稳压器的制作方法

文档序号:12662723阅读:218来源:国知局
稳压器的制作方法与工艺

本发明涉及具备过热保护电路的稳压器。



背景技术:

一般稳压器根据与输出连接的电子设备的负载而进行电流供给,而发热造成的能量消耗关系到电力损耗。另外,在负载电流增大的情况下,存在由于温度过度上升以至稳压器自身破坏的情况。因此,设置用于不会成为既定温度以上的过热保护电路。

在此,对具备现有的过热保护电路的稳压器进行说明(例如,参照专利文献1)。

图3是现有的稳压器200的电路图。

稳压器200具备过热保护电路123,该过热保护电路123包括温度读出电路115、基准电压电路114、比较器电路103、晶体管104及110,如以下那样地构成。

温度读出电路115由恒流电路101和二极管102构成,从恒流电路101与二极管102的连接点输出电压VF。

基准电压电路114由基准电压106和电压跟随器电路105和泄放(bleeder)电阻107、108、109构成,从电阻107与108的连接点输出电压VREF。

比较器电路103比较温度读出电路115的输出即电压VF和基准电压电路114的输出即电压VREF,输出比较结果。比较器电路103的输出向晶体管104的栅极和晶体管110的栅极输入。

晶体管104的源极与电源端子连接,漏极与稳压器200的输出晶体管(输出驱动器)111的栅极连接。晶体管110的源极与接地端子连接,漏极与电阻108和109的连接点连接。

在输出晶体管111的漏极与接地端子之间连接由电阻112和113构成的分压电路。

误差放大电路116接受来自该分压电路的分压电压和基准电压117的电压,输出端子与输出晶体管111的栅极连接。

关于温度读出电路115的温度特性,基于二极管102的正向电压的温度特性,输出电压VF成为大致-2mV/℃的特性。基准电压电路114的输出电压VREF通过进行泄放电阻107、108、109的微调调整,能够设定为任意的电压值。

在未检测到过热状态的通常状态的情况下,由于成为VF>VREF,所以比较器电路103的输出成为HIGH(高)状态,晶体管104成为截止。由此,输出晶体管111的栅极电压成为误差放大电路116的输出端子的电压。因而,输出晶体管成为导通,输出既定电位的输出电压VOUT。

另一方面,在检测到过热状态的情况下,由于成为VREF>VF,所以比较器103的输出成为LOW(低),晶体管104成为导通。由此,输出晶体管111的栅极电压成为电源电压,因此输出晶体管111成为截止。因而,输出电压VOUT成为接地电位。

如此,现有的稳压器200在通过过热保护电路123未检测到过热状态时,如通常一样进行动作,从输出晶体管111输出电源电位以下的既定电压VOUT,在检测到过热状态时,将输出晶体管111设为截止,从而使输出电压VOUT成为接地电位。这样能够保护稳压器自身而避免过度的温度上升。

此外,晶体管110是为了将从过热状态成为通常状态的温度、和相反从通常状态成为过热状态的温度设为分别不同的温度、即具有滞后(hysteresis)而设置的。

【现有技术文献】

【专利文献】

【专利文献1】日本特开2005-100295号公报。



技术实现要素:

【发明要解决的课题】

在高耐压且大电流的稳压器中,因为高电压状态下的过渡性负载电流的增加而产生较大的电力损耗。关于该电力损耗,输出驱动器的发热造成的能量消耗的部分较大。然而,在输出驱动器和温度读出电路的二极管在芯片上分离布局的情况下,在最发热的输出驱动器的中心附近温度与温度读出电路的二极管的温度之间产生热梯度造成的温度差。

在图3的现有的稳压器200中存在如下担忧,即在过热保护电路123检测到既定过热状态的时侯,最发热的输出驱动器(输出晶体管111)的中心附近温度成为上述既定过热状态的温度以上,超过输出驱动器111的耐热温度,会破坏输出驱动器111。

本发明鉴于上述课题而成,提供能够事先防止输出驱动器的热破坏的稳压器。

【用于解决课题的方案】

本发明的稳压器,其特征在于,具备:输出晶体管,将输出电压输出;第1基准电压电路,生成第1基准电压;分压电路,输出对所述输出电压进行分压而生成的分压电压;误差放大电路,输入所述第1基准电压和所述分压电压,以使所述输出电压恒定的方式控制所述输出晶体管;以及过热保护电路,检测到过热状态而使所述输出晶体管截止,所述过热保护电路具有:温度读出电路,输出与温度对应的电压;电压差读出电路,输出与向电源端子供给的电源电压和所述输出电压的电压差对应的电流;输出电流监视器电路,输出与流过所述输出晶体管的电流对应的电流;第2基准电压电路,生成第2基准电压;比较器电路,比较所述温度读出电路的输出电压与所述第2基准电压;以及过热保护晶体管,栅极接受所述比较器电路的比较结果,在所述比较结果表示过热状态时,使所述输出晶体管截止,所述第2基准电压电路基于所述电压差读出电路的输出电流及所述输出电流监视器电路的输出电流,控制所述第2基准电压。

【发明效果】

在本发明中,基于输出与向电源端子供给的电源电压和所述输出电压的电压差对应的电流的电压差读出电路的输出电流、和输出与流过输出晶体管的电流对应的电流的输出电流监视器电路的输出电流,控制第2基准电压。通过相关结构,能够基于输出晶体管的功耗增加的情况使输出晶体管截止。因而,能够事先防止输出晶体管的热破坏。

附图说明

【图1】是本发明的实施方式的内置过热保护电路的稳压器的电路图。

【图2】是图1所示的过热保护电路内的基准电压电路、电力检测电路、电压差读出电路、输出电流监视器电路的电路图。

【图3】是现有的内置过热保护电路的稳压器的电路图。

具体实施方式

以下,参照附图,对本发明的实施方式进行说明。

图1是本发明的稳压器100的电路图。

稳压器100具备输出晶体管(输出驱动器)18、误差放大电路19、基准电压电路20、由电阻21及22构成的分压电路、以及过热保护电路23,如以下那样地构成。

误差放大电路19比较输出电压VOUT被分压电路分压而生成的分压电压VFB和由基准电压电路20生成的基准电压VREF1。误差放大电路19作为比较结果输出电压VEAO,向输出晶体管18的栅极供给。

通过相关结构,稳压器100在通常状态下,从输出端子输出恒定的输出电压VOUT。

过热保护电路23由温度读出电路11、基准电压电路12、比较器电路13、PMOS晶体管(过热保护晶体管)14、开关15、电压差读出电路16、及输出电流监视器电路17构成。

温度读出电路11具有与图3所示的温度读出电路115同样的结构,其温度特性因二极管的正向电压的温度特性生成,输出电压VF成为大致-2mV/℃的特性。

比较器电路13比较温度读出电路11的输出电压VF和基准电压电路12的输出电压VREF2,作为比较结果输出电压VCMP。比较器电路13的输出电压VCMP向PMOS晶体管14的栅极供给,该PMOS晶体管14的源极与电源端子10连接,漏极与输出晶体管18的栅极连接。

电压差读出电路16与电源端子10、稳压器100的输出端子、及开关15的一端连接。

输出电流监视器电路17与电源端子10、误差放大电路19的输出端子、及开关15的一端连接。

开关15的另一端与基准电压电路12连接,通过比较器电路13的输出电压VCMP控制导通/截止。开关15在电压VCMP为HIGH时成为导通、为LOW时成为截止。

接着,关于图1所示的基准电压电路12、开关15、电压差读出电路16、及输出电流监视器电路17的详细情况,利用图2进行说明。

基准电压电路12通过恒流电路31、电阻32、电压跟随器电路33、泄放电阻34、35、36、及开关37构成。

泄放电阻34、35、36在电压跟随器电路33的输出与接地端子VSS之间连接。

开关37的一端与电阻35和36的连接点连接,另一端与接地端子VSS连接,通过比较器电路13的输出电压VCMP控制导通/截止。开关37在电压VCMP为HIGH时成为导通、为LOW时成为截止。

恒流电路31和电阻32的连接点,与电压跟随器电路33的一个输入端子连接。

电压差读出电路16由晶体管38构成,该晶体管38的源极与电源端子10连接,栅极与VOUT连接,漏极与开关15的一端连接。另外,输出电流监视器电路17由晶体管39构成,该晶体管39的源极与电源端子10连接,栅极与图1所示的输出晶体管18的栅极连接,漏极与开关15的一端连接。

接着,利用图1及图2,对过热保护电路23的动作进行说明。

基准电压电路12在通常状态下,输出与用于检测到过热状态的既定温度对应的既定电压值的电压VREF2。

若因为自发热或周围温度的上升而稳压器100的温度上升,则温度读出电路11的输出电压VF以约-2mV/℃的特性下降。而且,若温度读出电路11的输出电压VF低于基准电压电路12的输出电压VREF2,则比较器电路13输出LOW。

由此,由于PMOS晶体管14导通,所以输出晶体管18的栅极电压变高。因而,输出晶体管18截止,稳压器的输出电压VOUT成为LOW。

接着,对本发明的主要特征即事先防止输出驱动器的热破坏的过热保护电路23的动作进行说明。

若从上述通常状态,电源端子10的电源电压与输出电压VOUT的电压差变大,则电流经由电压差读出电路16的晶体管38、开关15、电阻32从电源端子10向接地端子VSS流动。另外,若流过输出晶体管18的输出电流变大,则电流经由输出电流监视器电路17的晶体管39、开关15、电阻32从电源端子10向接地端子VSS流动。

由此,由于流过电阻32的电流增加,所以恒流电路31与电阻32的连接点的电压VREF2B变高。因而,基准电压电路12的输出电压VREF2变得比上述既定电压值高。即,基于电压差读出电路16的输出电流及输出电流监视器电路17的输出电流,控制第2基准电压VRERF2。

由于温度读出电路11的输出电压的约-2mV/℃的特性不变,所以基准电压电路12的输出电压VREF2变高会降低用于检测到过热状态的温度。

因而,若通过电压差读出电路16、输出电流监视器电路17、开关15及基准电压电路12而变高的基准电压VREF2超过温度读出电路11的输出电压VF,则比较器电路13的输出电压VCMP成为LOW,PMOS晶体管14导通。

由此,向输出晶体管18的栅极供给的电压VEAO成为电源端子10的电源电压,输出晶体管18截止,稳压器的输出电压VOUT成为LOW。即,稳压器停止输出。

此时,基于比较器电路13的输出电压VCMP成为LOW的情况,开关15及37成为截止。

在此,使开关15截止是因为存在如下担忧,即即便检测到过热状态而停止输出,如果将开关15照样置于导通,也因输出停止而输出电流监视器电路的电流成为零,会立即返回到通常状态。

另外,使开关37截止是为了降低解除过热状态的温度。即,通过将开关37设为截止,从而如上述那样处理而变高的基准电压VREF2被设定为以电阻36的电阻值的量比上述既定电压值更高的电压。通过使基准电压电路12的输出电压VREF2变高,在一旦检测到过热状态后能够降低成为解除过热状态的基准的温度。

若通过检测到过热状态,稳压器停止输出而温度下降,则温度读出电路11的输出电压上升。若低于解除过热状态的既定温度,则温度读出电路11的输出电压超过基准电压电路12的输出电压VREF2,比较器电路13输出HIGH。于是,PMOS晶体管14截止,因此输出晶体管18的栅极电压变低。因而,输出晶体管18导通,稳压器的输出电压VOUT再次成为既定电压。

如此,依据本实施方式,即便在温度读出电路11读出的温度比上述既定温度低的情况下,也基于与电压差读出电路16输出的电源电压和输出电压VOUT的电压差对应的电流和与输出电流监视器电路17输出的流过输出晶体管的电流对应的电流、即基于输出晶体管18的功耗,控制基准电压电路12的输出电压VREF2,从而能够降低成为检测到过热状态的基准的温度。因而,能够事先防止输出晶体管的热破坏。

如此,依据本发明,在电力损耗较大的情况下,能够降低设定检测温度。另外,在量产时的过热保护电路的功能测试中,因为较大地设定电力损耗而检测温度下降,能够进行在低温下的测试。若能够进行在低温下的测试,则缩短到设定温度的等待时间、或不用对应高温的部件而削减成本上具有效果。

标号说明

10  电源端子

11  温度读出电路

12、20 基准电压电路

13  比较器电路

15、37 开关

16  电压差读出电路

17  输出电流监视器电路

19  误差放大电路

31  恒流电路

33  电压跟随器电路。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1