统,6矫直机,E实测温度,F计算温度。具体实施方式某中厚板的生产的工艺布置如图5所示。其轧制工艺过程如下坯料入炉加热至相应温度一出炉进行高压水除鳞运送到轧机中进行成形轧制一转钢后进行展宽轧制一转钢后进行伸长轧制直至达到最终尺寸要求一运送至加速冷却系统进行冷却一矫直。以上过程是针对常规轧制;对于控制轧制过程而言其伸长轧制过程分成两个阶段待温(相当于较长时间的空冷)前阶段和待温后阶段。在待温前阶段轧件被轧制到一定厚度后,运送到待温辊道进行待温,逐渐冷却到规定的轧制温度,然油开始待温后阶段的轧制。根据该厂的工艺布置,按照图2所示的计算流程编制相应的有限元温度程序模块,实现温度有限元程序模块的在线应用,其过程如下该中厚板轧制生产线的过程控制系统分为两级基础自动化控制系统和过程控制系统。将有限元温度程序封装成DLL动态链接库嵌入过程控制系统中,由过程控制系统往模块中传入轧件和工艺参数,结合其它参数进行计算,并将计算结果传给过程控制系统用于其它模型的设定计算。待模型能稳定运行后,对模型的精度作进一步的在线优化。为了说明有限元温度程序模块的准确性和实用性,选取某次中厚板轧制过程加以介绍。其工艺参数如下钢种为Q235B,初始板坯厚度为220mm,轧制后钢板厚度为20.5mm,出加热炉温度为1200°C,钢坯从加热炉到除鳞机的运行时间为22s,除鳞时间为3s,工作辊半径为525mm,计算中用到的其它轧制工艺制度如表1所示。表1轧制工艺制度<table>tableseeoriginaldocumentpage10</column></row><table>所选择的有限元模型的宽度方向单元数为10,厚度方向单元数为9,空冷阶段迭代次数为8,高压水除磷阶段迭代次数取8,轧制阶段迭代次数取5。对于一次过程设定计算调用有限元温度程序模块用时170ms,整个过程系统的运行时间为800ms,基本上满足了生产要求。图6给出了各道次轧制时板坯上表面温度实测值与计算值的对比情况。从图6可以看出各道次的计算偏差基本上都在15t:以内,说明模型具有较高的精度。权利要求1、一种热轧过程中在线计算板带温度的有限元方法,其特征在于包括以下步骤①有限元模型的建立对轧件横断面进行单元划分,建立有限元分析模型,对单元节点进行编号,计算节点坐标;②计算中各参数的确定计算中所需数据包括初始信息,轧制参数,材料热物性参数,单元划分信息,控制参数,换热系数(1)初始信息的确定计算过程中所需的轧件初始信息由过程控制系统给出;(2)轧制参数的确定除了轧制期间的内热源强度外,计算过程中所需的轧制参数主要由过程控制系统给出。轧制阶段内热源强度按照下式计算全文摘要一种热轧过程中在线计算板带温度的有限元方法,属于轧制
技术领域
,本方法包括以下步骤①有限元模型的建立对轧件横断面进行单元划分,建立有限元分析模型,对单元节点进行编号,计算节点坐标;②计算中各参数的确定计算中所需数据包括初始信息,轧制参数,材料热物性参数,单元划分信息,控制参数,换热系数;③有限元求解方程组的建立利用空间域有限元离散和时间域有限差分相结合法建立温度场有限元求解的线性方程组;④计算道次开轧温度;⑤在线应用本发明的优点是能获得很高的温度计算精度和整个热轧过程板带温度分布的详细信息,为轧制过程提供设定和优化参数;应用性强,缩短了计算时间,提高了计算效率,并且能够在线应用和优化。文档编号G05B13/04GK101221416SQ20071015927公开日2008年7月16日申请日期2007年12月28日优先权日2007年12月28日发明者刚刘,刘相华,李长生,忠赵申请人:东北大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1