逐步重建多分辨率三维图像的方法和系统的制作方法

文档序号:6649621阅读:236来源:国知局
专利名称:逐步重建多分辨率三维图像的方法和系统的制作方法
技术领域
本发明通常涉及三维(“3D”)成像。更具体地,本发明描述了一种利用自动感兴趣区域渐进式重建多分辨率三维荧光图像的方法和系统。
背景技术
需要动态重建的医学成像的两个领域包括功能成像和介入成像。功能成像可以包括诸如正电子发射断层摄影(“PET”)和单光子发射计算机断层摄影(“SPECT”)。介入成像可以包括例如荧光计算机断层摄影(“FLUORO CT”)。
现代医学成像系统通常采用移动C形臂荧光系统来使各种诊断和介入放射过程变得容易。虽然这些系统通常都获得二维(“2D”)荧光灰度图像,而较新的移动的和先进的场所固定型荧光系统已经利用计算机断层摄影根据多个2D图像生成3D图像。这些较新的系统增加了便利性,并且降低了在医疗过程之前、期间、和之后获得3D图像扫描的成本。
但是,这些3D荧光图像扫描的值受包括在手术室中与工作流程的冲突在内的一些关键因素的限制。例如,在多数情况下,系统设置、图像数据采集、和从多个2D图像到3D图像的图像重建所需要的时间,可以抵消获得3D图像数据带来的任何益处。
另外,传统的3D图像重建相当一段时间以来没有提供高质量的图像信息。例如,通过基于视图到视图地(view-to-view)更新3D图像信息来进行传统的3D图像重建。图7举例说明了视图到视图地重建的3D图像。图7包括从710到760的6个图像的进化。每个图像都对应于在每个图像中所列出的时间量之后所重建的3D图像。例如,图像710表示在经过图像采集和重建的两秒之后所采集、重建和显示的图像。后面的图像表示利用在显示前一图像之后所采集的图像数据所重建的图像。例如,图像720表示利用在显示图像710之后所采集的图像数据更新的图像710。通过这样的方法,图像720、730、740、750和760表示当采集并重建额外的数据时对前面图像的重建。这样的过程被称为视图到视图的图像重建。
但是,视图到视图地更新图像信息包括几个缺点。这种过程的主要问题是在直到整个图像视图的所有图像数据完全被采集和重建之前,不能提供任何重要的图像细节和/或者质量,从图7中可以很明显地看出。例如,至少在到图像750和760之前,没有重要图像细节可用。在前面的图像710、720、730、740中几乎没有图像细节可用。
另外,视图到视图的更新引起强烈的混迭伪影存在于图像中,直到处于足以完全重建图像的角度范围内的真正最后的荧光图像投影被反向投影到所重建的图像中时。
另外,被认为是“诊断成像”的成像模式(imaging modality),例如CT、磁共振(“MR”)和射线照相成像,所获得的图像在图像采集之后数小时、数天甚至是数周可能都不能被查看。相反,移动C形臂成像系统在传统上被用于介入成像,其可以几乎实时地提供2D荧光图像的采集和查看。在理想情况下,也几乎可实时地得到3D断层摄影图像信息。但是,在技术提供经济有效的解决方法之前,需要显著减少计算和显示高质量3D图像所需时间量的方法和系统。例如,可以通过单独地或结合各种手动和/或自动感兴趣区域选择技术、利用渐进式多分辨率图像重建技术来满足上述需要。
因此,需要利用感兴趣区域的信息渐进式地重建多分辨率三维图像的方法和系统。该方法和系统可以显著减少显示高质量3D图像信息所需要的时间量。例如,该方法和系统几乎可以在数据采集完成之后立刻开始渐进式地可视化图像重建。

发明内容
本发明提供了一种用于渐进式多分辨率3D图像重建的方法。该方法包括采集多个输入二维图像;基于所述输入图像中的至少一个计算初始三维图像,其中所述初始3D图像包括多个体素;和在所述体素的子集内重建三维图像数据以在对应于所述体素子集的显示图像区域内产生分辨率更高的三维图像。
本发明也提供了用于渐进式地重建多分辨率三维图像的系统。该系统包括成像模式和图像处理单元。该成像模式采集多个二维图像。该图像处理单元执行以下步骤1)基于所述输入图中的至少一个计算初始三维图像,其中该初始三维图像包括多个体素,和2)在所述体素的子集内重建三维图像数据,以在对应于该体素子集的显示图像区域中产生分辨率更高的三维图像。
本发明也提供了一种用于渐进式地重建荧光图像的方法。该方法包括采集多个输入二维图像;基于所述输入图像中的至少应该计算三维图像;基于至少另一输入图像更新该三维图像,其中逐体素地进行所述更新;并显示该三维图像。


图1举例说明根据本发明的实施方案所使用的示例性荧光成像系统。
图2举例说明了根据本发明的实施方案的利用全视野多分辨率渐进式重建所重建的示例性3D图像。
图3举例说明了根据本发明的实施方案,基于感兴趣区域的初始低分辨率图像的多分辨率创建。
图4举例说明了根据本发明的实施方案的三个图像和两个圆形的感兴趣区域。
图5举例说明了根据本发明的实施方案的包括两个感兴趣区域和剩余图像区域的分辨率较低的图像。
图6举例说明了根据本发明的实施方案,利用自动的感兴趣区域渐进式地重建多分辨率三维图像的方法的流程图。
图7举例说明了基于视图到视图重建的3D图像。
当结合附图阅读时,将能更好地理解前述内容以及本发明某些的实施方案的下述详细说明。为达到描述本发明的目的,在图中示出某些实施方案。但是,应该理解的是,本发明不限制于附加图中所示出的布置和手段。
具体实施例方式
图1举例说明了根据本发明的实施方案所使用的示例性断层摄影成像系统100。系统100包含成像模式110、图像处理器120和显示设备140。系统100也可以包含存储器130。系统100可以被用于获取患者150和/或患者150的解剖体的断层摄影图像。
成像模式110可以包含能够采集患者150和/或患者150的解剖体的多个图像的任何设备或系统。例如,成像模式110可包括移动C形臂荧光系统,其中在手术中,成像模式110获得患者150和/或患者150的解剖体的多个二维(“2D”)荧光图像。
成像模式110获得多个二维图像。在本发明的实施方案中,图像可以包括荧光图像。该二维图像作为输入的二维图像从成像模式110被传送到图像处理器120中。图像处理器120可以包括能够接受来自成像模式110的2D图像并根据多个2D图像创建生成三维(“3D”)图像的任何设备或系统。例如,图像处理器120可以包含待校正的实时嵌入式图像处理器板。校正后的2D图像被存储在计算机工作站(例如,Linux计算机)中,用于重建和显示3D图像。
一旦已经创建了一个或多个3D图像,那么这些3D图像就可被传送到存储器130和显示设备140中的一个或多个中。于是,存储器130能够存储3D图像,以用于以后的检索、处理和/或显示。存储器130可以包括可存储3D图像的任何介质。例如,存储器130可以包含计算机硬盘驱动器或RAM/快速存储器。
显示设备140可以显示一个或多个3D图像。显示设备140可以包括诸如计算机显示器或能够显示2D和/或3D图像的直观表示的任何其它设备。
在本发明另一实施方案中,成像模式110、图像处理器120、存储器130和显示设备140中的一个或多个可嵌入在单个物理单元中。例如,成像模式110、图像处理器120、存储器130和显示设备140中的一个或多个可包括在移动荧光CT设备中。
一旦图像处理器120从成像模式110接收到多个2D图像,图像处理器120可以至少基于所述的2D图像重建3D图像。处理器120可以根据本领域的技术人员通常所熟知的任意方法重建3D图像。例如,处理器120可以接收对于创建初始低分辨率3D图像有用的190个51222D图像的数据表示。
处理器120可以首先创建初始低分辨率3D图像。例如,一旦处理器120接收到190个51222D图像(与上面的例子相同),处理器120在几秒种之内就可以计算出患者150和/或患者150解剖体的全视野的分辨率非常低的643的体积重建。
初始3D图像可能包含多个体样(volume sample)或体素。体素可以包括例如3D图像的最小可分辨的盒状部分。在初始3D图像中,每个体素可以具有同样的尺寸。
于是,处理器120可以采用3D图像的全视野多分辨率渐进式重建。图2描述了根据本发明实施方案,利用全视野多分辨率渐进式重建所重建的示例性3D图像210、220、230。图像210表示分辨率低的示例性初始3D图像。图像210可以包括,例如,在通过成像模式110获取所有2D图像之后由处理器120计算并且在显示设备140上显示的初始低分辩率图像。
于是,处理器120可以将图像210重建为图像220。图像220可包括,诸如,利用通过成像模式110获取的2D图像数据由处理器120计算并且在显示设备140上显示的中分辨率图像。为了从图像210到图像220提高所显示的图像的分辨率,例如,处理器120可以将体素尺寸从图像210中所使用的减小到在图像220中所使用的体素尺寸。
类似,处理器120可以将图像220重建为图像230。图像230可以包括,例如,利用通过成像模式110获取的2D图像数据由处理器120计算并且在显示设备140上显示的高分辨率图像。为了从图像220到图像230提高所显示的图像的分辨率,例如,处理器120可以将体素尺寸从图像220中所使用的减小到图像230中所使用的体素尺寸。
在本发明的另一实施方案中,处理器120也可以通过对输入的2D图像进行另外的过滤来降低低分辨率图像(例如图2中的图像210)的噪声。例如,处理器120可以利用降噪窗口技术对输入投影进行另外的向下采样(downsampling)。
在本发明的另一实施方案中,处理器120可对低分辨率3D图像的一个区域进行重建,以在该低分辩率图像内产生较高分辨率的3D图像。例如,处理器120可以把初始图像的一个或多个区域重建为分辨率较高的图像区域。
处理器120可以通过重建初始3D图像中所有体素的一个或多个子集来重建所述区域。例如,处理器120可以只重建低分辨率图像中体素的一个子集,以便产生对应于所重建的体素子集的分辨率较高的图像的区域。可以通过基于逐个体素地更新3D图像而不是通过基于投影视图更新3D图像来重建3D图像。例如,可以通过提高图像分辨率并同时保持相同的对比度和噪声水平来基于体素地更新图像数据集。但是,在体素基础上更新图像数据集可包括,例如,改变对比度和噪声水平中的一个或多个。
重建区域可以包括,例如,感兴趣区域。所感兴趣区域可以包括,例如,患者150解剖体、医疗器械、医用植入体、具有较高临床价值的图像、和包含较小图像失真透视的图像区中的一个或多个。临床价值较高的图像区可以包含无论出于何种原因外科医生或内科医师更感兴趣的初始图像的区域。
在本发明的实施方案中,手动地选择该感兴趣区域。例如可以通过输入到图像处理器120中的用户输入来选择该感兴趣区域。用户也可以,例如,通过在设备140上显示的初始图像上指出(多个)感兴趣区域来选择一个或多个感兴趣区域。
在本发明的另一实施方案中,自动选择一个或多个感兴趣区域。例如通过在初始低分辨率的图像的中心定位感兴趣区域可以自动地选择该感兴趣区域。也可以例如通过确定包含有患者150解剖块(anatomical mass)的一个或多个表示的图像区域,自动地选择该感兴趣区域。另外,可以至少基于S失真校正的估计,自动地选择该感兴趣区域。例如,S失真校正可以包含意在减少外部磁场对所显示图像的影响的图像亮度和质地的校正。
在本发明的另一实施方案中,感兴趣区域的手动或自动选择中的一个或多个可以基于先验的和现场更新的信息中的至少一个。先验信息包含在采用一个或多个本发明实施方案开始医疗过程之前系统100的用户可用的信息。现场信息包含直到在采用一个或者多个本发明实施方案开始医疗过程之后系统100的用户才可用的信息。
图3举例说明了根据本发明的实施方案,基于感兴趣区域的初始低分辨率图像的多分辨率创建。图3描述了包含第一感兴趣区域315的初始低分辨率图像310、包含第二感兴趣区域325的中分辨率图像320、和高分辨率图像330。如上所述,可以利用处理器120并且至少基于多个2D图像,计算初始图像310。然后,可以在显示设备140向用户显示初始图像310。如在图像310中用虚线框所示,已选择了感兴趣区域315。
虽然在图像310和图像320的每一个中显示单个感兴趣区域315和325,但图像中可以包含有另外的感兴趣区域。另外,虽然感兴趣区域315和325在图像310和图像320中为正方形,但感兴趣区域可以包括任何的形状,包括但不限于,例如圆形、矩形、三角形、椭圆或任意其它几何形状。例如,图4示出根据本发明实施方案的这三个图像310、320和330以及两个圆形的感兴趣区域315和325。
在选择感兴趣区域315之后,处理器120可以重建包括在感兴趣区域315中的图像310的区域,以产生图像320。例如,处理器120可以重建与包括在感兴趣区域315中的体素相关的图像数据,以形成中分辨率图像320。这样,外科医生就能够首先在初始低分辨率图像310中选择感兴趣区域315,然后观看包括所选择的感兴趣区域315的较高分辨率图像320。例如,由于没有对初始图像310的全视野进行重建(而仅重建感兴趣区域315),所以能够显著降低处理器120的处理时间和需要的电能。
当图像320被显示在显示设备140上之后,选择感兴趣区域325,如在图像320中用虚线框所示。当感兴趣区域325被选择之后,处理器120可以重建包含在感兴趣区域325中的图像320的区域,以产生高分辨率图像330。例如,处理器120可以重建与包含在感兴趣区域325中的体素相关的图像数据,以形成图像330。这样,外科医生能够首先在中分辨率图像320中选择感兴趣区域325,然后观看包括所选择的感兴趣区域325的高分辨率图像330。同样,因为没有对图像320的全视野进行重建(而仅重建感兴趣区域325),所以能够显著降低处理器120的处理时间和所需要的电能。
在本发明的另一实施方案中,包含在图像310、320、330中体素的数量可以是相等的。例如,图像320可以包含与图像310一样数量的体素,只是在一个较小的图像区域中。因此,例如与图像310相比,图像320可以包含双倍的空间分辨率。类似,图像330可以包含与图像320一样数量的体素,只是在一个较小的图像区域中。因此,与图像320相比,图像330可以包含双倍的空间分辨率,而与图像310相比,可以包含四倍的空间分辨率。
如果在图像310、320和330中的体素数量大约相等,那么例如从图像310重建图像320和从图像320重建图像330时,处理器120所需的处理时间和电能可以大致相等。
在本发明的另一实施方案中,图像310和图像320也可以包含不同的体素数量。例如,如图3和4的图像320和图像330中,替代显示所选择的感兴趣区域而不显示初始图像的剩余部分,系统100可以产生与具有较高分辨率的内部图像区域一同显示的分辨率较低的图像。较高分辨率图像区域可对应于感兴趣区域。
图5描述了根据本发明实施方案的包含两个感兴趣区域520、530和剩余图像区域510的较低分辨率图像500。剩余图像区域510包含除了感兴趣区域520和530之外的图像500的区域。剩余图像区域510可包含诸如对应于如上所述的初始图像的图像数据的较低分辨率图像数据。
一旦选择了感兴趣区域520,处理器120能够重建体素的子集(对应于该感兴趣区域),以产生包含有较高分辨率图像的感兴趣区域520。如图5所示,与图像500剩余部分510相比,标记为感兴趣区域520的图像区域包括较高的对比度和提高的分辨率。
如图5所示,在图像500中可以有多个感兴趣区域520、530。感兴趣区域520、530可以有相同级别的分辨率,或者例如如图5所示,感兴趣区域520、530可以有不同级别的分辨率(因为区域530具有比区域520和图像剩余部分510更高的分辨率)。例如,通过使较高分辨率的重建首先发生在高度感兴趣的区域(比如感兴趣区域),而使较低分辨率的重建发生在感兴趣程度较低的区域(比如其他图像区域),可以在感兴趣程度较高的区域中有效地增加3D图像数据的处理速度。
在本发明的另一实施方案中,一个或多个感兴趣区域和/或较高分辨率的图像区域可以增加尺寸和分辨率中的一个或多个。例如,在计算和显示了初始低分辨率图像之后,较高分辨率的区和变化的级别的重建可以从初始感兴趣区域逐渐地“扩展”或“生长”,直到最终整个图像区域具有最高分辨率。例如,初始图像可包括贯穿该图像区域的相同的低分辨率图像质量。一旦选择了感兴趣区域,处理器120能够改变体素的大小和/或重建与包含在感兴趣区域(如上所述)中的体素相关的图像数据,以产生比初始低分辨率图像具有更高分辨率的感兴趣区域。可以与较高分辨率的感兴趣区域一起显示初始低分辨率图像。
于是,处理器120可以继续增加感兴趣区域的尺寸和分辨率中的一个或多个。例如,处理器120可以继续处理与感兴趣区域的体素相关的图像数据,以便进一步提高所显示的感兴趣区域的分辨率。另外,处理器120可以开始处理与相邻于感兴趣区域的体素相关的图像数据,以便进一步提高相邻于感兴趣区域的图像区域的相应分辨率。
通过这样的方法,本发明可以满足接近实时的高分辨率图像信息的临床需要,而同时在较长的时间(比如说一到两分钟)内,提供贯穿所有图像区域的均匀的高分辨率信息。当外科医生期望在介入过程中获得感兴趣的结构、点或区的所有的图像细节,而同时保持3D图像中的所述结构、点或区的位置的低分辨率图像总览时,存在这种临床需要。
通过采用本发明所节约的时间量可能直接取决于一个或多个感兴趣区域的体积大小。例如,通过采用本发明所节约的图像重建时间量可以与t=k13log(k1)-k23log(k2) (1)成比例。其中t是与时间量成比例的因子,k1和k2分别是图像视野和立方体的和/或球形的感兴趣区域体积的感兴趣区域边和/或者半径。
在本发明的另一实施方案中,只针对与一个或多个感兴趣区域相关的图像数据进行另外的图像处理。例如,可以只针对与感兴趣区域相关的图像数据,由处理器120减小图像教据中的光束硬化、散射、金属伪影和/或运动伪影。通过将图像数据的额外处理限制于感兴趣区域,与相似的针对整个图像视野的处理,图像处理的时间和能耗可以被显著地降低。
图6描述了根据本发明的实施方案的利用自动的感兴趣区域渐进式地重建多分辨率3D图像的方法600的流程图。首先,在步骤610,采集多个2D图像,如上所述。其次,在步骤620,也如上所述,基于至少一个2D图像来计算初始低分辨率图像。
再次,在步骤630,显示低分辨率的图像。在步骤640,选择低分辩率图像中的一个或多个感兴趣区域。如上所述,可以手动或自动地选择(多个)感兴趣区域。接下来,在步骤650,如上所述,逐个体素地重建对应于(多个)感兴趣区域的体素的图像数据,以在对应于(多个)感兴趣区域的图像区域内产生分辨率较高的图像。在步骤660,显示具有(多个)感兴趣区域的高分辨率图像的低分辨率图像。
在本发明的另一实施方案中,在步骤660之后,方法600转到步骤640,其中至少基于具有对应于在步骤660中被显示的感兴趣区域的高分辨率图像区域的低分辩率图像来选择一个或多个另外的感兴趣区域。例如,在第一感兴趣区域被选择并且相关的图像数据被重建之后,就可以选择其它的感兴趣区域。
在本发明的另一实施方案中,在步骤660之后,方法600转到步骤650,其中对应于所选择的(多个)感兴趣区域的图像数据被进一步重建,以增加例如图像数据的分辨率。例如,如上所述,对应于(多个)感兴趣区域的图像数据可以反复地被重建和被显示。
在本发明的另一实施方案中,在步骤660之后,方法600转到步骤650,其中对应于(多个)感兴趣区域的图像数据进一步被重建,以增加例如图像数据的分辨率。另外,对应于与(多个)感兴趣区域相邻的图像区域的图像数据同样也被重建,以增加例如图像数据的分辨率。这样,如上所述,较高分辨率的区和变化的级别的重建可以从初始(多个)感兴趣区域逐渐“扩展”和“生长”,直到整个图像区域最后具有最大的分辨率。
虽然已经示出和描述了本发明的具体的元件、实施方案和应用,但是应该理解的是,本发明并不限制于此,因为尤其根据上述教导,本领域技术人员可以进行修改。因此,旨在通过所附权利要求涵盖这些修改,并且与在本发明精神和范围中得到的那些特征结合。
部件清单

权利要求
1.一种用于渐进式地重建多分辨率3D图像的方法,该方法包括采集多个输入二维图像;在至少一个所述的输入图像的基础上计算初始三维图像(310),所述的初始三维图像(310)包含多个体素,每个所述体素包含三维图像数据;和在所述体素的子集(315,325)内重建所述三维图像数据,以在对应于所述体素子集(315,325)的显示图像区域内产生分辨率更高的三维图像。
2.按照权利要求1所述的方法,其中所述体素子集(315,325)包括感兴趣区域。
3.按照权利要求1所述的方法,另外包括基于所述初始图像的中心、解剖块、和S失真校正中的至少一个或多个自动地确定所述体素子集(315,325)。
4.按照权利要求1所述的方法,另外包括渐进式地增加所述体素子集(315,325)的大小。
5.一种用于渐进式地重建多分辨率3D图像的系统,该系统包括采集多个输入二维图像的成像模式(110),和执行以下步骤的图像处理单元(120)在至少一个所述输入图像的基础上计算初始三维图像(310),所述的初始三维图像(310)包括多个体素,每个所述体素包括三维图像数据;和在所述体素的子集(315,325)中重建所述三维图像数据,以在对应于所述体素子集(315,325)的显示图像区域中产生分辨率更高的三维图像。
6.按照权利要求5所述的系统,其中所述体素子集(315,325)包括感兴趣区域。
7.按照权利要求5所述的系统,其中所述图像处理单元(120)基于所述初始图像的中心、解剖块、和S失真校正中的至少一个或多个自动地确定所述体素子集(315,325)。
8.按照权利要求5所述的系统,其中所述图像处理单元(120)渐进式地增加所述体素子集(315,325)的大小。
9.用于渐进式地重建荧光图像的方法,该方法包括采集多个输入二维图像。在至少一个所述输入图像的基础上计算三维图像(310)。在至少另一输入图像的基础上更新所述三维图像(310),逐个体素地进行所述更新;和显示所述三维图像(310)。
10.按照权利要求9所述的方法,另外还包括自动地选择感兴趣区域,其中所述更新步骤从对应于所述感兴趣区域的体素子集(315,325)逐步地扩展到所述三维图像的剩余部分。
全文摘要
本发明提供了利用感兴趣区域信息渐进式地重建多分辨率三维图像的方法和系统。该方法和系统通过利用渐进式多分辨率图像重建技术显著地降低显示高质量的三维荧光图像所需要的时间。另外,通过手动地或自动地选择一个或多个着重渐进式图像重建的感兴趣区域,在获得图像数据之后很快就可以得到感兴趣区域的高质量的3D图像。
文档编号G06T11/00GK1753029SQ20051010973
公开日2006年3月29日 申请日期2005年9月21日 优先权日2004年9月21日
发明者A·B·切尔姚卡, V·T·詹森 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1