数字高分辨率控制器的制作方法

文档序号:6321469阅读:156来源:国知局

专利名称::数字高分辨率控制器的制作方法
技术领域
:本发明涉及电子定位器,具体来说,涉及电子定位器及其相关执行器的动力控制。
背景技术
:基于电子微处理器的单元可以用来控制多种自动化阀门应用中所使用的执行器。此类单元通常叫做电子定位器,也简单地叫做“定位器”;或者叫做伺服卡,也简单地叫做“伺服”。AC执行器是一种机电设备,其使用诸如AC分相电机甚至三相电机之类的电机来旋转能够与阀门机械相连的输出轴,从而允许执行器开启或关闭该阀门。DC执行器使用DC电机。有些执行器可以针对特殊类型的应用,使用电机来前后移动线性棒。大多数用于控制通过管道输送来的液体或气体流动的阀门,经常趋向于旋转90°或四分之一圈。因此,名称“垂直转动执行器”被广泛地使用和认可。在大多数应用中,0°被认为是关闭位置,而90°被认为是全打开位置。从控制的角度来看,通常以百分比打开来描述阀门,而不管打开和关闭位置之间的度数,其中0%对应于关闭位置,100%对应于全打开位置。垂直转动执行器通常以它们的速度来标定,其中额定值定义了执行器从0°移动到90°所需要的秒数。大多数执行器在2秒到90秒的范围内。参照图1,图示了示例性AC分相电机10。它包括电机绕组12和14。电机绕组12使电机10顺时针运动,而电机绕组14使电机10逆时针运动。针对阀门(未示出)来说,电机绕组12使电机运动以打开阀门,而电机绕组14使电机运动以关闭阀门。每个绕组的第一端都连接到第一AC电源线16。如图所示,第一AC电源线16为中性线,被称为“电机中性线”或“电机公共端”。然后,控制开关18可以用来通过将第二AC电源线20与适当的绕组相连来操作阀门。限位开关22和24通常用来在阀门已经达到行程末端时将电机10与电源断开,从而避免电机10处于连续堵转状态。连续堵转状态可能导致电机绕组12和14过热,并永久性地损坏电机10。限位开关22和24通常由安装在电机10的输出轴上的凸轮来启动。设置凸轮以在旋转的期望点处关闭限位开关22和24。换言之,限位开关22和24在阀门完全关闭或完全打开时关闭。AC电机可以带有热控开关26。热控开关26在达到某一特定电机温度例如200°F时,断开第一AC电源线16,然后,在电机10已经冷却后,重新连接到第一AC电源线16。这一装置预防了不利情况,例如电机在正常运行期间堵转、电机故障和/或执行器的过多循环。一些执行器使用扭矩开关来检测电机的堵转状态。热控开关26主要作为避免火灾的安全装置。然而,热控开关26的习惯性跳间可能损坏电机组件,从而显著地缩短电机寿命。与此相反,扭矩开关能在过热发生之前关闭电机10。扭矩开关针对开和关的每个方向进行操作,使得如果一个扭矩开关在其相关方向关闭电机,那么另一电机绕组仍可以操作。如果电机10能够在另一方向上自由运动,则重置扭矩开关,从而允许其在第一方向上运行。从电学上来看,每个扭矩开关与给定绕组的限位开关串联,所以限位开关22和24在电学上表现为限位开关和扭矩开关,其中极限位置或扭矩跳闸功能会断开电机绕组。仍然参照图1,电机电容器28造成动力绕组和无动力绕组之间的相移。无动力绕组中的相移产生与动力绕组中使电机10以特定方向旋转的主要磁场协同工作的磁场。当另一绕组上电时,相移使得绕组间的磁极性翻转,从而使电机10以相反方向旋转。当电容器28的电容增加时,相移也增加,从而引起绕组之间更大的磁差动。这导致从电机10输出更大的扭矩。虽然更大的电容通常用于获取更大的扭矩,但是增加的电容也使得更大的电流流过无动力绕组。该增加的电流导致电机10产生更多的热,结果电机规格通常从100%能效下降到低至25%的能效。当将电力刚施加到给定绕组时,产生涌入电流,其等于AC电压除以电机绕组的电阻。一旦电机开始旋转,其穿过磁场的运动就产生显著降低电流消耗的反EMF。无动力绕组也通过使电流穿过电机电容器28来增加涌入电流,因此当更大的电容用于增加扭矩时,涌入电流也增加。涌入电流通常为正常运行电流的2到3倍,并且通常持续100毫秒。与正常运行的电流相比,涌入电流导致显著的热效应,结果电机一般以每小时最大的起动次数来标定。例如,100%能效的电机可以达到每小时最多起动12,000次。如果电机10机械地堵转,由于电机10没有旋转穿过磁场,所以电机电流自然会增大到涌入电流的值。虽然扭矩开关避免了大多数的堵转情况,但是当使执行器在小范围内(例如小度数)移动的碎片限制阀门时,会产生典型应用中的偶然故障。这导致不稳定的控制信号经常沿两个方向在堵转状态之间振荡。最后,堵转电流和涌入电流的组合使电机10过热,从而使热控开关26跳闸。电子定位器基础为了电控例如所示的AC分相电机之类的电机,控制开关18被替换为电控开关装置。一种方法是将控制开关18替换为可由电子电路控制的继电器。然而,继电器可能在AC正弦波的任意时间点切换。当继电器触点在正弦波峰附近将电能施加到电机绕组时,电机绕组上的电压突变产生明显的电瞬态,这会引起与控制继电器和附近其它电子设备的电路的电子干扰。另外,继电器的机械性质限制了切换循环的数量。通常,切换循环的数量小于1,000,000。在切换期间产生的瞬态导致继电器触点之间不期望的电弧,该电弧烧坏触点表面,并逐渐损坏继电器。这导致电循环通常局限为机械循环1/10。一种更好地控制电机的方法是将控制开关18或继电器替换为不具有活动的机械部分的固态装置,从而消除机械磨损和不期望的电弧。虽然可以使用多种固态装置和电路,但最通用的装置是如图2所示的三端双向可控硅开关元件(triaC)30和32。三端双向可控硅开关元件30包括初级三端双向可控硅开关元件Ql和次级三端双向可控硅开关元件Qla。三端双向可控硅开关元件32包括初级三端双向可控硅开关元件Q2和次级三端双向可控硅开关元件Q2b。次级三端双向可控硅开关元件Qla和Q2b分别用于门控初级三端双向可控硅开关元件Ql和Q2,从而导通和截止初级三端双向可控硅开关元件Ql和Q2。次级三端双向可控硅开关元件Qla和Q2b是在电机电路和控制电路之间提供电绝缘的光电子器件,其方式与将继电器线圈从其触点断开的方式相同。另外,控制LEDLEDl和LED2可以由诸如微处理器之类的低压、低功耗装置来控制。次级三端双向可控硅开关元件电路中的电阻34和36用于限制通过初级三端双向可控硅开关元件Ql和Q2的栅极的电流。进一步增强三端双向可控硅开关元件控制的通常实践是过零电路的使用,其中过零电路避免初级三端双向可控硅开关元件Ql和Q2导通或截止,除非AC线路电压为零电压。这显著减少了当电源随机施加到电机10时所产生的电瞬态。长期以来,光耦合三端双向可控硅开关元件装置已经使用了这种集成在装置中的过零电路,并且通常用在定位器设计中。这使得控制LEDLED1和LED2的随机开关,而不会导致初级三端双向可控硅开关元件Ql和Q2的随机开关。虽然过零控制三端双向可控硅开关元件解决了随机开关问题,但是限位开关22和24、扭矩开关、热控开关26或者其它任何AC线路电压的电力中断都可能导致对电机10的电力的“随机开关”。这些事件将产生可能损坏三端双向可控硅开关元件电路30和32的瞬态。为了防止对三端双向可控硅开关元件30和32的损坏,可以使用缓冲电路(未示出)。需要一种控制定位器的装置来打开和关闭电机10,以实现具体百分比的打开位置。自动控制系统可以提供模拟或数字的控制信号。所用的常规模拟信号为0-10V、0-5V、1-5V或4-20mA,其中所用的具体信号表示0-100%打开。数字信号可以采用脉宽调制、频率调制的形式或数据通信的许多形式中的一种形式。不管采用哪种类型的信号,该信号都会被解析成百分比打开命令。为了在命令信号所指示的期望位置关闭电机10,定位器监测执行器输出轴的位置。监测输出轴位置可以通过将反馈电位计机械地连接到输出轴来实现。大多数执行器通过将一个齿轮安装到输出轴并且输出轴依次旋转安装到电位计轴的另一齿轮来使用一组齿轮连接反馈电位计。由于电位计和执行器具有有限的旋转范围,所以电位计旋转需要和输出轴旋转对准。亦即,当阀门位置处于50%打开时,电位计游标理想上处于50%电阻。通过在阀门为50%打开且电位计被设置为50%时将齿轮紧固到它们对应的轴上来完成对准。现在参照图3,定位器40将激励电压+V(通常是10或低于10V)施加到反馈电位计42,并测量电位计游标44上的电压,其正比于输出轴的角位置。为了将阀门定位到所期望的百分比打开,定位器40比较来自反馈电位计42的反馈信号46和命令信号48,并确定是打开电机绕组还是关闭电机绕组,然后在命令信号48与反馈信号46匹配时最终关闭电机10。模拟定位器通过使用可调放大器(调整放大器)用可调偏移量调整命令信号48和/或反馈信号46来实现上述处理,以便两个信号在0%和100%打开时产生相同的电压。偏移量调节通常指示0%的值,并被称作零设定值。放大器的增益指示100%的值,并被称作量程设定值。数字定位器通过利用模数(A/D)转换器电路将命令信号48和反馈信号46转换为数值来执行上述任务。一旦使用数值形式,微处理器可以使用加法操作来置零,使用乘法操作来设置量程,然后逻辑比较所调整的数字值。对于数字定位器来说,比较器50和52表示逻辑操作,而不是实际电路。为了正确地运行,电机10和反馈电位计42必须以特定的方式连线到定位器40。在大多数应用中,当电机10向打开位置移动阀门时,反馈电位计42的游标44向+V端移动,这增大了游标44上测量的电压。在这种情况下,通常称为“前向动作”,比较器50只要在反馈信号46小于命令信号48时,就打开所打开的电机绕组。与此类似,比较器52只要在反馈信号46大于命令信号48时,就打开所关闭的电机绕组。阀门运动和反馈信号46之间的最终关系可以用不同的条件来转换,例如反馈电位计42的安装方向、反馈电位计42的连接结构、以及执行器和阀门之间的机械连接。因此,一些应用需要“反向动作”。对于反向动作而言,当命令信号48增加时,执行器会向着其定义的关闭位置运动。同样地,当命令信号48减小时,执行器会向着打开位置运动。由于机械连接和安装不容易改变,所以通过对电机10和反馈电位计42进行重新布线连接以获得所期望的关系,可以更好地实现反向动作。虽然极性敏感关系比较简单,但是由于存在多种转换该关系的方式,所以它仍然是共同问题的根源。当定位器40关闭给定的电机绕组时,电机10中所产生的惯性使得电机10继续运动,越过所期望的位置。当发生此事时,定位器40立即尝试将相对电机绕组关闭,以重新定位执行器。相对方向的惯性然后使执行器滑行再次越过所期望的位置。最终结果是定位器40永远不会令人满意,并且执行器会来回振荡。这被称为“摆动(hunting)”。为了避免摆动,传统定位器使用静带调节,其充分增加比较器50和52的偏移量,以创建两个电机绕组都关闭的第三状态。这导致这样的情况,即需要命令信号48和反馈信号46之差在电机10能再次打开之前大于静带设定值。电机的惯性运动效应可以依据执行器速度、电机尺寸、所用阀门的类型、阀门上的负载、以及环境条件而广泛变化。对于通常可用的执行器,惯性运动效应至少为0.5°,也可能多达30°。为了减少惯性运动,许多执行器采用机械制动器。虽然能实现多种制动器设计,但是大多数都利用通用的设计原则。制动器包括对电机轴施加机械摩擦的一些机械装置和释放电机轴的机械摩擦的一些螺线管装置。通过用螺线管装置跨接打开的和关闭的电机绕组,螺线管装置可以在任一电机绕组打开的任意时间释放制动器。与此类似,当两个绕组都关闭时(处于静带范围),机械装置将对电机轴施加制动摩擦。由于机械制动器包括需要时间去运动的运动部分,所以它们不能有效地将惯性运动降到0.5°以下。然而,机械制动器可以将惯性运动限制在2°或更低。机械制动器还能实现另一目的,即在定位器关闭电机之后保持执行器的位置。实现正齿轮设计的执行器很容易被阀门上的负载向后驱动,因此几乎总是需要采用机械制动器。由于机械制动器根据摩擦原理来工作,所以制动器性能随着温度和磨损而变化。另外,制动器中经常使用的材料不能忍受电机过热时可能导致的高温。制动器中的螺线管装置也易受温度影响,其中螺线管可能不会脱离制动器,从而导致电机过热,引起对制动器的永久损坏。为了消除机械制动,一些执行器设计使用机械技术(例如蜗轮传动)来防止负载的向后驱动。然而,由于并没有阻止惯性能量的根源,即电机,所以这没有消除影响定位器性能的惯性运动。分辨率对于执行器来说,分辨率是能进行的最小可重复运动的测量值。对于垂直运动执行器来说,分辨率以旋转角度来衡量。由于使用电子定位器的最终目的是将阀门控制在具体百分比的打开位置,所以根据定位器通常实现的任何所期望或命令的位置来衡量定位器的性能。因此,分辨率是性能的最重要的衡量。受分辨率影响的自动控制系统的基本因素是,执行器在给定控制范围内可以进行的离散运动的数量。如前所述,传统定位器采用静带设置来防止不稳定的操作或摆动。由于直到命令信号和反馈信号之差超过静带设置才关闭电机,所以静带设置指示了可以进行的最小的离散运动。如前所述,执行器的机械特性造成在90°的范围内静带大于0.5°,或180点的分辨率。虽然某些定位器和某些执行器的组合可以优化分辨率,但是,不采用新技术或工艺就实现超过200点的分辨率是不实际的。虽然180点的分辨率似乎足够了,但是通常使用的蝶形阀门和球形阀门只能使用可用分辨率的大约1/3。这是由于在阀门达到33%打开时,这些类型的阀门基本上允许0%至100%的流量,从而将分辨率的可用点降低到60。由于大多数自动系统试图控制特定的流速,所以过程控制器通常以一般不超过10°的更窄范围来操作阀门。这使得只要20点的分辨率就能维持稳定的流量。为了实现通过阀门的特定流速,过程控制器可以在两点分辨率之间移动阀门,从而实现中间的“点”。由于大量液体或气体的阻尼效应,足够快地控制两点之间的开关才能得到两点分辨率之间的平均点的控制流量。通常,过程控制器在两点之间需要的速度比执行器电机能够不过热操作的速度快。为了补偿,使用具有更高占空比的更贵的执行器。在具体应用中用来提高分辨率的一种技术是,使用公知为V-球形阀门的精加工的球形阀门。这种类型的阀门通过使用类似“V”形的精确切割球限制流过阀门的流量来使用阀门的几乎全部量程。这使得全部180点的分辨率用于从0%到100%打开。最终结果允许过程控制器使用更广的运动、或更多点的分辨率来保持稳定的流量。另一种用来提高分辨率的技术是,将执行器的量程从90°扩展到180°。通过将执行器输出轴调整回到阀门的90°运动,阀门的最终分辨率可以理论上缩小一半,即是0.25°。然而,由于定位器只能监测执行器输出轴的位置,所以每一级调整都引入不能补偿的间隙。这导致实际的分辨率为0.3°或更高。虽然可以进一步发展扩展执行器量程的技术,但是由执行器和阀门之间的调整所产生的更多间隙对0.3°的分辨率产生了实际限制。为了使用机械技术实现更好的分辨率,遇到的另一实际局限是成本。通过设计,执行器在其采用被调整为更慢速度的机械制动器并采用上述技术中的一种时,达到更好的分辨率。实际上,最终结果是,由于更大、更慢且更庞大的执行器与更昂贵的专用阀门一起使用,所以是以高额的成本获得了更好的分辨率。
发明内容本发明提供了用来显著增加分辨率的低成本且高效的解决方案。控制器采用能够将电机移动到所期望的电机位置而不管静带或间隙的电机控制算法。与根据测量位置来调节电机位置(轴位置)的传统控制算法不同,本算法根据所观察的电机运动来建立电机位置。根据由先前所提供的能量的量,而不仅仅是根据电机轴的当前静止位置,来以离散量的形式提供能量。因此,控制算法能够适应实际的运动学状况。如果电机正在控制例如用来调节不均勻粘性液体的阀门,那么电机打开和关闭该阀门的能力依赖于液体的当前粘性。该控制算法可以检测该状况并相应地进行调节。根据本发明的一个方面,提供了一种控制电机的方法,其中,提供第一数量的能量给电机以产生运动。观察所产生的运动,并基于所观察到的运动提供第二数量的能量给电机,从而使所产生的运动可以达到所期望的位置。在一个优选的实施例中,控制提供所述第一数量的能量和第二数量的能量之间的时间间隔。在当前电机位置远离所期望的位置时,以第一速度传送所述数量的能量(以根据第一时段的间隔来传送)。在当前电机位置比较靠近所期望的位置时,优选以低于所述第一速度的第二速度来传送所述数量的能量。这样,当电机位置远离所期望的位置时,更快地传送所述数量的能量(但是小于计算的精度)。当电机靠近所期望的位置时,更慢地传送所述数量的能量。这允许在传送下一数量的能量之前消耗部分惯性运动的时间。在另一优选实施例中,使用电子制动机制。在全部电力施加到电机之后,电子制动减小了也需要较长时间的大量惯性运动。虽然不是所有应用都需要,但是电子制动机制提供了及时获得分辨率精确度的手段。因此,本发明使用新方法处理分辨率。使用该新方法改良的电子定位器能获得高分辨率,并可以与多种执行器一起使用,并且在多种应用中使用。如果需要,该新方法可以适用于使用上述其它技术的系统中,实现更进一步的性能改进。在该新方法的诸多好处中,降低了由于过多循环和由于堵转状态引起的电机过热。也消除了由于快速的或错误的信号改变或者由于电噪声或环境条件引起的错误的或不稳定的操作。还极大地简化了定位器的安装和设置,这是因为新方法能够自动检测极性以消除由于布线引起的错误操作;去除了校准步骤和程序;去除了设置所用的仪器;以及具有方便的三按钮数字控制以配置所有设置的参数。此外,从后面提供的详细描述可以明了本发明更多的应用领域。应当理解,这些详细描述和具体示例虽然表示了本发明的优选实施例,但是仅出于示例性的目的,并不意欲限制本发明的范围。从这些详细的描述和附图可以充分理解本发明,其中图1为现有技术中AC分相电机的示意图;图2为现有技术中三端双向可控硅开关元件控制电路的示意图;图3为现有技术中定位器的示意性框图;图4为现有技术中电子制动电路的示意性框图;图5为改进的电子制动电路的示意性框图;图6为图示本发明优选实施例的制动序列的波形图;图7为描述控制算法中所包括的动力原理的时序图;图8为脉冲序列波形图;图9为涌入电流波形图;图10为显示控制算法的一些基本原则的功能框图;图IOA为能量与运动关系的示意图,用于理解图10所示的控制算法的操作;图IOB为能量与运动关系的示意图,关注也在图IOA中示出的脉冲特性带间隔;图IOC为功率与时间关系的示意图,关注也在图IOA和图IOB中示出的脉冲特性带间隔;图IOD为用来理解图10中的控制算法的操作的流程图;图11为控制器的当前优选实施方式的详细示意图;并且图12为用于图11中的实施方式的电源的详细示意图。具体实施例方式以下对优选实施例的描述本质上是示例性的,并不意欲限制本发明、本发明的应用或用途。电子定位器的动力控制数字高分辨率控制器实现了电子定位器及其相关执行器的动力控制。通过动力控制算法来实现高精度,其中动力控制算法测量和适应对执行器和连接到执行器的机械系统所实际观察到的运动。现在详细介绍新的动力控制系统。控制算法概述参照图10,首先概述控制算法。图10将控制算法显示为互连功能处理的集合。这些处理可以由经过合适编程的微处理器(如下面讨论的图11的电路图所示)来执行。根据本优选实施例,例如微处理器的计算装置被编程,以将提供给电机的大量能量以控制包的形式传送给第一方向输出端或第二方向输出端。所述输出为逻辑状态(开或关)的形式,然后逻辑状态被转换成适当的电信号以向电机提供动力。在优选实施例中,图12中的输出端Ql和QO用于控制三端双向可控硅开关元件输出端,即电机1和电机2,从而驱动AC分相电机。在其它应用中,这些输出端可以用来控制可逆DC电机、控制起动活塞的电磁阀、控制三相电机的继电器、或者任何能够被电控以提供运动的其它装置。控制算法的输入包括提供所期望位置信息的命令信号和提供当前位置信息的反馈电位计信号。图10中的每个模块都表示一系列微处理器指令,其对输入数据执行操作并根据输入数据向其它模块提供输出数据。未示出的微处理器控制数据流和所有操作的时序。控制模式首先,微处理器确定使用两种电机控制模式中的一种,即运行模式或脉冲模式。现在参照图10A,在运行模式或脉冲模式下将能量包130传送给输出端中的一个(例如第一方向)。在当前位置位于脉冲特性带(pulsepropband)之外时,激活运行模式,而在当前位置为脉冲特性带之内时,激活脉冲模式。对于另一输出端,图是镜像的,意味着运动是从右到左,而不是如图所示的从左到右。如图IOD所示,当位于脉冲特性带之内时,激活脉冲模式。为了在模式之间依次提供切换,直到运行模式完成了运行序列之后才激活脉冲模式。一旦激活脉冲模式,就不能激活运行模式,直到脉冲模式完成了脉冲序列。图IOA示出了运行序列将当前位置移动到脉冲特性带之内的结果,此时激活脉冲模式。注意,一旦激活脉冲模式,脉冲模式和运行模式之间的分界就会移动到脉冲特性带的整个宽度。一旦控制算法实现了与所期望分辨率一致的位置,就使两种模式无效,直到所期望位置的变化触发其中一种模式。所期望的分辨率只受两个因素中较大的那个的限制用给定的执行器机制可以进行的最小运动,或当前位置信息的最精细分辨率。运行序列处理器图10中的运行序列处理器模块确定运行模式的能量包。然后,基于方向控制模块提供的方向信息为输出端选择第一方向或第二方向。由运动处理器模块提供的运动信息用于测量随后的惯性运动131,其接着用于计算下文将详细描述的惯性补偿值(ICV)。完整的运行序列包括将100%能量包132施加到位于脉冲特性带之外一位置处的所选择输出端,在等于所期望位置减去ICV的位置施加制动器序列133,测量随后的惯性运动131,然后在134处计算ICV的新值。参照图10A,注意,在本优选实施例中运行模式仅包括单个运行序列,其施加恒定的全功率至电机,并在检测到位置等于所期望位置减去ICV时结束。这样,该运行模式与传统定位器相似。然而,传统定位器根据所期望位置减去静带设定值来结束这种运行模式,静带设定值只是意欲防止摆动的固定值。与此相反,本优选实施例所用的ICV值是通过执行器的条件、负载和环境来确定的实际运动的测量值。这样,本发明消除或补偿了静带。来自热量计算器的输入提供了百分比能效信息,运行序列处理器根据电机的热量状态来使用该信息(参见下面的热量计算器部分)。当这些发生时,图IOA中所示的运行序列变为一系列的开关时段。这仍然认为是单个运行序列并以上述相同的方式终止。由于制动序列本身会在电机中产生大量的热,所以在能效控制以进一步减少热量时可选地排除制动序列133。在优选实施例中就是这样操作的。制动序列处理器注意,制动序列133实际上是运行序列的一部分,并且在输出几乎关闭的情况下可以被排除。其结果是,随后的惯性运动131变得更大并需要更多时间。因此,ICV变得更大,导致脉冲特性带变得更大。最终结果是,控制器以及执行器需要更多的时间来达到所期望的位置。由于制动序列是由所期望位置和ICV之差所触发的固有操作,所以制动序列处理器不需要其它输入信息来执行下述的制动操作。来自热量计算器模块的输入根据电机中的热量状态激活制动序列或者使制动序列失效。热量计算器热量计算器模块监测输出端在何时打开以及如何打开,并计算电机输出的热量结果。下面描述计算热量结果的进一步细节。基于热量计算,热量计算器为运行序列处理器提供操作的百分比能效,并激活制动序列或者使制动序列失效。可选地,实际的温度传感器可以用来监测电机的热量状况。然后,传感器信息而不是所计算的温度,用于计算百分比能效信息。虽然需要附加的组件和电路,但是该方法能简化热量计算器代码,并具有提供包括环境温度结果的实际电机温度状况的好处。脉冲序列处理器脉冲序列处理器模块确定在脉冲模式中针对给定脉冲序列的能量包。然后基于方向控制模块提供的方向信息为输出端选择第一方向或第二方向。由运动处理器模块提供的运动信息用于测量随后的运动135,其接着用于计算下一个脉冲序列的参数。完整的脉冲序列包括将部分能量包136施加到位于脉冲特性带之内一位置处的所选择输出端,在脉冲序列的末端测量随后的运动135,然后计算下一个脉冲序列的新参数。脉冲序列的参数包括脉冲序列时间长度、能量包136的能量等级、以及能量等级从一个脉冲序列变化到下一个的速度。如图IOA所示,与运行模式不同,脉冲模式包括一个或多个脉冲序列。由于脉冲序列时间长度是关键的参数,所以完整的脉冲序列是单个实体,并且该脉冲序列结束之前不允许其它操作。进一步,所期望位置和当前位置之差用于计算脉冲序列的参数。其结果是,所期望位置信息存储在脉冲序列的开始处,即134处。为了保持稳定的脉冲操作,忽略所期望位置的变化,直到脉冲序列完成。如前面所提醒的,一旦激活脉冲模式,就如图IOB那样在整个脉冲特性带的宽度内保持其激活。每个能量包130随着当前位置靠近所期望位置而成比例地减小能量等级。给定一组条件,由能量包产生的运动与包的能量等级成比例。因此,下面的等式描述了如何确定包的能量等级,即Ep,其中pC定义在传送能量包时的当前位置pD定义所期望位置pB定义脉冲特性带,是ICV的两倍Ef定义脉冲序列的最大分级(fractional)能量等级<formula>formulaseeoriginaldocumentpage11</formula>最大分级能量等级Ef与所期望分辨率和给定脉冲序列产生的实际运动之差成反比;亦即,当产生的运动超出所期望分辨率时,Ef降低。理论上,可以通过基于所产生的运动成比例地调节Ef来在每个脉冲序列之后调节Ef,于是Ep的计算可以修改为r定义所期望分辨率mP表示根据先前脉冲序列测量的运动<formula>formulaseeoriginaldocumentpage11</formula>注意,上述等式具有以争取使mP的值等于r从而等于原等式的方式改变Ep的效果。然而,在实践中,在当前位置靠近特性带的边缘时,并不需要将mP约束为r的值。进一步,由脉冲序列产生的小运动不是必须重复的,因此以有限增量调节Ef提供了更稳定的操作。以有限增量调节Ef具有对r/mP项进行平均的效果。有限的增量成为所期望的操作稳定性与完全调节Ef所需要的时间量之间的折中。这样,本发明对能量等级从一个脉冲序列变化到下一个脉冲序列的速度进行控制。由于能量是功率和时间的函数(即E=PXt),图IOB示出了能量与运动的关系,其也可以按图IOC中功率与时间关系角度来看。功率脉冲137及随后的休止时间138的组合构成图IOB中所示的相关能量包130。由于给定能量包的等级等于功率脉冲工作时间与总脉冲序列时间的比,所以能够解释为什么脉冲序列是一旦启动就不可中断的单个实体。注意,脉冲序列时间tC随着当前位置pC接近所期望位置而增加,而功率脉冲工作时间保持恒定。虽然改变功率脉冲工作时间同时保持脉冲序列时间恒定具有相同的效果,但是这会在当前位置靠近脉冲特性带边缘时不必要地造成算法迟钝。这是因为脉冲序列时间由最靠近所期望位置的最远脉冲序列139来确定。参照图10C,功率脉冲137和其休止时间138确定图IOB中的Ef的值。因此,通过控制脉冲序列时间tC能有效地建立每个后续脉冲序列的能量等级。使用这种技术,如表2所示,对功率脉冲工作时间的增量调节(参见下面标题为“自适应脉冲序列”的部分),如前所述有效地调节了Ef的值。Ep的先前公式现在可以从tC的角度来描述,其中pC定义在传送能量包时的当前位置pD定义所期望位置pB定义脉冲特性带,是ICV的两倍tD定义最大脉冲序列时间tB定义最小脉冲序列时间<formula>formulaseeoriginaldocumentpage12</formula>最大脉冲序列时间tD依赖于使用该算法的执行器的量程,其中tD是在施加由脉冲序列139表示的最小能量包之后停止运动所需要的最长时间段。功率脉冲工作时间由产生与所期望分辨率一致的运动所需要的时间量来表示。给定执行器的最小脉冲工作时间被定义为产生运动所需要的最小时间。如果最小脉冲工作时间产生的运动大于所期望的分辨率,算法会在脉冲序列139之后检测到这一情况,并相应地调节分辨率参数。这样,算法会确定给定的执行器是否能够实现所期望的分辨率,然后补偿最佳性能。在位置等于所期望位置减去ICV时产生的最小脉冲序列时间tB,是主要为性能选择的,假定最大功率脉冲工作时间小于tB。这确保了脉冲序列能量包小于100%。在优选实施例中,在脉冲模式中意欲保持低占空比以最小化电机热量,并由此使用46个半周期的最小tB,其具有14个半周期的最大脉冲工作时间,从而产生30%的最大占空比或Ef。其它应用可以选择更快的响应时间,从而可以使用导致更高Ef的更高占空比。脉冲加速模式参照图10B,每个能量包产生一个成比例的运动量。然而,执行器上突然的负载增加可能导致小的运动或不运动。为了使算法更快地响应这种情况,可以通过对每个随后的脉冲序列增加功率脉冲工作时间,直到实现所期望位置的最小量,来调用暂时增加有效Ef值的脉冲加速模式。一旦完成了这种运动,原Ef值就被恢复。间隙补偿在执行器结构中,间隙量决定了脉冲加速模式能多快地从一个脉冲序列到下一个脉冲序列增加功率脉冲工作时间。对功率脉冲工作时间的调节速度将在下面进行描述。起动位置为了测量所需要的运动,算法必须能够比较从起动操作到结束操作的位置的变化。参照图10,起动位置模块基本上展现了所存储的信息。微处理器控制何时起动给定的操作,并保存起动位置。如果起动了运行序列,则直接保存当前位置信息。如果起动了脉冲序列,则保存来自可重新设置的积分器的滤波后的位置信息。运动处理器运动处理器也监测当前位置信息和滤波后的位置信息。在操作结束时,微处理器选择输入的待与先前保存的起动位置相比的适当的位置信息。两者之差表示所测量的操作运动,该信息然后传送到运行序列处理器和脉冲序列处理器。极性检测由于微处理器知道在给定操作中激活了哪个输出,所以运动处理器可以确定与给定输出相关的运动的极性。由于运动仅仅是当前位置和起动位置之差,所以所计算的极性表示与给定输出相关的极性。简单地说,如果激活了第一方向并且运动处理器计算出正向运动(当前位置大于起动位置),那么第一方向输出的极性被称为正。由于根据定义,第二方向导致反向运动,所以运动处理器为第二方向计算出负的极性。由于脉冲序列不产生100%的能量包,所以对负载的反向驱动运动比较敏感。这种反向驱动运动会让运动处理器计算出错误的极性。为此,在脉冲模式期间极性测量失效。呈现给方向控制模块的极性输出总是表示由运动处理器计算的最新极性。堵转检测在计算运动极性的过程中,算法还可以检测堵转状态。在当前位置和起动位置之差在给定时间段之后没有导致具体的运动量时,认为执行器堵转。所需要的运动量将依赖于待被控制的最慢的执行器,而所分配的时间量依赖于执行器预期量程可以忍受的最大堵转时间段。为了确保极性计算的完整性,除非检测到所需要的运动,否则不更新极性输出。一旦检测到堵转,微处理器将使对相关输出的进一步操作失效,并在起动位置模块中保存堵转发生时的位置。当运动处理器检测到所需要的运动时,再次激活被堵转的输出。可以通过操作另一方向来尝试所需要的运动,或者通过机械或电动工具人工操作执行器。机械人工代用装置是许多执行器的通用特性,而电动人工操作是为优选实施例设计的附加特性。方向控制方向控制模块是确定需要使哪个输出产生正确方向运动的静态计算。通过监测所期望位置、当前位置(直接或滤波后的)、来自运动处理器的极性信息、以及所配置的打开和关闭位置、Fo和Fe,可以检测到正确的输出。由于根据定义,命令信号是相对值,其中0%信号表示关闭位置,100%信号表示打开位置,所以命令信号本身不提供可以与当前位置信息相比较的绝对期望位置。方向控制模块必须首先利用下列等式将命令信号转换成适当的期望位置PD,其中c表示以百分比表示的命令信号值(数值0到1)Fo定义所配置的打开位置Fc定义所配置的关闭位置pD=c(Fo-Fc)+Fc注意,Fo可以大于或小于Fe,并且仍然产生正确的绝对位置pD。按此方式,本发明无需重新布线就能提供前向或反向动作。来自运动处理器的极性信息本质上是单个比特,并且可以在数学上描述如下pC定义由第一方向的运动得到的当前位置pS定义运动测量值的起动位置<formula>formulaseeoriginaldocumentpage13</formula>注意,该等式只能产生+1或-1的结果,其中+1表示第一方向将使PC增加。与此相反,-1的结果表示第一方向使PC降低;这意味着第二方向导致PC增加。一旦计算了pD,就可以计算由命令信号指示的所期望的极性,其中pD根据命令信号c定义绝对的所期望位置pC定义当前位置所期望的极性<formula>formulaseeoriginaldocumentpage14</formula>该等式也产生+1或-1的结果,其中+1表示pC必须增加,以达到所期望位置pD。相反,-1表示pC必须降低。方向控制模块的方向输出也是单个比特,它是前两个等式的积,其中+1结果表示第一方向有效-1结果表示第二方向有效方向—(pC-pS)e(pD-pC)焯I丨冲-pCl这样,本发明提供自动的极性,这意味着对第一和第二方向输出的连接可以反转而不必重新配置打开和关闭的位置。进一步,对反馈电位计的连接也可以反转,并且上述等式可以确定输出和反馈电位计之间的适当关系;这消除了提出传统定位器无功能的两种布线可能性。然而,由于所有绝对位置值都是根据反馈电位计的,所以需要重新配置打开和关闭位置。噪声抑制器如下所述,噪声抑制器模块消除了随机信号对命令信号和反馈电位计信号的改变。可重新设置的积分器如下所述,可重新设置的积分器模块对与之相关的信号进行滤波,从而为使用脉冲模式提供插值的高分辨率。由积分器进行的加权平均计算如下,其中a表示运行平均值s表示来自噪声抑制器的最新样本值f表示滤波速度或者平均计算中所用的样本数量a(f-l)+sa=~根据为脉冲序列处理器确定的最大脉冲序列时间tD来选择f的值。当s的值从一个值改变为另一值时,加权平均值a必须等于最大脉冲序列时间之内的s值。基于获取新值s时的频率,可以确定f值。位置输出处理器由于该算法处理绝对位置值,所以方向控制模块需要将命令信号转换成绝对的所期望位置值。与此相反,用户需要与命令信号0到100%具有相似相对值的位置信号Op。位置输出处理器将绝对位置值Fp转换为如下讨论的Op的适当值。位置输出处理器允许用户针对前向或反向动作等任意所期望的信号范围校准输出Op。本发明的独特特征在于校准不影响或者说独立于控制算法的配置。换言之,可以改变所配置的打开位置、关闭位置、前向动作输出或反向动作输出,而不影响用户对位置输出的校准。已经描述了当前优选的动力控制技术,现在将展现数字高分辨率控制器的其它方面。电子制动在传统系统中,分辨率主要由定位器的静带设定值确定。制动系统有时用在传统系统中来控制静带。然而,如上所述,优选的控制算法通过依靠所测量的惯性因素,免除了对传统静带的需要。不过,在一些应用中,可能需要执行制动,以最小化电机的惯性运动,从而提供更可靠的动力操作。例如,在所示出的一些优选实施例中,电子制动方法用于帮助实现低于0.5°的分辨率。当前优选的实施例可以使用多种不同的制动技术。在图4和图5中示出了两种电子制动技术。现在参考图4,针对定位器的电子制动电路60包括制动三端双向可控硅开关元件62。当开着的三端双向可控硅开关元件64和关闭的三端双向可控硅开关元件66被关闭以停止电机时,制动三端双向可控硅开关元件62被打开一段短的时间。例如,制动三端双向可控硅开关元件62可以打开100到400毫秒。制动三端双向可控硅开关元件62将AC线路电压68施加到两个电机绕组70和72,这具有向相反的电机绕组70和72设置相等电势的效果,从而产生相反的磁场,很快让电机旋转停止。为了防止电机持久的短路,使用了二极管Dl和D2;然而这使得只有AC线路68的每隔一半的周期被用于制动。虽然这降低了制动效果,但是最终效果仍然胜过机械制动。向两个绕组70和72施加相等电势具有使零电势或短路穿过电机电容74的不利效果,这会导致电容74快速放电。这种高放电电流可能损坏传统的三端双向可控硅开关元件装置,由此使用功率电阻Rl来限制通过制动三端双向可控硅开关元件62的浪涌电流。在如图5所示的改进的电子制动电路60中,初级三端双向可控硅开关元件64和66执行制动功能,去除了对制动三端双向可控硅开关元件62的需要。打开两个初级三端双向可控硅开关元件64和66可以执行与制动三端双向可控硅开关元件62相同的功能。虽然这具有使用AC线路68的全周期来制动的附加效果,但是来自电容74的放电电流会损坏三端双向可控硅开关元件64和66的一个或两个。为了限制放电的浪涌电流,增加功率电阻82和84,与对应的三端双向可控硅开关元件64和66串联。然而,这具有在正常工作期间降低电机的扭矩输出的不利效果。优选实施例通过利用已有的初级三端双向可控硅开关元件电路产生相反的力来完成任务,而不是产生相反的磁场。在正常操作期间,电机电容器的充电和放电浪涌电流通常由无动力绕组的电阻进行限制,从而消除了对附加浪涌限制功率电阻的需要。本发明通过实施产生如图6所示波形的算法来实现这一优点。该波形包括开式绕组94、闭式绕组96上的打开运行序列92以及制动序列98。在诸如打开运行序列92等正常操作序列的结尾,算法将线路的下一个半周期100施加到相对的电机绕组,并持续向两个绕组提供交变的后续半周期。算法利用每个半周期来快速交替改变电机转动,最终电机静止在两个旋转位置之间的某处。由于惯性运动是由一个方向的大惯性力引起的,这种技术平衡了两个方向的惯性力,从而使电机在初级三端双向可控硅开关元件关闭时处于静止。使电机静止所需的制动半周期数量等于在涌入期间起动电机所需的半周期数量。附加的半周期仅仅继续交替改变运动,而对最后的惯性运动不会做出改进或使之下降。由于在预定应用中所使用的制动器电机通常具有100毫秒的涌入时段,所以优选实施例的电子制动电路施加固定的制动时段,包括14个半周期,在60Hz时等于117毫秒,而在50Hz时等于140毫秒。电子制动序列也与使用机械制动器的执行器一起工作,以防止反向驱动。制动螺线管对极性不敏感,所以如图6所示的制动序列波形98保持对制动螺线管的功率,这将使机械制动器脱离。由于制动序列提供电机的实际制动,所以大量减少了机械制动器的摩擦磨损。机械制动器只用来阻止反向驱动力,这不产生由电机轴逆着制动材料旋转而产生的摩擦磨损。自适应控制制动提供了一个重要的改进,从而通过提供少量惯性运动实现了更高的分辨率,这允许控制算法及时地实现所期望的位置。没有制动,则算法需要使用针对较长时间的分级功率;这在某些应用中是不实际的。电子制动提供了更小和更一致的惯性运动。与此相反,机械制动会由于温度、磨损而改变制动特性。进一步,机械制动施加了与电机惯性力无关的制动力,所以改变电机惯性力的AC线路电压的变化会影响机械制动的性能。如图6所描述的电子制动序列使用相同的AC电源,其操作电机产生制动力。因此,电子制动力随着电机的条件而变化,从而提供了可靠的性能。在实际中,两个电机绕组之差不会产生相同的力,电机在两个三端双向可控硅开关元件关闭之后趋于进行少量的惯性滑行。进一步,电机设计和执行器设计的宽量程可以改变电子制动的性能。例如,对输出轴具有低磨损率的两秒执行器在没有任何制动时通常会惯性运动30°或更多。机械制动可以将该惯性运动降低到5°,而电子制动序列可以将该惯性运动降低到2°或更低。与此相反,对输出轴具有高磨损率的90秒执行器使用机械制动可以将惯性运动降低到0.5°,而使用电子制动序列可以将惯性运动降低到0.2°。使用这种宽量程的性能,需要其它补偿,以便对不同量程类型的执行器提供一致的性能。虽然本发明可以为具体执行器配置具体的补偿,但这一实践将导致大量不可互换的“定制”定位器,并且不能适应由于负载改变或执行器磨损引起的执行器特性的改变。定位器可以设计有一系列配置,例如具有开关或微调电位计,这允许普通定位器针对具体执行器类型进行配置。这一方法导致复杂的设置,虽然提供了可交换性,但是需要在每次定位器放到不同执行器中时都需要进行配置。进一步,这一方法仍然没有满足由于负载或磨损造成的变化。如前所述,优选实施例提供了自适应技术,该技术测量执行器的关键特性及其负载,然后自动持续地调节用来补偿这些特性的设置。这种算法使用已有的反馈电位计作为唯一的传感器来测量或改动执行器的关键特性。在一个优选实施例中,需要基于应用需求和通常可用的执行器能力的0.2°的分辨率。这意味着,定位器必须在0.1°内达到命令的位置,换言之,最大偏差0.1°。应当理解,可以修改此处描述的技术来适应需要不同分辨率的不同类型的执行器(例如气动和DC电机执行器)和不同量程的应用。最后,执行器的分辨率被限制为电机可以进行的最小角旋转。执行器可以体验快速振荡反向驱动力,其超过执行器能够移动来调节这些运动的速度。这会使定位器摆动并且不能够实现所期望的分辨率。本发明检测何时执行器不能保持0.Γ的最大偏差,并自动针对最佳性能调节最大偏差参数。在电学上,定位器可以向AC分相电机提供的最小控制量是AC线路周期的一半,此处称为He。对于执行器的预期量程,具有一个Hc的输出轴旋转运动小于0.1°,因此允许控制算法实现所选择的最大偏差。具有选择数量Hc的电机的“脉冲”操作在此被称为脉冲模式,并且被用来进行小的有限运动以修正制动序列之后残差。对于不同类型的执行器,可以用不同方式完成脉冲模式。例如,DC电机可以使用电压控制或脉宽调制来实现小的可控运动。无论定位器使用什么方法对给定执行器进行小的运动,此处描述的算法都可以使用。虽然根据定义脉冲模式适于进行小的运动,但是脉冲模式需要更多的时间来将执行器移动给定的度数,这是由于电机在施加下一个“脉冲”之前会取消选择数量的He。电压控制和脉宽调制对DC电机具有同样的慢速效果。为了优化执行器的正常操作,本发明使用两种模式的电机控制,一种叫做运行序列,另一种叫做脉冲序列。运行序列只将电力施加到所期望的电机绕组,以实现更大、更快的运动。惯件补偿现在参照图7,在运行序列的末端,定位器关闭电机(在所期望位置气动)。如果需要,不管使用什么类型的制动(机械的或电子的),电机都继续移动,其然后定义静带。定位器测量惯性运动,并使用测量结果来自动设置指示电机何时可以再次打开的静带设定值。该特征基本上替代了通常人工设置静带设定值的需要,但是不会减少或消除已有的静带。与此相反,本发明测量电机的惯性运动,并使用测量结果来调节电机的控制以消除静带。这被称为惯性补偿。通过测量电机的惯性运动,在到达所期望位置之前本发明将关闭电机,并使用电机的惯性运动来完成运动。然而,从一个运行序列到另一个运行序列的具体惯性运动量根据运动的方向、执行器结构中的变化或负载的变化而变化。为了避免不稳定操作,要确定额定或典型惯性运动值,并使用脉冲序列来校正残差。虽然可以分别测量和计数每个方向的惯性运动值,但是可以忽略典型的差异。为了降低在两个方向补偿惯性运动的负担,本发明的执行器控制器确定表示两者平均值且被称为惯性补偿值的惯性运动值。图7示出运行序列的关键事件。该算法通过施加制动序列110结束运行序列。这在等于所期望位置114减去惯性补偿值116的点112来进行。该算法然后测量最终的电机惯性运动118,其在之后用于调节惯性补偿值116。在实际中,不会仅仅将惯性补偿值116调节成电机惯性值118,而是计算多次运动的平均值,以避免从一个运行序列到另一个运行序列的不稳定操作。由于平均值随着采样运动数量的增加变化缓慢,所以应针对具体应用范围选择所用的采样数量。执行器控制器使用简单的逻辑操作来确定平均惯性补偿(ICV)值116,并遵照表1所示的真值表。执行器控制器检测惯性运动118何时超过所期望的位置114,并自动增加ICV值116。向ICV值116增加偏置可防止超出。用来确定“平均值”的样本的有效数量由对ICV值116的增加量或减少量来控制。表1-惯性补偿值真值表测量的惯性运动>ICV对ICV加0.1°测量的惯性运动<ICV对ICV减0.1°超出对ICV力口0.1°参照图7,理论上在期望新位置时可以立即起动新的运行序列。乍一看,由于如果新位置只是0.1°那么远,那么最终电机惯性运动会导致超出,所以看起来是不可能的。但是该算法打开电机以起动运行序列,惯性补偿将在一个Hc之后起动制动序列。一个Hc的惯性运动只导致小的电机惯性运动(如果有的话)。这意味着,任何惯性运动都单独依赖于在制动序列起动时两个电机绕组之间的不平衡。电子制动序列在预期应用范围内能够独自将电机惯性运动减少到0.2°到2°的范围。通过对电子制动序列增加惯性补偿,执行器控制器能够将多余的偏差减少到0.Γ到0.4°的范围。自适应脉冲序列脉冲模式可以用来提高定位器的分辨率。例如,控制器可以在到达所期望位置之前的位置切换到脉冲模式。脉冲模式以特定速率打开和关闭电机,这减少了电机的惯性力,从而减少了惯性运动。可选地,控制器可以用特定数量的Hc脉动电机,直到偏差减小到一半。两种方法都能实现减慢电机从而减少惯性运动的功能,然后使用最终的静带来确定下一个电机操作何时可以起动。本发明不是使用静带来确定下一个电机操作,而是使用操作电机以获得具体偏差或分辨率的自适应脉冲序列。该技术使得定位器提供具体分辨率,而不管执行器类型或其应用。使用自适应脉冲序列的定位器不是为给定执行器或应用来指定分辨率,而是指定能够用来获得所期望分辨率的执行器的量程。为了防止不稳定的操作,执行器控制器具有附加的特征,该特征检测执行器何时在指定量程之外,并据此调节分辨率参数。为了避免运行序列和自适应脉冲序列之间的干扰,在激活自适应脉冲序列时,使运行序列失效。在当前位置和所期望位置之差是ICV值的两倍时,执行器控制器在两种模式之间进行切换。该方法确保运行序列的稳定操作,并使得针对给定的执行器改变切换点。例如,具有4°ICV值的执行器在偏离所期望位置8°的点切换到脉冲序列。为了适应给定的执行器,本发明持续调节脉冲序列的三个关键参数,以获得与所期望分辨率一致的充分小的运动。给定的脉冲包括特定数量的Hc打开(on)以及其后特定数量的Hc关闭(off)。参照图8,由脉冲产生的运动量随着Hc打开数量的增加以及Hc关闭数量的减少而增加。自适应脉冲序列调节Hc打开的数量、Hc关闭的数量以及针对较小或较大运动调节脉冲的速度。由于组成脉冲的Hc系列创建了单个实体,该算法故意禁止其它任何运动操作(例如运行序列)中断完整系列的He。无论是另一个脉冲还是运行序列,新的电机操作都可以在最后的Hc关闭之后起动。将产生最终确定具体运动量的Hc打开的数量。Hc关闭的数量基本上确定多个脉冲的合成运动多快可以到达所期望的位置。如果所期望的位置很远,可以更频繁地施加脉冲。为了在接近所期望位置时能保持稳定的操作,降低脉冲的频率。由于自适应脉冲序列的操作范围是ICV值的两倍,该算法从2XICV位置处的最大频率到所期望位置处的最小频率成比例地改变脉冲频率。2XICV的范围被称作脉冲特性带,该脉冲特性带用于有效地调节Hc关闭的数量。在每个脉冲时间段的末端(紧跟着最后一个Hc关闭),该算法测量所产生的实际运动。根据由给定脉冲产生的运动量,将Hc打开的数量调节成增加或减少下一个脉冲的运动量。目标是确定Hc打开的数量,给定的执行器及其负载需要该数量来产生与所期望分辨率一致的具体有限运动。由于由给定脉冲产生的具体运动可以从一个脉冲变化到下一个脉冲,如果Hc打开参数值是基于多个脉冲的平均运动,那么就可以实现更稳定的操作。执行器控制器使用如表2所示的真值表。由于执行器控制器的目标偏差是0.1°,只要平均脉冲运动在0.05°到0.1°内进行变化,就不改变Hc打开的数量。<table>tableseeoriginaldocumentpage19</column></row><table>当执行器遭遇突然增加的负载时,由给定脉冲产生的运动会显著降低。虽然上述算法最终会适应新的条件,但是由于平均引起的缓慢响应会导致长期的小运动。为了提高对这种条件的响应,该算法使用了脉冲加速模式。当由脉冲产生的具体运动(而不是平均运动)小于某个最小值(在本优选实施例中时0.05°)时,起动脉冲加速模式,并且将Hc打开参数增加一个He。加速模式在每个脉冲之后增加一个He,直到所测量的具体运动超过最小值。一旦实现了最小运动,该算法就结束加速模式并保存原Hc打开的值。虽然在加速模式中,但是由于所测量的运动不是原Hc打开值的结果,所以该算法中止对平均运动的计笪弁。用来将电机轴连接到输出轴的齿轮固有地具有间隙。间隙造成即使电机轴产生运动,输出轴也不产生运动的状态,因此触发脉冲加速模式。由于这种运动的缺失不是由于实际负载状态造成的,所以脉冲加速模式可能将Hc打开值增加得很高,以至于当齿轮最终啮合时所产生的运动可能远大于所期望的。为了适应这一情况,该算法采用了间隙补偿。间隙补偿调节根据检测到的最终运动,在加速模式期间调节Hc打开值增加时的速度。不是在每个脉冲之后任意增加Hc打开值,而是可以根据所需间隙补偿的量每隔一个脉冲增加Hc打开值。可选地,可以以任意预定的脉冲数量来增加Hc打开值,例如每30个脉冲一次。执行器控制器通过根据表3调节间隙补偿值(表示每加速步骤的脉冲数量)来实施本发明。当加速模式由于检测到的运动终止时,所检测到的运动量用于确定如何调节间隙补偿值。表3-间隙补偿值真值表脉冲运动<0.1。I对间隙减少ι脉冲运动>0.15。又十间隙增加1总之,运行模式(采用带有惯性补偿的电子制动序列)用于以最大可能速度接近所期望位置并恰好在激活脉冲模式时到达脉冲特性带内。当命令信号改变所期望的位置时,仍保持脉冲模式有效,除非所期望的位置在脉冲特性带之外,此时才再次激活运行模式,并重复该过程。一旦定位器实施上述特征,执行器的高分辨率控制就成为可能。然而,如果反馈电位计信号测量结果的分辨率不能满足这一能力,那么高分辨率控制就具有较小值。虽然数字信号可以提供精确的命令值,但是也需要以高分辨率测量模拟命令信号。例如,优选实施例的执行器控制器使得测量结果小于0.05°,从而执行针对期望的0.2°分辨率的控制算法。在垂直转动执行器(90°)的量程内,0.05°只是1800分之一或1800个数字计数,这需要11比特的模数转换器(ADC)。反馈电位计的量程只有一部分可用(通常是1/2到1/3),这一事实进一步使事情复杂化。这意味着需要12比特的ADC或更好的ADC。大多数数字电位计使用在许多微控制器中嵌入的ADC系统。然而,这些ADC系统通常只提供8比特(256个计数)的分辨率,而现在一些ADC系统有10比特(1024个计数)的分辨率可用。虽然这些定位器仍然可以采用本发明的控制算法,但是使用传统的依赖于静带的控制可以轻易实现可达到的分辨率。可使用单独的12比特的ADC集成电路。然而,这些装置十分昂贵,还需要实际的辅助电路,这增加了测量结果的误差。为了抵消这些误差,ADC需要大于12比特的分辨率。提供超过12比特分辨率的装置非常昂贵,并且转换时间很长,不能给控制算法提供足够快的测量值。因此,需要独特的ADC滤波算法来完成高分辨率控制算法。用来首先粗调位置的运行序列由于其速度快,因此需要更快的反馈测量值。与此相反,脉冲序列需要高分辨率测量值,但是由于速度慢,所以不需要快的测量。以此为前提,本发明采用两级ADC。第一级提供快速但低的分辨率,然后供给第二级,第二级以更慢的速度提供插值的高分辨率。虽然分立的ADC装置可以使用两级的ADC算法,但是优选实施例提供利用单个斜率(singleslope)转换器的分立电路,该斜率转换器包括双运算放大器、用来选择多个信号的模拟多路复用装置、以及用来调整信号的简单电阻网络。通过使用嵌入微处理器中的定时器,执行器控制器每隔12毫秒提供每个信号(反馈电位计、命令、参考电压以及接地信号)的13又1/2比特的测量值,其中12毫秒小于AC线路的一个周期。该方法使用较小空间、消耗较低的功率、消除了放大器误差、提供两倍的分辨率,并且费用小于传统ADC装置费用的1/4。然后,根据参考电压和接地信号测量结果调整每个测量结果,从而提供所谓的瞬时读数。由于它们给足够的分辨率提供快读数,所以由运行模式来使用该瞬时读数。为了提供一致且稳定的高分辨率定位,脉冲模式需要稳定的高分辨率ADC读数。为此,由两个滤波算法来处理瞬时读数,一个用来将读数稳定在16比特值附近,另一个用来抑制定位器中的电噪声以及从其它来源引入的电噪声。第一滤波算法采用运行平均技术,其计算多个读数的平均值并以与滤波电容器相似的方式操作。数学计算不仅消除了对滤波电容器的需要,而且还仿真了大量不会在实际滤波电容器上使用的电容值。进一步,数学方法不像滤波电容器那样受到温度变化的影响和随着时间的流逝而恶化的影响。虽然运行平均与使用滤波电容器相比提供了更好的方法,但是两者体现了应用中的共同问题。选择较大的滤波值(例如用来计算平均值的采样数量)来为脉冲模式提供稳定的读数,将会造成滤波器更慢的响应时间。当定位器从脉冲模式切换到运行模式时,运行平均值将滞后,就像电容器充电或放电滞后那样。一旦运行模式在一个新位置结束,脉冲模式在许多秒之内没有真的平均值来正确运行。认识到数学值可以根据特定事件重置为任意值,发明人开发了可重新设置运行平均值滤波算法。当两个连续的瞬时读数相差大于某量时,该算法自动将运行平均值设置为最新的瞬时读数,从而消除了信号大幅改变中的长时间滞后。根据应用的性质,重置的运行平均值会在执行器能真正到达新位置时保持稳定。为了避免滤波器的非故意的重新设置,瞬时读数中的差值为固定值,并相对较大。然而,脉冲特性带随着不同执行器和条件而变化。由于运行模式在特性带之外有效,所以也在运行模式使用中重置运行平均值。虽然二次重新设置事件对反馈信号至关重要,但是在读取命令时只在定位器起动操作时延迟少量的滞后时间。在某些情况下,甚至期望这种延迟,以防止命令迅速到达定位器。为此,执行器控制器对模拟命令信号不执行二次重新设置。电噪声(位于定位器中或来自外界来源)导致持续时间很短(典型地是来自ADC的一个读数)并随机发生的信号的突然改变。不超出差值标准的噪声等级易于以低频改变运行平均测量值。例如,低频描述了频率低至脉冲模式可以跟上这种变化。超出差值标准的噪声等级(通常是瞬时值)会引起运行平均值中的瞬间重置,这会触发定位器的瞬间响应。为了排除电噪声,本发明采用在读数和平均值之差超出一定量时从平均值计算中消除采样读数的第二滤波算法。为了确保运行平均值可以跟上信号中的小的实际变化,如果一定量的连续读数持续高于同一极性的差值,则在平均值中使用新读数。依赖温度的能效控制在本发明的另一方面,通过对给定应用使用不适合的执行器会引起电执行器应用中多余的循环,但是最常见的结果是不正确地调节不必要运行执行器的PID控制器。不管电机的额定值是多少,多余的循环最终导致电机过热,因此内置的热控开关跳闸来保护电机。如果执行器长时间堵转或者在给定的时间段内经常堵转,那么会导致相似的过热。虽然热控开关可以保护电机,但是执行器中的其它组件可能被损坏或者在通常热控开关允许的高温下发生故障。电机自身随着频繁的热控开关跳闸也会退化,并最终彻底停止运转。当热控开关跳闸时,使用该执行器的应用中最明显的结果是关闭被控制的过程。热控开关必须冷却下来以便恢复电机的功率,冷却需要十分钟或更长。控制易挥发或有害材料的应用不能忍受数分钟的关闭。因此,对大工厂系统的影响不言而喻。一种解决该问题的方法是为安装在电机上的任意温度传感器提供输入。来自传感器的温度读数然后与用户设置的界限相比较。假设,该界限是比热控开关跳闸点低的安全温度。当超出所设置的界限时,使电机失效直到它冷却下来。该特征通过与热控开关相似的功能来防止损害性的高温,导致在数分钟内没有操作。解决该问题的另一个方案是,以循环定时器功能控制电机。循环定时器单元或内置有循环定时器功能的定位器很容易获得,并且通常被用来在执行器关闭阀门时降低速度,从而防止水锤现象效应。循环定时器功能基本上是打开电机一段时间(通常是0.5秒到几秒),然后关闭电机一段时间(通常是几秒)。虽然这些操作减少了移动执行器所需的时间,但是它具有允许电机在关闭时间段内冷却的好处。使用被设置以匹配给定电机的额定占空比的循环定时器功能,可以防止该电机过热,从而防止停机。循环定时器功能的主要缺点是任意地打开和关闭电机。当定位器试图进行短时间的移动时——如同在过程控制设定点所期望的——由于电机可以针对任意给定的运动被打开或关闭,所以控制变得不确定。对数速度定位器可以用于改善这种状况。对数速度功能利用允许执行器比滤波后的命令信号更快地进行物理运动的大滤波电容器来延迟命令信号。效果是,执行器以对数循环速度运动,跟随电容器的对数充电曲线。换言之,当所期望位置很远时,对数速度定位器允许更长的工作时间。与此相反,对于较短的运动,缩短工作时间。由于延迟由命令信号管理,所以对小命令改变的反应是可以预测的,因此可以用PID设置来计算。当仅需要小百分比时间的功能时,对数速度定位器仍然具有持续降低执行器速度的不期望的效应。为了消除这种不期望的效应并同时防止停机,本发明可以使用依赖温度的占空比控制算法。通过使用温度传感器来监测电机的温度,该算法以与电机温度成反比的速度来改变占空比控制的百分比。该算法基本上在高温界限(假设低于热控开关跳闸点)下以0%的能效操作电机,在低温界限下以100%的能效操作电机,并且在两个界限之间的温度下适当地改变占空比的百分比。0%的能效(意味着电机关闭)输出应该发生在周围环境已经形成等于或高于所述上限的温度时。在实际中,电机会被控制在能够和具体电机温度相均衡的百分比能效。为了最小化在处理设定点处的不稳定控制,该算法使用两秒的循环时间。然而,能效控制功能只发生在不利或者滥用的情况下,所以该问题在通常操作下不会遇到。间接温度测量温度传感器具有检测电机绝对温度的明显好处,包括环境温度和负载效应。执行器在最大负载和最高环境温度下被评定具体的占空比。负载和温度规格对于系统设计者来说相对容易控制。然而,PID控制的动力学形成了许多变量,系统设计者几乎不可能确定地知道执行器的占空比等级应该与谁相关。假设与温度和负载规格相关,那么占空比仍然是引起过热和损坏执行器的主要原因。以此为前提,发明人开发了间接测量由执行器电机的循环引起的温度升高的算法。本发明的执行器控制器将该算法,而不是附加的传感器,与依赖温度的能效控制一起使用。对于这种预期的应用,执行器控制器针对25%能效至100%能效的执行器范围实施该算法。电机的热量具体由流经电机绕组的电流引起。由于定位器控制每个施加到电机的He,所以定位器可以计算由循环电机所引起的所有热量。简单地说,每个Hc打开时间段产生热量,而每个Hc关闭时间段提供相等的冷却时间段,从而抵消Hc打开时间段产生的热量。使用递增/递减计数器,该算法在每个Hc打开时间段增加计数器,而在每个Hc关闭时间段减少计数器。在每个给定时间的计数器的值将表示由打开和关闭循环所引起的热量的累积效应该值被称为“HCUM”,并表示间接温度测量值。因此,HCUM通过依赖温度的能效控制算法可以用来替换来自传感器的实际温度读数。不是选择实际温度界限,而是为0%和100%占空比点选择HCUM值。虽然每个Hc关闭时间段提供了恒定的冷却效果,但是对于每个Hc打开时间段来说却并非如此。当电机开始打开时,电机在短时间内引起涌入电流。这种较高电流产生比普通Hc打开时间段更多的热量。如果电机机械地堵转,将产生较高的电流(小于或等于最大的涌入电流),也产生比平常更多的热量。本发明实施的电子制动序列产生了更高电流消耗的新的来源。由于电子制动序列本质上使电机堵转,所以这些Hc打开时间段也会引起更高的电流(小于或等于最到涌入电流)。由于定位器也控制或检测这些额外的状态,所以它们也能被计数。由于Hc打开时间段可能具有不同的热效应,所以该算法根据与给定Hc相关的事件(即,正常、涌入、制动或堵转),将被称为h的热值分配给每个Hc打开时间段。因此,HCUM对于任何给定的Hc打开时间段而不仅仅是一个时间段增加h值。由于不同的电机会具有不同的特性,所分配的h值需要考虑应用的具体范围。下面的讨论解释了h值如何被分配给预定的应用。然而,所作的假设可以改变以适应不同的应用或应用范围。该算法所作的假设在整个应用范围内,都对最大期望热量偏置h值。这保证HCUM值总是等于或大于电机中的实际温度升高值。由于热效应由单个Hc关闭时间段抵消,所以针对普通Hc打开时间段的h值被指定为1。h的其它值表示多个正常运行电流。参照图9,涌入电流130只是AC线路电压除以电机绕组电阻的函数,并且定义了能够穿过电机绕组的最大电流。对于预定的应用,涌入电流130不超过普通运行电流的三倍。因此,涌入电流被指定为3h。一旦电机开始旋转,由电机产生的反EMF在不超过IOHc的时间段内对数地将电机电流降低到正常运行电流。为了简化计算,由虚线134和136形成的三角形132表示每10个Hc时间段的平均h值,即1。该平均值被加到正常h值中,所以针对每个涌入Hc的总平均h值是2。无论运行序列是否起动,该算法都将2h值分配给前10个Hc时间段。由于脉冲模式本身以低占空比来操作,所以该算法不在脉冲序列期间向Hc打开时间段增加额外的值。如果在360Hc时间段内没有检测到运动,执行器控制器将检测堵转状态。对于该时间段,电机电流被假设为处于正常电流3倍的最大值,并被分配3h值。当执行器控制器检测到堵转时,该算法向HCUM增加720个计数,而正常的360个计数被记为它们已经发生。在制动序列期间,也假设电流处于正常运行电流3倍的最大值。因此该算法为每个制动序列Hc时间段分配3h值。当刚开始激活能效控制时,修改执行器控制器中执行的附加特征。为了在正常模式下提供更多的操作时间,执行器控制器提供100%占空比,直到HCUM到达对应于25%占空比的值(预定应用的底端)。此时,成比例的占空比控制得以保持,只要HCUM具有大于下限的值。一旦HCUM下降到小于下限,就恢复和允许100%能效控制,直到到达25%的占空比点。这种技术只是依赖温度的能效控制算法的变体,并也能够用来与温度传感器一起使用。独立位置输出为了提供简单的安装,制动器控制器可以包括用户友好的界面,例如三按钮控制面板,其允许用户配置针对具体执行器和阀门的控制器,而无需仪器或校准。一个控制按钮(模式)用于选择具体的功能,而另外两个(上调或下调)用于调节所选择的功能。可用功能中的两种,OPEN和CLOSED,允许用户只通过使用上调和下调两个按钮来操作执行器,设置与最大命令信号相关的打开位置和与最小命令信号相关的关闭位置。两个位置都可以设置在执行器量程以内的任何期望的位置,从而给任何期望的量程提供直接或反向的操作功能,而不需要对执行器重新布线。这也消除了对通常用来提供用于设置位置的命令信号的仪器的需要。执行器控制器还具有极性检测系统,其自动确定反馈电位计旋转和电机旋转之间的关系。这消除了对电机和/或反馈电位计进行重新布线以获得响应于命令信号的所期望运动的需要。自动系统通常需要来自执行器的返回位置信号。该信号通常被用来驱动具有固定校准量程的显示表。以下列两种方式之一来提供该信号单独安装的发送机模块或嵌入定位器中的发射机。单独安装的发射机模块必须连线至反馈电位计——在某些情况下使用其自身的电位计——然后为打开或关闭所需的显示读数进行校准。嵌入式发射机功能消除了对单独安装的模块进行布线的需要。然而,两种方法都需要移动执行器到打开或者关闭位置,从而校准输出信号。一些嵌入式发射机功能自动将最大输出信号与打开位置相关联并将最小输出信号与关闭位置。虽然这消除了校准步骤,但是输出信号具有固定的尺度,因此需要用户提供全部换算功能以获得所要的显示读数。嵌入式发射机也束缚于固定的极性;亦即,最大信号不能与关闭位置关联。单独安装的模块可以提供反转的极性,但是也必须重新布线来实现。优选实施例使用的算法提供不需要移动执行器的独立位置输出信号,消除了针对具体极性的重新布线,并在输出信号范围内自动针对所需读数调整输出。该算法可以在任何时候开始工作,而无需中断或干扰定位器的正常操作。然而,为了避免不稳定的信号以及对附加控制按钮的需要,作为正常配置过程的一部分,执行器控制器执行该算法,作为由模式按钮选择的两个附加功能。数字定位器具有存储非易失性信息的能力,这也是本发明的情况。当用户为执行器配置上述OPEN或CLOSED功能时,执行器控制器存储针对打开或关闭位置的准确反馈电位计信号值。通过选择执行器控制器上的0PENP0SITI0NOUTPUT(打开位置输出)功能,该算法能够将位置输出信号调节然后存储为在与打开时反馈电位计值相关范围内的任意需要的值。同样,通过选择CLOSEDPOSITIONOUTPUT(关闭位置输出)功能,该算法能够将位置输出信号调节然后存储为在与关闭时反馈电位计值相关范围内的任意需要的值。对于四个期望值,数字定位器可以执行基本的加法和乘法运算来提供任意偏移量、增益或者极性给输出信号,而不管为控制信号建立的偏移量、增益或者极性。改变打开和关闭位置不会改变与之相关的输出信号。与此相似,改变打开和关闭位置输出信号不会改变打开和关闭位置。这消除了对于重新布线以获得任何给定极性的需要,并允许操作的极性独立于输出信号的极性。由于计算输出信号所需的四个变量存储在存储器中,所以不管定位器在执行什么其它功能,都没有必要将执行器打开或关闭来获得这两个具体值。该算法可以用很容易转换成微处理器代码的数学式来描述。由于该算法提供了任何所需要的极性,所以允许负数。换言之,微处理器代码需要使用有符号的数学函数,从而执行完整的算法。以下数学函数定义了该算法f(Op)=[(0o-0c)(Fp-Fc)/(Fo-Fc)]+0c其中,Fp是在打开和关闭之间任意给定位置处的反馈电位计值;Fo是在所需打开位置的反馈电位计值;Fc是在所需关闭位置的反馈电位计值;Op是与打开和关闭之间任意给定位置相关联的输出信号;0o是与打开位置相关联的所需输出信号;0c是与关闭位置相关联的所需输出信号。由于F项总是简化为比率(表示百分比打开),所以Op严格地是0o和0c的函数,因此表明Op独立于由F项所描述的操作参数。可见,在打开位置当Fp变为等于Fo时,Op解得0o。与此相似,当在关闭位置Fp变为等于Fc时,Op解得0c。示例性电路的细节当可以使用多种不同的技术来实现数字高分辨率控制器时,一个示例性实施装置如图11和图12所示。图11示出了基于微处理器的控制器电路,图12示出了图11中控制器的合适电源。参照图11,微处理器200接收来自单个斜率模数转换器202的数据输入,模数转换器202由多路复用器204供给。在206处提供模数转换器的输入。反馈电位计连接到连接端子208。微处理器将其输出提供给多路复用器装置210,多路复用器装置210在端子212处提供控制指令给电机,并且还提供输出端子214以驱动显示器。参照图12,注意到输出端子212提供通过光电耦合器LED216的信号,并且光电耦合器LED216的输出连接到电机。本发明的描述实质上仅仅是示例性的,因此不背离本发明要点的修改都包含在本发明的范围之内。这些改变不应该被认为是脱离了本发明的精神和范围。权利要求一种用于执行器的电子定位系统,包括执行器操作器,其被配置为使执行器产生从初始位置到期望位置的位置变化;传感器,其用于确定所述执行器在初始位置与期望位置之间的瞬时位置;控制器,其以与所述执行器的温度成反比的速率施加能量。2.如权利要求1所述的电子定位系统,其中,所述温度根据在给定时间段内所施加的能量的量来确定。3.一种用于执行器的电子定位系统,包括执行器操作器,其被配置为使执行器产生从初始位置到期望位置的位置变化;传感器,其用于确定所述执行器在初始位置与期望位置之间的瞬时位置;控制器,其以与所述执行器的温度成反比的速率施加能量;其中能量以开关间隔方式施加给所述执行器,并且其中所述温度通过监测所述开关间隔来确定。4.一种用于执行器的电子定位系统,包括执行器操作器,其被配置为使执行器产生从初始位置到期望位置的位置变化;传感器,其用于确定所述执行器在初始位置与期望位置之间的瞬时位置;控制器,其以与所述执行器的温度成反比的速率以步进增加的方式施加能量。5.一种用于执行器的电子定位系统,包括执行器操作器,其被配置为使执行器产生从初始位置到期望位置的位置变化;传感器,其用于确定所述执行器在初始位置与期望位置之间的瞬时位置;控制器,其采用算法以与所述执行器的温度成反比的速率改变占空比控制的百分比。全文摘要通过基于由先前能量传送产生的所观察到的运动来将能量传送给执行器的控制算法,实现电子定位器及其相关执行器的动力控制。该算法根据所期望的或用户指定的分辨率来完成控制。能量传送间隔之间的电子制动改进了达到所期望位置的速度。力产生机制的温度被确定,作为对能量消耗的监测,并被用来控制如何将电力传送给所述执行器。文档编号G05B19/29GK101826828SQ20101017400公开日2010年9月8日申请日期2005年6月15日优先权日2005年1月17日发明者彼得·W·穆勒,杰克·M·里森申请人:匹克单尼克斯股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1